
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.054108

ARTICLE

Network Traffic Synthesis and Simulation Framework for Cybersecurity
Exercise Systems

Dong-Wook Kim1, Gun-Yoon Sin2, Kwangsoo Kim3, Jaesik Kang3, Sun-Young Im3 and
Myung-Mook Han1,*

1Department of AI Software, Gachon University, Seongnam-Si, 13120, Republic of Korea
2School of Computer Engineering & Applied Mathematics, Hankyong National University,
Pyeongtaek-Si, 17738, Republic of Korea
3Cyber Electronic Warfare Research and Development, LIG Nex1, Seongnam-Si, 13488, Republic of Korea

*Corresponding Author: Myung-Mook Han. Email: mmhan@gachon.ac.kr

Received: 19 May 2024 Accepted: 26 July 2024 Published: 12 September 2024

ABSTRACT

In the rapidly evolving field of cybersecurity, the challenge of providing realistic exercise scenarios that accurately
mimic real-world threats has become increasingly critical. Traditional methods often fall short in capturing the
dynamic and complex nature of modern cyber threats. To address this gap, we propose a comprehensive framework
designed to create authentic network environments tailored for cybersecurity exercise systems. Our framework
leverages advanced simulation techniques to generate scenarios that mirror actual network conditions faced by
professionals in the field. The cornerstone of our approach is the use of a conditional tabular generative adversarial
network (CTGAN), a sophisticated tool that synthesizes realistic synthetic network traffic by learning from real data
patterns. This technology allows us to handle technical components and sensitive information with high fidelity,
ensuring that the synthetic data maintains statistical characteristics similar to those observed in real network
environments. By meticulously analyzing the data collected from various network layers and translating these
into structured tabular formats, our framework can generate network traffic that closely resembles that found in
actual scenarios. An integral part of our process involves deploying this synthetic data within a simulated network
environment, structured on software-defined networking (SDN) principles, to test and refine the traffic patterns.
This simulation not only facilitates a direct comparison between the synthetic and real traffic but also enables us
to identify discrepancies and refine the accuracy of our simulations. Our initial findings indicate an error rate
of approximately 29.28% between the synthetic and real traffic data, highlighting areas for further improvement
and adjustment. By providing a diverse array of network scenarios through our framework, we aim to enhance the
exercise systems used by cybersecurity professionals. This not only improves their ability to respond to actual cyber
threats but also ensures that the exercise is cost-effective and efficient.

KEYWORDS
Cybersecurity exercise; synthetic network traffic; generative adversarial network; traffic generation;
software-defined networking

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.054108
https://www.techscience.com/doi/10.32604/cmc.2024.054108
mailto:mmhan@gachon.ac.kr


3638 CMC, 2024, vol.80, no.3

1 Introduction

In cybersecurity, providing network professionals with realistic threat scenarios and appropriate
training environments that mimic real-life situations has recently emerged as a major challenge. To
address this challenge, competitive mock training systems have been developed, and cybersecurity
experts have established training regimes tailored to various tasks according to their roles in attack and
defense. Industries, universities, research centers, and national security agencies worldwide are devel-
oping and advancing environments for cybersecurity training. Among these technological platforms,
an early instance of supporting research and development, training, and exercises was developed by the
Defense Advanced Research Projects Agency (DARPA), which established the National Cyber Range
(NCR) [1]. The NCR provides technologies related to exercise simulations that allow cybersecurity
personnel to learn proper responses to cyberattacks. However, the usage of a cyber range is limited
by specific requirements, and it has command and control systems functionalities tailored to specific
exercise scenarios.

Cybersecurity exercise systems must support highly realistic simulations by providing trainees
with a realistic network environment that mimics actual scenarios. To establish such an environment,
the characteristics, operations, and usage patterns of real networks should be replicated to resemble
actual scenarios, thus requiring communication settings for each host and switch as well as techniques
for generating and monitoring related network traffic. This process demands significant resources
and incurs high costs in computing hardware and management software, resulting in substantial
financial burdens for the construction and maintenance of systems like cyber ranges [2,3]. Additionally,
postprocessing is necessary to exclude personal information, often limiting the use of the testbed
environment for administrative efficiency [4]. In this context, while technologies such as schedulers
and behavior modeling using Markov models [5,6] can be used for automatic and realistic network
traffic generation, the use of generative adversarial networks (GANs) for synthesizing data that
mimic network traffic flows using deep learning is gaining interest. Research on network traffic
generation using GANs is becoming increasingly active across various network levels, from byte-
level packet composition to scheduling patterns. The corresponding techniques allow to replicate of
complex network patterns, including normal and malicious traffic, thus contributing to research on
data imbalance and intrusion detection systems. Generative models may substantially enhance the
precision and diversity of cybersecurity exercise simulations and facilitate sophisticated modeling of
diverse scenarios that may occur in real network environments.

To deploy generated network traffic in a cybersecurity exercise environment, real-time simulation
requires a model that reflects real network conditions [7]. Hence, network emulators based on
software-defined networking (SDN) are being increasingly used to integrate management, response,
and monitoring techniques for cyberattacks. SDN virtualization allows to implement and execute
various cyber threat scenarios in complex network environments, such as smart grids, at a reduced cost,
thus facilitating system vulnerability analysis, identification of communication environment impacts
from cyberattacks, and enhanced response capabilities [8]. Moreover, machine learning and artificial
intelligence can be integrated into an SDN environment, facilitating their use in anomaly detection
of network traffic, real-time network status estimation, and intrusion detection. In cybersecurity
exercises, generating realistic network traffic based on specific scenarios is essential, and this process
involves complex procedures that depend on the network topology.

We propose a framework to synthesize network traffic for cybersecurity exercises. The framework
establishes strategies to evaluate network adaptability by creating and deploying realistic scenarios,
thus contributing to the generation of diverse cybersecurity exercise scenarios. Additionally, this



CMC, 2024, vol.80, no.3 3639

framework includes the integration of AI (Artificial Intelligence) modules for seamless integration with
existing cybersecurity exercise systems and incorporates synthetic data generation methods utilizing
existing similar traffic generation technologies. A key component in the proposed framework is the
conditional tabular GAN (CTGAN) [9], which generates synthetic tabular data with similar statistical
characteristics to real data. Statistical characteristics in a network environment can include features
such as packet size, transmission time, protocol type, and source and destination IP (Internet Protocol)
addresses. By learning the distribution of real data, it is possible to generate similar synthetic data. This
allows the construction of a network environment based on SDN for simulating the flow and patterns
of network traffic in real situations and comparing them to real traffic. For comparison, a network
traffic matrix can be constructed and analyzed to measure the traffic volume originating from hosts,
thus providing important insights into adjustments and improvements to obtain realistic cybersecurity
exercise scenarios. Therefore, the proposed approach has been validated for its effectiveness in optimiz-
ing network performance and generating cybersecurity exercise scenarios, verifying the effectiveness
of the traffic circulated in the field of cybersecurity research and training systems.

2 Related Work
2.1 Cybersecurity Exercise and Scenarios

Cybersecurity training consists of interactive simulations targeting local networks, systems, tools,
and applications of organizations equipped with traditional cyber-range environments and internet-
level connectivity [10]. This research area focuses on building and assessing capabilities aligned
with organizational goals, promoting cybersecurity awareness, and facilitating information sharing.
Specifically, cybersecurity training involves defense training in customized arenas with various active
scenario engines implemented as simulations to assess the performance of trainees. It requires the
integration of computing platforms, infrastructure, and software provisioning technologies [11].

The configuration for cybersecurity training involves the simulation of threat actions and attack
scenarios as well as the division of training participants into attack, defense, and monitoring teams to
respond to cyberattacks. Additionally, the scalability of the training system must ensure support for
numerous simultaneous connections and realistic traffic loads, integrate diverse and complex attack
vectors to accurately mirror real threats, and provide robust monitoring and analysis tools to evaluate
the effectiveness of defense strategies in real environments [12].

Furthermore, the framework should facilitate seamless integration with existing cybersecurity
tools and platforms, offer flexibility for scenario customization, and be able to scale both horizontally
and vertically to accommodate future growth and technological advancements. This approach is
adjusted according to the specific requirements of every scenario, and continuous research, devel-
opment, verification, testing, and evaluation constitute a distinctive research challenge [13].

Russo et al. [14] presented a method for designing and validating cybersecurity exercise scenarios
for next-generation cyber ranges by developing models for the design, validation, automatic gener-
ation, and testing of such scenarios. They introduced the scenario description language for scenario
modeling, thereby contributing to the precise definition and reproducibility of cybersecurity scenarios
and enhancing the efficiency and effectiveness of cybersecurity exercises within cyber ranges.

Yamin et al. [15] proposed a platform for simulating cybersecurity exercise scenarios to obtain
environments using a domain-specific language and infrastructure orchestration. This platform served
as a dynamic cybersecurity exercise scenario generator. The scenarios were easily designed through



3640 CMC, 2024, vol.80, no.3

the interconnectivity of computers, routers, and switches while abstracting rules and vulnerabilities
between attack and defense to present realistic environments.

Wen et al. [16] used an ontology for managing and standardizing knowledge to facilitate its sharing
and management for scenario search and reuse in cybersecurity exercises. By identifying elements and
relationships within a cybersecurity scenario, knowledge was divided into three sub-models: scenario
information, scenario operation, and security knowledge models. This division helped structure a
scenario instance library, thus obtaining a systematic method for managing scenarios.

The abovementioned studies emphasize the need for flexible creation and realistic reproducibility
testing mechanisms in the development of cybersecurity exercise scenarios, indicating that a systematic
approach is essential for maximizing the efficiency of cybersecurity exercises and corresponding
scenarios.

2.2 Techniques for Network Traffic Generation Using GAN

Once cybersecurity exercise scenarios are prepared, deploying traffic that includes background
traffic generation and user simulation to mimic a realistic internet environment in the exercise
communication network is essential. Traffic generation techniques are being extensively studied based
on technologies such as SDN and network function virtualization. Generally, as collected network
traffic in real environments is scarcely available for researchers owing to privacy policies, traffic
generators are required [4].

Adeleke et al. [17] classified network traffic generators into constant/maximum throughput
generators, application-level synthetic workload generators, trace file replay systems, model-based
generators, and script-driven traffic generators depending on the technique adopted for pushing
packets into the network. On the other hand, the advent of GANs in 2014 brought innovation to
generative machine learning. Thereafter, generative models, which estimate the probability distribution
of data to then extract samples, have been adopted for network traffic generation [18].

Cheng [19] proposed Packet Generation Adversarial Networks (PAC-GAN), which combines
a convolutional neural network (CNN) with a GAN to generate network packets. PAC-GAN
implements an inverse CNN for the generator, while the discriminator uses a conventional CNN for
supervised classification. This method was used to evaluate the feasibility of using GANs to generate
realistic traffic flows, such as ICMP (Internet Control Message Protocol) pings, DNS (Domain Name
System) queries, and HTTP (Hypertext Transfer Protocol) web requests.

Manocchio et al. [20] proposed Flow Generative Adversarial Networks (FlowGAN) for synthesiz-
ing network flow data for training a network intrusion detection system. They combined a supervised
component that guided the training data distribution to learn all modes based on a manifold-guided
GAN, producing synthetic traffic closely resembling real traffic.

Dowoo et al. [21] proposed Packet Capture Generative Adversarial Networks (PcapGAN) to
augment data for cybersecurity fields that face data scarcity. PcapGAN consists of an encoder,
generator, and decoder, and it uses a style-based encoder to extract information in various formats.
The formats include graph data for source and destination IP (Internet Protocol) addresses, image
data for time intervals, and hierarchical sequences for sequences, and they are used as inputs for a
hybrid generator. Finally, the decoder combines the generated information and reconstructs valid pcap
(packet capture) files, obtaining data similar to the original.

Ring et al. [22] presented three approaches using a Wasserstein GAN with gradient penalty
to preprocess network data and replay it based on new flows. To address the GAN limitation of



CMC, 2024, vol.80, no.3 3641

only being applicable to continuous data properties, they introduced a method using the IP2Vec
method for learning vector representations of network flow data that include continuous, numerical,
categorical, and binary attributes. Hence, they demonstrated an expanded application scope for GANs
in processing network data.

Research on packet-level data generation using GANs is being conducted to demonstrate its
efficacy and practicality. However, challenges arise in simulating the continuity and temporal flow
of network packets due to data imbalance issues. Additionally, there are limitations in creating
customized scenarios based on specific conditions and in finely adjusting individual packet levels
when generating traffic based on network flows. To address these issues, we aim to reconstruct
structured packet characteristics to improve data imbalance, create customized scenarios, achieve fine
adjustments at the packet level, and enhance the evaluation of generated traffic.

3 Proposed Framework

We propose an exercise network topology and traffic analysis framework for generating network
traffic distributions applicable to cybersecurity exercise scenarios. The framework consists of four
main stages, namely, data collection, network topology generation, network traffic distribution, and
network performance evaluation, as detailed in this section.

3.1 General Concept

A diagram of the proposed framework is shown in Fig. 1, which indicates the procedure for
generating network traffic. Initially, network packets in pcap files are decoded. These network packets
are typically stored in binary form and can be converted into hexadecimal representation for analysis.
From the converted data, various properties of network layers such as Ethernet headers, IP headers,
and TCP (Transmission Control Protocol) headers are extracted. The extracted information includes
destination and source MAC (medium access control) addresses, IP versions, source and destination IP
addresses, and port numbers. These attributes are transformed into features for input into the proposed
CTGAN and presented in tabular form. These data are then used by the CTGAN generator to create
synthetic data based on condition z. The generated data are assessed by the discriminator to distinguish
between real and synthetic data and evaluate their similarity to real data. Once synthetic data are
created, they are reencoded in the pcap format based on TCP streams. The encoded data are deployed
through SDN to compare their similarity to real network traffic data.

To compare and evaluate real packets with synthetic packets, we managed and transmitted traffic
across the network using an SDN (Software-Defined Networking) controller. The SDN controller
communicated with network switches to regulate traffic, enabling real-time monitoring and evaluation
of network traffic volumes. Based on this evaluation, we determined whether the synthetic data
accurately reflected the operation of the real network and assessed the accuracy and effectiveness of
training scenarios. Through this process, our framework provided a comprehensive methodology for
generating and deploying network training traffic, allowing for the creation of realistic cybersecurity
training environments. By utilizing CTGAN, we were able to reconstruct valid packets expressed as
structured data, effectively addressing the imbalance issue and balancing normal and malicious traffic.
This enabled the flexible creation of various scenarios by combining specific traffic segments, thereby
enhancing the ability of trainees to respond to diverse patterns of simulated traffic, contributing to
improved response capabilities.



3642 CMC, 2024, vol.80, no.3

Figure 1: Framework for generating network traffic for cybersecurity exercise (Dst, destination; Src,
source; TPID (Tag Protocol Identifier))

3.2 Network Packet Decoding

Network packet decoding involves analyzing binary data packets transmitted over a network to
extract their information. Packets are primarily composed of headers and payloads, with the header
containing control information such as source and destination IP addresses, port numbers, data length,
and protocol type.

For packet decoding, captured packet data from pcap files can be extracted using tools like
Wireshark and TCPDUMP, which provide hexadecimal information representing the structure and
content of data packets in network communications [23]. The hexadecimal format represents binary
data in base 16, conveniently displaying each byte as two hexadecimal digits. Packets can be analyzed
in various ways according to the OSI (Open Systems Interconnection) model of network layers.
Hexadecimal information includes data such as the source and destination IP addresses, version,
header length, time to live, and protocol type, which help determine the packet path, priority, and
fragmentation status. Additionally, at the TCP/UDP (User Datagram Protocol) layer, information
such as port numbers and application layer protocols like HTTP and HTTP Secure can be verified,
allowing the identification of the service or application for which the packet is intended and the type
of transmitted data.

As shown in Fig. 2, from captured packets, we extract and classify the flow of consecutive data
packets according to TCPStream, identifying the path, sender and receiver, and amount and type
of transmitted data. Hence, data are structured to analyze patterns and characteristics of specific
communication sessions. Such conversion is applied to produce data in an easily analyzable form for
input into the CTGAN and assign unique identifiers to each packet based on data structuring, which
aids in tracking relations between packets during data analysis and identifying packets of interest.



CMC, 2024, vol.80, no.3 3643

Figure 2: Data structure by network layer (dst, destination; dport, destination port; sport, source port;
src, source; VLAN (virtual local area network))

3.3 Traffic Synthesis Using CTGAN

CTGAN generates synthetic tabular data by modeling the statistical characteristics and structure
of real datasets [9]. CTGAN can handle various data types, such as continuous, discrete, and
categorical variables, by creating new instances while preserving the statistical characteristics of the
original real data. In addition, it can include information not present in the original data. Due to
these capabilities, it can generate similar synthetic data while preserving the distribution of the real
data. The generated synthetic data can be evaluated for statistical similarity and scenario suitability
through traffic patterns, packet loss rates, and latency.

CTGAN generates synthetic data through adversarial learning between the generator and dis-
criminator by learning conditional probability distributions. This approach allows a GAN to replicate
real data distributions and generate data based on given conditions by using labels or other metadata
corresponding to each data point. In CTGAN, discrete values are represented as one-hot vectors
and continuous values with arbitrary distributions are normalized in [−1, 1] by applying min-max
normalization to represent information about data structures. CTGAN designs and applies specific
normalization operations over columns to handle various types of data, especially continuous and
discrete categorical data with complex distributions. Moreover, CTGAN ensures that all categories
in discrete attributes are evenly sampled during training through conditional generation and training
sampling to correctly reflect the real data distribution during testing.

To replicate a real data distribution, the generator learns the conditional distribution of rows that
match specific values of various columns for given conditions Di∗ = k∗, expressed as r̃ ∼ PG(row |
Di∗ = k∗). Thus, the conditional GAN can effectively replicate the real data distribution as follows:

P(row) =
∑

k∈Di∗
PG(row | Di∗ = k∗) P(Di∗ = k) (1)

Eq. (1) describes the process of calculating the overall distribution of the generated rows P(row)

across possible conditions k. Each term PG(row | Di∗ = k∗) represents the conditional distribution
of rows generated by generator G given condition k∗, and P(Di∗ = k) represents the probability in
the real data for condition k∗. Hence, the generator learns the conditional distribution and reproduces
the overall distribution of real data considering the probability of each condition. The conditional
generation of CTGAN requires a clear definition of conditions to ensure that the synthesized data
accurately reflects the given conditions and precisely learns the conditional distributions of real data.
To support this process, conditional vectors, a generator loss, and sampling-based training are used.



3644 CMC, 2024, vol.80, no.3

These components allow CTGAN to properly model complex distributions in continuous and discrete
categorical data using conditional information to generate diverse and accurate synthetic data.

CTGAN can handle structured network traffic data and reconstruct the correct sequence of TCP
traffic flows as shown in Fig. 3. First, multiple traffic records are collected and arranged according to
specific TCP streams. “Real packet order” reflects the order in which data are transmitted in the actual
network. These data are provided as input to CTGAN, which learns their sequence considering the
actual packet order, which is crucial for accurately modeling network protocol operations like TCP
handshake. Next, “seq reassemble” ensures that the sequence reconstructed by the model correctly
reflects specific stages of TCP communication, such as handshaking. As a result, the model can
generate new traffic based on learned patterns, maintaining structural characteristics and sequences
of TCP streams that reflect actual network operations.

Figure 3: TCP traffic sequence reconstruction and learning using CTGAN (ACK, acknowledge; seq,
sequence; SYN (synchronize))

3.4 Synthetic Data Encoding

We encode the tabular data generated using CTGAN into packets according to specific attributes.
Encoding is necessary because original pcap files are needed to deploy packets on the actual exercise
network, and the patterns and transmission volumes should be compared between real and generated
traffic to assess the plausibility of synthetic traffic.

Fig. 4 illustrates the encoding of network packet layers for data synthesized using CTGAN.
Typically, network packets are composed of multiple layers, each responsible for specific information
according to its header positions. First, the Ethernet layer includes information such as MAC addresses
and frame types, enabling packets to reach their destinations through the physical network. Second,
the IP layer contains data such as source and destination IP addresses and packet length, which are
necessary for correctly routing packets across the internet. Particularly, along with IP addresses, the
field “len” must include the total length of the IP packet and the precise payload or length of the data
field. Third, the TCP layer is responsible for reliable data transmission and includes port numbers,
sequence numbers, and other information. Finally, the data segment contains the actual application
data being transmitted.

Figure 4: Network packet layer encoding (len, length; seq, sequence; src, source)



CMC, 2024, vol.80, no.3 3645

For configuration, we use the Scapy library [24] to automatically calculate specific fields such as
the IP packet length, aiming to reduce complexity and prevent errors in assembling network packets
to ensure that synthetic data accurately reflects real network operations. When data generated by
CTGAN are encoded using Scapy, the fields of every layer can be adjusted according to precise network
communication standards, ensuring operation in environments built to resemble real network traffic
or in simulations for network security and performance evaluation.

3.5 Network Emulator and Traffic Replay

For traffic data deployment, we implement a cybersecurity exercise traffic deployment simulation
by combining the Mininet emulator and Tcpreplay suite to configure the network topology and replay
pcap files. Mininet allows to create and manage virtual routers, switches, and hosts in a single system
using SDN and enables testing network protocols and applications without requiring hardware [25].
During simulation, the network behavior is monitored using the POX controller [26], a centralized
function that manages and controls network flows.

To generate an arbitrary network topology and traffic from hosts, we use the Tcpreplay suite
[27] with the Mininet emulator. This suite uses actual network traffic data contained in pcap files to
distribute traffic and realistically reproduce network traffic situations for assessing the system perfor-
mance. The simulated environment allows the configuration of the network topology environments by
replaying pcap data in the network topology created through Mininet.

3.6 Traffic Monitoring

Through traffic monitoring, we store captured network data in the form of a traffic matrix. The
traffic matrix comprehensively captures the overall traffic flow information from the network [28].
To deploy packets and observe traffic volumes in the configured network topology, we obtain the
network traffic matrix through the POX controller of the Mininet emulator. Typically, the traffic
matrix represents the amount of traffic exchanged between every pair of nodes within the network
over a specific time interval by transmitting packets contained in a common pcap file. This allows
for the analysis of network performance, or the prediction of traffic patterns based on the amount of
traffic generated during the transmission period.

To calculate the change in network traffic, we determine the time difference between two
measurements and base our calculations on the difference between the current and previous traffic
states. This difference represents the “change in traffic,” and dividing it by the elapsed time gives the
“rate of traffic change per hour.” Hence, the change in traffic is calculated by subtracting the previous
traffic state from the latest traffic state and dividing by the duration as follows:

Traffic change rate �T = latest traffic − previous traffic
duration

(2)

where the latest traffic and previous traffic are matrices that represent the traffic states, with each
matrix element indicating the traffic volume at a specific time. Therefore, by calculating the difference
between these two matrices, the change in traffic per element can be determined. The calculated traffic
matrix can then be viewed as the hourly traffic change between every pair of nodes given by the traffic
matrix T = �T. This method allows for real-time understanding and responding to changes in network
conditions to determine and adjust the dynamic network performance.



3646 CMC, 2024, vol.80, no.3

4 Evaluation Results
4.1 Dataset

For generating network traffic for cybersecurity exercises, we used the MACCDC (Mid-Atlantic
Collegiate Cybersecurity Defense Competition) 2012 dataset constructed at MIT (Massachusetts
Institute of Technology) Lincoln Laboratory [29]. This dataset includes various stages of a cybersecu-
rity attack, from scanning and reconnaissance to exploitation. The dataset consists of 17 individual
files, mostly capturing packets reflecting the information gathering and reconnaissance phases.
Instead of generating from the entire dataset, we generated synthetic traffic from the last file
(maccdc2012_00016.pcap), which contains 3,816,907 traffic records. From this file, we selected the
five most active hosts in the network to synthesize data.

4.2 Experimental Environment

We configured the experimental environment in a computer running Python to generate random
network topologies, operate learning models, and simulate network traffic in a WSL2 (Windows
Subsystem for Linux 2) environment with Ubuntu 20.04. In this environment (see Table 1), we installed
the Mininet emulator, configured the network to replay pcap files from the MACCDC 2012 dataset,
and calculated and monitored the traffic matrix.

Table 1: Specifications of the experimental environment

Component Specification

Processor Intel Xeon E5-2620 v4
Memory 48 GB
Operating system Windows 10, WSL2 (Ubuntu 20.04)
Language Python 3.8
Libraries Networkx, tensorflow, sklearn

4.3 Network Environment and Topology

The network topology was constructed by selecting five random hosts from file maccdc2012_00016
.pcap in the MACCDC 2012 dataset. Using a subset of traffic flow scenarios for synthetic data
evaluation is likely more intuitive and suitable for developing cybersecurity exercise scenarios, where
the synthetic data can be added to the original traffic flows, than using all the available hosts.
Additionally, we extracted representative traffic types corresponding to TCP, SSH (secure shell),
and HTTP, which are commonly used protocols at the IPv4 layer, based on the TCP handshake (ACK
(Acknowledge character), SYN) sequence. The system was configured to analyze and simulate traffic
patterns in various network environments according to scenarios involving communication in the
training system. However, we avoided using payloads with encrypted packets as much as possible.
This was to minimize the string errors that could occur during the decoding process and to ensure
proper encoding. Fig. 5 shows the connections and communication directions among the network
IP addresses. Overall, five hosts were designated for sending communications, while some hosts were
exclusively set as receivers. Overall, 18 hosts interacted within the network. For each of the five sending
hosts, Table 2 lists the IP address, the total number of packets sent or received, and the total size of
the packets in bytes.



CMC, 2024, vol.80, no.3 3647

Figure 5: Communication network topology used for evaluation

Table 2: Number of packets and their size during network communication

Host No. packets Size (bytes)

192.168.21.203 3598 1,639,598
192.168.202.2 7025 3,176,795
192.168.23.253 1471 134,094
192.168.27.101 3872 293,001
192.168.202.108 254 38,551

The host with IP address 192.168.21.203 sent/received 3598 packets or approximately 1.64 MB
of data, while host 192.168.202.2 processed most data, approximately 3.18 MB from 7025 packets.
Host 192.168.23.253 handled 1471 packets or 134,094 bytes of data, showing a relatively low data
usage. Host 192.168.27.101 transmitted approximately 293 KB of data from 3872 packets, amounting
to 293,001 bytes. Finally, host 192.168.202.108 processed the least amount, with 254 packets or 38,551
bytes of data.

The host environment in the network virtual simulation using the Mininet topology configuration
environment was set as shown in Fig. 6.



3648 CMC, 2024, vol.80, no.3

Figure 6: Mininet network topology for evaluation scenario

Mininet can be configured to handle large-scale traffic for hosts and switches in network
simulations. Each host and router had a maximum transmission bandwidth of 20 MB, and the
bandwidth between routers was set to 30 MB. These bandwidth settings provided an environment with
sufficient bandwidth while effectively transmitting information among various network components.
This setup contributed to simulating various traffic situations that could occur in a real network
and played a crucial role in constructing diverse scenarios for cybersecurity exercises. Through these
settings, the framework effectively managed the scalability and computational resources required
for large-scale network simulations. By integrating these three tools, we replicated and analyzed a
network environment with realistic traffic distribution for cybersecurity exercises and designed and
implemented an effective simulation system.

4.4 Experimental Results and Evaluation

Based on the configured dataset and environment, we applied CTGAN to synthesize data based
on the original pcap file. The input data for CTGAN comprised 22 features that constitute the
network layer. Each feature was composed of categorical and discrete values. The main parameters
related to the configuration of the generator and discriminator of the learning model were set as
follows. The generator had three layers of dimensions 256, 256, and 1 and a learning rate of 0.0001.
The discriminator had three layers of dimensions 128, 128, and 1, having a smaller capacity than
the generator and enabling effective differentiation between real and synthetic data. The smaller
discriminator enhanced the computational efficiency and prevented overfitting by reducing excessive
training. The discriminator learning rate was set slightly higher than that of the generator to 0.0002,
allowing the discriminator to learn faster than the generator and efficiently identify differences
between real and synthetic data. For these settings, training proceeded with a batch size of 100, and
the model was trained over 500 epochs to adequately learn the diverse dataset features.

The synthetic network layer data were reencoded into packet data and used in network simulations
to compare the volumes of original and synthetic traffic data. Fig. 7 shows the network traffic
throughput over time for real and synthetic data. The x axis shows time intervals of 10 s, while the y
axis represents the traffic throughput in bytes calculated as a traffic matrix across all hosts. The graph
of real traffic through the network shows high variability, as expected in a normal real environment.
Such variability is due to real user activity or system processes, as network usage is not constant
and fluctuates greatly. The synthetic traffic data generated by CTGAN are shown on the graph for
comparison. The synthetic traffic data show fluctuations similar to those of the original traffic data,
indicating that they resemble real network usage.



CMC, 2024, vol.80, no.3 3649

Figure 7: Traffic volumes from real and synthetic data

Fig. 7 shows peaks of high traffic volumes at specific times in the real and synthetic traffic
curves. These peaks occur under heavy data transmission across the network. The similarities in the
fluctuation patterns of both real and synthetic traffic data indicate that synthetic traffic faithfully
describes a real environment. Both traffic patterns generally follow a similar trend, although the
synthetic traffic consistently shows slightly lower volumes than the real traffic. Thus, sudden changes in
the real traffic are not replicated in the synthetic traffic, indicating that synthetic data may not capture
all the volatility of real data. The failure of certain sequences in the synthetic traffic to match the peaks
of the original traffic suggests that synthesis may not fully reflect exceptional traffic conditions. This
discrepancy may lead to issues with traffic loss or inaccuracies in packet encoding.

To compare traffic volume changes between real and synthetic data, we analyzed the change rates
of the two curves. We calculated the difference in total traffic volume between real and synthetic data
and then divided this difference by the total traffic volume of real data to compute the percentage
difference. This calculation is given by:

P =
∣∣∣∣T1 − T2

T1

∣∣∣∣ × 100 (3)

where T1 and T2 represent the total volume of real and synthetic traffic, respectively. The calculation
shows the percentage difference in total traffic volume between real and synthetic data, enabling an
intuitive interpretation of the changes over time.

Calculating the average of the percentage differences indicates the average relative difference
between real and synthetic traffic data, thus quantifying the overall difference between these data.
The average percentage difference allows us to understand the consistency and average magnitude of
changes over time, thereby indicating if a consistent difference between data occurs or if the difference
has large fluctuations over time.

Fig. 8 shows the percentage differences between the real and synthetic traffic data over time. The
average difference is 29.28%, indicating that the data exhibit high variability. The negative values at
each time point occur when the percentage difference is lower than the average. Overall, approximately
200 data points are below the average. The highest difference occurs in segment 196, which appears to
coincide with the largest drop in the traffic volume shown in Fig. 7. Generally, percentage differences
cluster around the average, but at certain times, the difference between the real and synthetic data is
much greater than the average, suggesting that synthetic traffic patterns may not suitably describe real
data in those periods. As an average percentage difference of 29.28% indicates a substantial difference



3650 CMC, 2024, vol.80, no.3

between real and synthetic data, the remaining 70.72% of synthetic data is assumed to show similar
patterns to real data.

Figure 8: Average traffic rate differences between real and synthetic data

Next, the differences in the number of packets and volume of real and synthetic packets were
analyzed. Table 3 shows that host 192.168.202.2 has the highest byte loss rate of 36.77%. This suggests
that a large portion of data is not transmitted, greatly impacting the volume shown in Fig. 7. This issue
seems to arise from improperly applied encrypted payloads during packet layer encoding. Despite the
data loss, the traffic volume patterns of real and synthetic data are quite similar. This indicates that
while the number of original and synthetic packets is the same, both data sets maintain similar traffic
patterns in terms of the amount of concentrated traffic. In contrast, a notable difference occurs in
the data size, with an average difference of 29.28%. This may be due to issues with the encoding of
encrypted payloads or from other network issues. Despite these differences, the overall volume and
patterns of real traffic are maintained in synthetic traffic, suggesting consistency in the occurrence of
other errors.

Table 3: Number of packets and their size during network communication for real and synthetic data

Host No. real
packets

No. synthetic
packets

Real data size
(bytes)

Synthetic data
size (bytes)

Byte loss
rate

192.168.21.203 3598 3598 1,639,598 1,497,904 8.64%
192.168.202.2 7025 7025 3,176,795 2,008,681 36.77%
192.168.23.253 1471 1471 134,094 109,494 18.35%
192.168.27.101 3872 3872 293,001 292,400 0.21%
192.168.202.108 254 254 38,551 30,534 20.80%

5 Discussion

In this study, we proposed a CTGAN-based synthetic traffic generation model to create the net-
work traffic required for cybersecurity training systems and evaluated it through network simulations.



CMC, 2024, vol.80, no.3 3651

Cybersecurity training systems must provide a variety of training scenarios, requiring repetitive and
realistic network traffic. However, generating real network traffic is resource-intensive and costly. We
found that synthetic traffic generated using the CTGAN model can closely replicate both normal and
malicious traffic by adjusting a few attributes. By combining specific segments of traffic, it is possible
to create more scenarios, providing flexibility to support various training scenarios.

We proposed a method to simulate the generated synthetic traffic alongside real traffic in an SDN-
based network environment. The simulation results were verified using a Traffic Matrix calculated
to measure traffic volume under different network conditions. Although some transmission loss
occurred, a comparison with the original traffic patterns confirmed an error rate of 29.28%, indicating
that specific segments of the generated traffic needed improvement. Nevertheless, the presence of
new traffic patterns through error rates can be positive, allowing trainees to learn from unexpected
scenarios. However, these new patterns require experts to re-interpret and validate them, potentially
increasing the time and effort needed for training and affecting training efficiency.

To achieve near-perfect replication, first, issues arising from anomalous strings in encrypted
packet payloads that affect packet length and cause errors must be resolved. To address this, a new
approach is anticipated to address the imbalance issue of encrypted traffic [30]. Second, the issue of
data generated during training being consistently distributed around the average must be addressed.
If extreme values are not included, the model may fail to learn diverse data patterns, necessitating
optimization of generator parameters to prevent underfitting.

6 Conclusion

The potential of generating realistic network traffic using a CTGAN-based synthetic traffic
generation model has been confirmed in this research. Although an error rate of 29.28% was observed,
further studies are required to reduce this rate to around 1%. Achieving this goal involves extracting
and synthesizing fine segments for specific intervals, applying data augmentation, and adjusting
learning parameters to balance the distribution of training data.

Lowering the error rate is crucial for providing realistic scenarios to cybersecurity trainees and
enhancing their ability to detect and respond to realistic malicious packets. Therefore, improving the
quality of synthetic data using models like CTGAN and increasing its statistical similarity to real
data is essential. Future efforts will focus on strengthening monitoring technologies to adhere to
additional network protocol standards and analyzing synthetic packet data. These improvements will
be applied and validated in actual simulation training systems for a wider range of scenarios, ensuring
that the iterative technology frameworks for cybersecurity training systems are efficiently enhanced
and optimized.

Acknowledgement: The authors would like to express their gratitude to the National Research
Foundation of Korea (NRF) and LIG Nex1 for their generous financial support, which was crucial
for the successful completion of this research. We are also deeply appreciative of the invaluable
feedback and insightful comments provided by our colleagues, whose expertise and encouragement
significantly enhanced the quality of this paper. Their support in various aspects, from conceptual
discussions to technical assistance, has been instrumental. Additionally, we would like to acknowledge
the administrative and logistical support from our institution, which facilitated our research activities.
Finally, we extend our sincere thanks to the anonymous reviewers for their thorough and constructive
critiques, which helped us refine and improve the manuscript. For any technical inquiries related to
this research, please contact the authors or the corresponding author via email.



3652 CMC, 2024, vol.80, no.3

Funding Statement: This work was supported in part by the Korea Research Institute for Defense
Technology Planning and Advancement (KRIT) funded by the Korean Government’s Defense
Acquisition Program Administration (DAPA) under Grant KRIT-CT-21-037; in part by the Ministry
of Education, Republic of Korea; and in part by the National Research Foundation of Korea under
Grant RS-2023-00211871.

Author Contributions: Study conception and design: Dong-Wook Kim; data collection: Gun-Yoon
Sin; analysis and interpretation of results: Dong-Wook Kim, Gun-Yoon Sin, Myung-Mook Han,
Kwangsoo Kim, Jaesik Kang, Sun-Young Im; draft manuscript preparation: Dong-Wook Kim. All
authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] B. Ferguson, A. Tall, and D. Olsen, “National cyber range overview,” in 2014 IEEE Mil. Commun. Conf.,

Baltimore, MD, USA, 2014, pp. 123–128. doi: 10.1109/MILCOM.2014.27.
[2] R. Beuran, D. Tang, C. Pham, K. Chinen, Y. Tan and Y. Shinoda, “Integrated framework

for hands-on cybersecurity training: CyTrONE,” Comput. Secur., vol. 78, pp. 43–59, 2018. doi:
10.1016/j.cose.2018.06.001.

[3] V. E. Urias, W. M. S. Stout, B. Van Leeuwen, and H. Lin, “Cyber range infrastructure limitations and
needs of tomorrow: A position paper,” in 2018 Int. Carnahan Conf. Secur. Technol. (ICCST), Montreal,
QC, Canada, 2018, pp. 1–5. doi: 10.1109/CCST.2018.8585460.

[4] S. Hui et al., “Knowledge enhanced GAN for IoT traffic generation,” in Proc. ACM Web Conf., Lyon,
France, 2022, pp. 3336–3346. doi: 10.1145/3485447.3511976.

[5] C. Javali and G. Revadigar, “Network web traffic generator for cyber range exercises,” in 2019
IEEE 44th Conf. Local Comput. Netw. (LCN), Osnabrueck, Germany, 2019, pp. 308–315. doi:
10.1109/LCN44214.2019.8990880.

[6] R. Rouquette, S. Beau, M. M. Yamin, U. Mohib, and B. Katt, “Automatic and realistic traffic generation
in a cyber range,” in 10th Int. Conf. Future Internet Things Cloud (FiCloud), Marrakesh, Morocco, 2023,
pp. 352–358. doi: 10.1109/FiCloud58648.2023.00058.

[7] S. K. Sharma and J. Sefchek, “Teaching information systems security courses: A hands-on approach,”
Comput. Secur., vol. 26, no. 4, pp. 290–299, 2007. doi: 10.1016/j.cose.2006.11.005.

[8] U. Ghosh, P. Chatterjee, and S. Shetty, “A security framework for SDN-enabled smart power grids,” in
2017 IEEE 37th Int. Conf. Distrib. Comput. Syst. Workshops (ICDCSW), Atlanta, GA, USA, 2017, pp.
113–118. doi: 10.1109/ICDCSW.2017.20.

[9] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, “Modeling tabular data using
conditional GAN,” in Adv. Neural Inform. Process. Syst., NIPS’19: 33rd Int. Conf. Neural Inform. Process.
Syst., Vancouver, BC, Canada, Dec. 8–14, 2019, vol. 32, pp. 7335–7345. doi: 10.1109/ICDCSW.2017.20.

[10] M. Glas, M. Vielberth, and G. Pernul, “Train as you fight: Evaluating authentic cybersecurity training in
cyber ranges,” in Proc. 2023 CHI Conf. Human Factors Comput. Syst., Hamburg, Germany, 2023, pp. 1–19.
doi: 10.1145/3544548.3581046.

[11] R. Ošlejšek, M. Macák, and K. D. Burská, “Hands-on cybersecurity training behavior data for process
mining,” Data Brief , vol. 52, 2024, Art. no. 109956. doi: 10.1016/j.dib.2023.109956.

https://doi.org/10.1109/MILCOM.2014.27
https://doi.org/10.1016/j.cose.2018.06.001
https://doi.org/10.1109/CCST.2018.8585460
https://doi.org/10.1145/3485447.3511976
https://doi.org/10.1109/LCN44214.2019.8990880
https://doi.org/10.1109/FiCloud58648.2023.00058
https://doi.org/10.1016/j.cose.2006.11.005
https://doi.org/10.1109/ICDCSW.2017.20
https://doi.org/10.1109/ICDCSW.2017.20
https://doi.org/10.1145/3544548.3581046
https://doi.org/10.1016/j.dib.2023.109956


CMC, 2024, vol.80, no.3 3653

[12] J. Kim, K. Kim, and M. Jang, “Cyber-physical battlefield platform for large-scale cybersecurity exercises,”
in 2019 11th Int. Conf. Cyber Conflict (CyCon), Tallinn, Estonia, 2019, pp. 1–19. doi: 10.23919/CY-
CON.2019.8756901.

[13] M. M. Yamin and B. Katt, “Modeling and executing cyber security exercise scenarios in cyber ranges,”
Comput. Secur., vol. 116, 2022, Art. no. 102635. doi: 10.1016/j.cose.2022.102635.

[14] E. Russo, G. Costa, and A. Armando, “Scenario design and validation for next generation cyber ranges,”
in 2018 IEEE 17th Int. Symp. Netw. Comput. Appl. (NCA), Cambridge, MA, USA, 2018, pp. 1–4. doi:
10.1109/NCA.2018.8548324.

[15] M. M. Yamin, B. Katt, and M. Nowostawski, “Serious games as a tool to model attack and
defense scenarios for cyber-security exercises,” Comput. Secur., vol. 110, 2021, Art. no. 102450. doi:
10.1016/j.cose.2021.102450.

[16] S. -F. Wen, M. M. Yamin, and B. Katt, “Ontology-based scenario modeling for cyber security exercise,”
in 2021 IEEE Eur. Symp. Secur. Priv. Workshops (EuroS & PW), Vienna, Austria, 2021, pp. 249–258. doi:
10.1109/EuroSPW54576.2021.00032.

[17] O. A. Adeleke, N. Bastin, and D. Gurkan, “Network traffic generation: A survey and methodology,” ACM
Comput. Surv., vol. 55, no. 2, pp. 1–23, 2022. doi: 10.1145/3488375.

[18] P. Suresh et al., “Contemporary survey on effectiveness of machine and deep learning techniques for cyber
security,” in Machine Learning for Biometrics, Cambridge, MA, USA: Academic Press, 2022, pp. 177–200.
10.1016/B978-0-323-85209-8.00007-9.

[19] A. Cheng, “PAC-GAN: Packet generation of network traffic using generative adversarial networks,” in 2019
IEEE 10th Annu. Inf. Technol. Electron. Mob. Commun. Conf. (IEMCON), Vancouver, Canada, 2019, pp.
728–734. doi: 10.1109/IEMCON.2019.8936224.

[20] L. D. Manocchio, S. Layeghy, and M. Portmann, “FlowGAN-synthetic network flow generation using
generative adversarial networks,” in 2021 IEEE 24th Int. Conf. Comput. Sci. Eng. (CSE), Shenyang, China,
2021, pp. 168–176. doi: 10.1109/CSE53436.2021.00033.

[21] B. Dowoo, Y. Jung, and C. Choi, “PcapGAN: Packet capture file generator by style-based generative
adversarial networks,” in 2019 18th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Boca Raton, FL, USA,
2019, pp. 1149–1154. doi: 10.1109/ICMLA.2019.00191.

[22] M. Ring, D. Schlör, D. Landes, and A. Hotho, “Flow-based network traffic generation using generative
adversarial networks,” Comput. Secur., vol. 82, pp. 156–172, 2019. doi: 10.1016/j.cose.2018.12.012.

[23] J. Yang, L. Wang, A. Lesh, and B. Lockerbie, “Manipulating network traffic to evade stepping-stone
intrusion detection,” Internet Things, vol. 3, pp. 34–45, 2018. doi: 10.1016/j.iot.2018.08.011.

[24] P. Biondi, Scapy: The Python-Based Interactive Packet Manipulation Program & Library. San Francisco,
CA, USA: GitHub. 2024. Accessed: Jul. 23, 2024. [Online]. Available: https://github.com/secdev/scapy

[25] R. L. de Oliveira, C. M. Schweitzer, A. A. Shinoda, and L. Rodrigues Prete, “Using Mininet for
emulation and prototyping software-defined networks,” in 2014 IEEE Colomb. Conf. Commun. Comput.
(COLCOM), Bogota, Colombia, 2014, pp. 1–6. doi: 10.1109/ColComCon.2014.6860404.

[26] S. Kaur, J. Singh, and N. S. Ghumman, “Network programmability using POX controller,” in Proc. Int.
Conf. Commun., Comput., and Syst. (ICCCS), Ferozepur, India. 2014, pp. 134–138. Accessed: Jul. 23, 2024.
[Online]. Available: http://sbsstc.ac.in/icccs2014/Papers/Paper28.pdf

[27] F. Klassen and AppNeta, “Tcpreplay-Pcap editing and replaying utilities,” AppNeta. Accessed: Jul. 23,
2024. [Online]. Available: https://tcpreplay.appneta.com

[28] Y. Tian, W. Chen, and C. -T. Lea, “An SDN-based traffic matrix estimation framework,” IEEE Trans. Netw.
Serv. Manage., vol. 15, no. 4, pp. 1435–1445, 2018. doi: 10.1109/TNSM.2018.2867998.

[29] Netresec, “Capture files from Mid-Atlantic CCDC: MACCDC 2012,” Netresec, 2012. Accessed: Jul. 23,
2024. [Online]. Available: https://www.netresec.com/?page=MACCDC

[30] J. Zhai, P. Lin, Y. Cui, L. Xu, and M. Liu, “GraphCWGAN-GP: A novel data augmenting approach for
imbalanced encrypted traffic classification,” Comput. Model. Eng. Sci., vol. 136, no. 2, pp. 2069–2092, 2023.
doi: 10.32604/cmes.2023.023764.

https://doi.org/10.23919/CYCON.2019.8756901
https://doi.org/10.1016/j.cose.2022.102635
https://doi.org/10.1109/NCA.2018.8548324
https://doi.org/10.1016/j.cose.2021.102450
https://doi.org/10.1109/EuroSPW54576.2021.00032
https://doi.org/10.1145/3488375
https://doi.org/10.1016/B978-0-323-85209-8.00007-9
https://doi.org/10.1109/IEMCON.2019.8936224
https://doi.org/10.1109/CSE53436.2021.00033
https://doi.org/10.1109/ICMLA.2019.00191
https://doi.org/10.1016/j.cose.2018.12.012
https://doi.org/10.1016/j.iot.2018.08.011
https://github.com/secdev/scapy
https://doi.org/10.1109/ColComCon.2014.6860404
http://sbsstc.ac.in/icccs2014/Papers/Paper28.pdf
https://tcpreplay.appneta.com
https://doi.org/10.1109/TNSM.2018.2867998
https://www.netresec.com/?page=MACCDC
https://doi.org/10.32604/cmes.2023.023764

	Network Traffic Synthesis and Simulation Framework for Cybersecurity Exercise Systems
	1 Introduction
	2 Related Work
	3 Proposed Framework
	4 Evaluation Results
	5 Discussion
	6 Conclusion
	References


