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ABSTRACT

Addressing the challenges in detecting surface floating litter in artificial lakes, including complex environments,
uneven illumination, and susceptibility to noise and weather, this paper proposes an efficient and lightweight Ghost-
YOLO (You Only Look Once) v8 algorithm. The algorithm integrates advanced attention mechanisms and a small-
target detection head to significantly enhance detection performance and efficiency. Firstly, an SE (Squeeze-and-
Excitation) mechanism is incorporated into the backbone network to fortify the extraction of resilient features and
precise target localization. This mechanism models feature channel dependencies, enabling adaptive adjustment
of channel importance, thereby improving recognition of floating litter targets. Secondly, a 160 x 160 small-target
detection layer is designed in the feature fusion neck to mitigate semantic information loss due to varying target
scales. This design enhances the fusion of deep and shallow semantic information, improving small target feature
representation and enabling better capture and identification of tiny floating litter. Thirdly, to balance performance
and efficiency, the GhostConv module replaces part of the conventional convolutions in the feature fusion neck.
Additionally, a novel C2fGhost (CSPDarknet53 to 2-Stage Feature Pyramid Networks Ghost) module is introduced
to further reduce network parameters. Lastly, to address the challenge of occlusion, a new loss function, WIloU (Wise
Intersection over Union) v3 incorporating a flexible and non-monotonic concentration approach, is adopted to
improve detection rates for surface floating litter. The outcomes of the experiments demonstrate that the Ghost-
YOLO v8 model proposed in this paper performs well in the dataset Marine, significantly enhances precision and
recall by 3.3 and 7.6 percentage points, respectively, in contrast with the base model, mAP@0.5 and mAP@0.5:0.95
improve by 5.3 and 4.4 percentage points and reduces the computational volume by 1.88 MB, the FPS value hardly
decreases, and the efficient real-time identification of floating debris on the water’s surface can be achieved cost-
effectively.
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1 Introduction

In the context of advancements in industrial and agricultural sectors, the release of considerable
quantities of wastewater and waste has imparted substantial harm to the ecological integrity of
watersheds. Key contributors to water pollution include surface floaters [1], water pollution itself
[2], and eutrophication of water bodies. These factors not only contaminate and deteriorate water
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resources, but also present a serious hazard to human safety and wellbeing. Therefore, the immediate
detection and subsequent removal of floating litter from water surfaces is of paramount importance
in achieving sustainable green development.

With the wide application of deep neural network architectures [3] in fields such as image
processing [4] and target detection [5] deep learning techniques have been rapidly developed. Among
them, YOLO (You Only Look Once) v8 [0], the latest iteration of the YOLO algorithm family, excels
in target detection, classification, and instance segmentation tasks, as a classical real-time target
detection algorithm, shows significant application potential in target detection with its high accuracy
and efficiency. For this paper, we have selected the smallest yet most accurate variant, YOLO v8n,
for target detection. However, the complexity and variability of the water surface environment, such
as changes in weather conditions can cause images to be blurred, foamed, or incompletely displayed,
which in turn hinders the model’s proficiency in extracting and accurately recognizing features of the
target, while noise interference causes the model to have difficulty in accurately extracting features of
the target by interfering with the useful information in the image. The process of identifying floating
trash on water using the YOLO v8 algorithm is hindered by issues like misidentifications and failures to
detect. These challenges pose constraints on the ability of the algorithm to consistently deliver accurate
and trustworthy results in real-world applications, and thus further research and improvements are
needed to overcome these problems.

Addressing the aforementioned issues, this paper introduces a lightweight Ghost-YOLO v8 water
surface floating litter detection model that fuses the attention mechanism and a specialized small target
detection unit to overcome challenges of low precision and bloated model dimensions. in the detection
of water surface floating litter by traditional networks. The principal contributions of this research
paper are listed here:

1. Incorporating the SE (Squeeze-and-Excitation) [7] attention module within the backbone
network enhances its capability for feature extraction and improves the model’s precision in
target localization., improving the model’s anti-interference capability and robustness.

2. Introducing a 160 x 160 pixel small target detection layer, the combination of deep semantic
information and shallow semantic information is strengthened, and the ability of small target
feature expression is improved.

3. Incorporate the Ghostconv module [8] and design a new C2fGhost (CSPDarknet53 to 2-
Stage Feature Pyramid Networks Ghost) module, with the aim of significantly decreasing the
network’s parameter count to enhance the network model’s operational speed and achieve a
lightweight effect.

4. Use WIoU (Wise Intersection over Union) v3[9], a flexible and non-monotonic concentration
approach instead of CloU (Complete Intersection over Union) [10] in the original model as the
model localization loss function for bounding boxes, overcoming the challenge of low detection
rates for waterborne litter, hindered by obstruction, and enhancing the model’s detection
capabilities.

2 Related Work

With the advent of deep learning, a CNN (Convolutional Neural Network) [11] based approach
for water surface floating litter detection has emerged. This method, thanks to its robust feature
extraction capabilities and straightforward rule-setting, offers an effective and reliable means of
identifying and classifying floating litter by extracting, training, and learning the salient characteristics
of such debris. Target detection algorithms leveraging CNNs are broadly categorized into two: two-
stage algorithms, exemplified by R-CNN (Region-CNN) [12], Fast R-CNN [13], and Faster R-CNN
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[14], and single-stage algorithms, such as the YOLO [15] series and SSD (Single Shot MultiBox
Detector) [16]. The research on single-stage detection algorithms primarily focuses on enhancing
model structure and optimizing data preprocessing techniques.

In the realm of optimizing the model structure for single-stage target detection algorithms,
several advancements have been made. Gai et al. [17] proposed to improve YOLO-V4 algorithm
to detect cherries by adding DenseNet network combined with CSPDarknet53, optimizing the a
priori frame for circular markers, and enhancing feature extraction and a framework for cherry fruit
detection, optimized for both speed and accuracy. Wang et al. [18] proposed UAV-YOLO v8 (UAV-
YOLO) model to optimize UAV aerial target detection with Wise-IoU (Intersection over Union)
v3 to improve positioning accuracy, BiFormer to enhance the key information attention, and Focal
FasterNet block fusion features to significantly reduce the small target leakage rate and improve the
detection performance. Yuan et al. [19] addressed the limitations of CloU by employing the GCBlock
structure, the innovative GSConv convolution method, and the SIoU (Soft Intersection over Union)
loss function. This strategy enhanced feature extraction, reduced computational requirements, and
raised detection accuracy. Qiao et al. [20] introduced the coordinate attention mechanism, enabling
the network to capture broader contextual information. By utilizing the BiFPN module in lieu of
the FPN (Feature Pyramid Network) module, weighted feature fusion and efficient bidirectional
cross-scale connectivity were achieved, improving the detection precision of tiny and very small
floating litter. Lin et al. [21] bolstered the feature extraction capabilities of the lightweight target
detection backbone through the addition of a FMA (Feature Mapping Attention) layer, alongside
data augmentation techniques and an extended training dataset, thereby enhancing the model’s
generalizability. Hou et al. [22] augmented the model’s generalization capabilities by introducing the
HorBlock module and employing a genetic algorithm for evolution. Additionally, the extension of the
underwater dataset via offline data augmentation bolstered feature extraction, ultimately improving
the model’s detection accuracy and speed in complex environments.

In terms of data preprocessing improvement for single-stage target detection algorithms,
Li et al. [23] proposed an adaptive underwater image enhancement method RGHS (Relative Global
Histogram Stretching), which improves the YOLO v5 model by introducing a convolutional triple-
attention mechanism module, and improves the ability to detect minute objects. Yue et al. [24]
augmented the Flow-Img dataset to avoid overfitting, incorporated a dedicated layer for detecting
tiny targets into YOLO v5s, removed the large target detection head, and introduced CBAM
(Convolutional Block Attention Module) to enhance target feature capture, combining the IoU
(Intersection over Union) with the NWD (Normalized Wasserstein Distance) loss function, to enhance
the exactness and reliability of the water surface floating bottle recognition. Li et al. [25] cropped
and optimised the YOLO v5s, and added a specific image preprocessing module, and embedded the
SOC (System On Chip) embedded in a network camera to achieve edge computing deployment,
which is capable of real-time processing of video data. Lei et al. [26] compared various deep learning
algorithms by migration learning on collected floating object data and concluded that SSD is better
than other algorithms in terms of accuracy, while Faster R-CNN is more detailed in terms of prediction
details. Yang [27] used meanshift algorithm to segment the image and extracted the features of colour
distance of floats and energy decomposition coefficients after grey scale wavelet transform processing
to achieve the estimation of information such as the type and degree of pollution. Chen et al. [28]
introduced a method for detecting surface floating objects utilizing a persistent unsupervised domain
adaptation technique. This method enhances the feature extraction capability for small-scale floating
objects by eliminating low-resolution feature maps and augmenting high-resolution maps. Li et al. [29]
formulated a river floating litter dataset sourced from UAV aerial images and introduced targeted
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enhancements to the YOLO vS5s target detection algorithm, addressing issues such as category
imbalance and diminished accuracy in small target detection. Additionally, Li et al. [30] developed a
small-sample water surface floating debris dataset model grounded in AlexNeT [31]. By employing
gradient descent for model fine-tuning and incorporating fused light correction, the method effectively
identifies common pollutants, achieving a nearly 15% improvement in recognition rate.

3 Methods

The network architecture of YOLO v8n comprises four key components: the input layer for data
augmentation, the backbone responsible for image feature extraction, the neck-end for multi-scale
feature fusion, and the decoupled output header that separates classification and detection functions.
The schematic representation of this algorithm’s model structure is depicted in Fig. 1. Within this
architecture, The Conv block executes convolution operations, followed by BN (Batch Normalization)
and the SiLU activation function on the incoming image. By efficiently capturing residual features, the
C2f module empowers YOLO v8n to retain rich gradient details while keeping its design lightweight.
The SPPF (Spatial Pyramid Pooling Fast) module transforms feature maps of varying sizes into fixed-
sized feature vectors, thereby reducing computational costs. Finally, the detect module, comprising a
classifier and regressor, forecasts the location and classification of the target, drawing upon the neck’s
output features.
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Figure 1: Model structure of the YOLO v8 algorithm
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3.1 YOLO v8n Algorithm Improvement Strategy

Addressing the issues of low detection rates for floating litter on water surfaces and the excessive
size and parameters of traditional networks, this paper proposes a tailored lightweight variant of
the Ghost-YOLO v8 algorithm for surface water litter detection, as shown in Fig. 2. This algorithm
integrates an attention mechanism with a small-sized target detection unit and comprises four key
improvements. The SE attention mechanism is embedded in the backbone network to bolster the
model’s emphasis on detecting small targets, along with a 160 x 160 small-target detection layer at the
neck-end (as shown in the red dashed box in Fig. 2). Additionally, while ensuring the precision remains
intact, we minimize the computational complexity and the model’s parameter count by adopting a co-
merging strategy with GhostNet in the backbone network of the YOLO v8 architecture: optimizing
the convolution operation (the GhostConv module, Red serial number () in Fig. 2) and using a
more efficient module (the C2fGhost module, Red serial number ) in Fig. 2) to achieve the model’s
lightweight, the WloU v3 loss function is utilized to optimize the bounding box regression accuracy.

&)
o
3
a
G}

— e—— — —

|

|
|
S

80x80x25

40x40x512

I
]
! I
! I
! I
A ! I
! I
! I
! I
! I
I

120x20x1024
C2fGhost ! + Detect

Figure 2: Model structure of the Ghost-YOLO v8 algorithm
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3.2 SE-Backbone

Owing to the targets’ compact arrangement and diminutive dimensions in the water surface float-
ing litter image dataset, the baseline YOLO v8n model exhibits limited feature extraction capability
and detection accuracy for small targets, failing to meet the desired detection accuracy for water
surface floating litter images. To address this, the fixed-length feature vectors generated by the SPPF
module are used by us to process images with diverse scales, as inputs to the SE attention mechanism
module. This module focuses on essential data pertinent to the ongoing task by adaptively learning
the relevance and importance of feature channels, suppressing irrelevant information, and enhancing
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the representational capacity of the network model. Exhibited in Fig. 3, the backbone network has
been integrated with the SE attention mechanism module, forming the SE-Backbone, that improves
the ability to discern and extract unique information from images on the water surface by weighting
the importance of feature extraction images. Our conclusion comes from previous research [32].
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Figure 3: SE attention mechanism module

3.3 Small Target Detection Head

YOLO v8 uses an anchor-free detection head to predict the bounding box by removing some
unnecessary optimisation operations such as convolution to achieve faster detection speed [33].
However, Owing to the diminutive nature of the samples in the floating litter on the water surface
and the large downsampling multiplier of YOLO v8, the intricacy of obtaining feature details from
diminutive targets in deeper layers of feature maps hinders achieving a satisfactory detection outcome.
In contrast, the FPN (Feature Pyramid Network) structure has an obvious advantage in dealing with
complex visual scenes, and its unique pyramid structure allows the model to perform feature fusion
at multiple scales, thereby empowering the model to appreciate both the fine-grained specifics and the
encompassing context present in the image. Therefore, this paper suggests adding a layer for detecting
minute targets, as shown by the red box in Fig. 2, to add a 160 x 160 scale small target detection header
in the bottom network of FPN and facilitate feature integration with the C2f layer located at the base
of the backbone network to better extract detailed information from images, thereby strengthening
the semantic content and feature portrayal of small targets within floating waste on water surfaces.

3.4 GhostNet Lightweight Architecture

Deep convolutional neural networks usually involve CNN consisting of a large number of
convolutions, which leads to high computational cost. Inspired by the lightweight network GhostNet,
we adopt the GhostConv module instead of ordinary convolutions and design the new C2fGhost
module instead of the C2f module, it alleviates the heavy reliance on 3 x 3 regular convolutions
in the base structure, resulting in a compressed network model with reduced parameters and lower
computational demands. This allows the model to be more easily deployed on mobile for real-time
identification of debris floating atop the water.

The GhostConv module creates numerous feature maps via cost-effective arithmetic processes,
which reduces the learning cost of non-critical features, and thus lowers memory requirements during
transitional scaling. The GhostConv module enhances the conventional convolution module by
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splitting the regular convolution operation into two separate steps: Firstly, the input information
undergoes a regular convolution to produce a subset of feature maps. Secondly, linear operations are
executed on these primary feature maps to yield supplementary, redundant feature maps. Lastly, the
results from these two steps are concatenated together. As shown in Fig. 4, the GhostConv module is
compared with the regular convolution module.

Identity

4
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Figure 4: Comparison between ordinary convolutional module and GhostConv module, (a) is ordinary
convolutional module, (b) is GhostConv module
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The new C2fGhost module outlined in this paper is shown in Fig. 5, utilizing the strategy of
feature fusion across stages and the truncated gradient flow technique, it augments the variability
of the features learned by different layers within the network, and implements the GhostBottleneck
in place of all bottlenecks within the C2f module of the original network, effectively reducing the
influence of redundant gradient data and further amplifying the network’s learning prowess.

Figure 5: C2fGhost structure

GhostBottleneck

3.5 WIoU v3 Loss Function

For the regression of detection frames, the YOLO v8 model utilizes CloU as the loss function,
which factors in the overlapping zone, centroid predicted spacing and form factor and real frames in
the bounding box regression, i.c.,

{(W =kW,,H=kH,) |k € R"} )

where W and H are the width and height of the predicted bounding box; W, and H, measure the
actual width and height of the bounding box, respectively. However, CloU has some ambiguities based
on the relative metrics outlined by the aspect intersection ratio and does not consider the equilibrium
between challenging and straightforward samples. Therefore, in this paper, we select WIoU v3 utilizing
an alternative to CloU for bounding box loss computation method for the Ghost-YOLO v8 algorithm.

The varying and non-steady targeting system in WIoU v3 can effectively avoid detrimental effects
of suboptimal samples during training by weighing the proportion of high-quality and substandard
samples, focusing the results of the bounding box regression on the target object, and solving the
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problem of floating litter on the surface of the water being difficult to be detected due to the occlusion.
v3 is based on the addition of the adaptive and non-uniform focusing dynamics to WloU v1 with the
expression of Eqs. (2)—(5).

RWI()U = exp ( (X _ xg’)2 + (y - ygf)z) (2)

(W7 + H)

LWlole = RWI()ULI()U (3)

Lyvv = rLygom (4)
B

r= S &)

where W, and H, correspond to the minimal width and height closure region of the prediction frame
and the true frame; * denotes the separation of W, and H, from the graph, locating constants and
preventing the creation of gradients that impede convergence; and the mapping of the non-monotonic
focusing coefficients » and the outliers 8 is controlled by the hyper-parameters « and §.

4 Experiment

The testing setup described in this paper comprises the following: A Linux Ubuntu 16.04.4 LTS
operating system, an NVIDIA GeForce RTX 3090 GPU equipped with 24 GB of graphics memory,
utilizing YOLO v8n as the baseline model. The batch size hyperparameter is configured at 8, with 150
training iterations set. The optimization algorithm selected is SGD, and an initial learning rate of 0.01
is applied, the channel depth is 0.33, the channel width is 0.25, and max_channels is 1024.

4.1 Floating Litter Dataset on Water Surface

In this paper, we use Marine dataset [34], which contains a total of 1335 water surface floating
litter data as the dataset for training, and the uncrossed 130 data as the dataset for validation. With
a view to overcome the overfitting problem that occurs when the dataset is too small, and the effect
of light and reflection on water surface floating garbage detection, the following data enhancement is
applied to create three versions of each source image: (1) 50% horizontal flip probability; (2) 90-degree
rotation with the same probability in the following three ways: none, clockwise, and counterclockwise;
(3) randomly cropping the image from 0% to 20%; and (4) random rotation between —15 and +15
degrees, which improves the diversity of the image information and allows the model to learn a more
comprehensive range of floating trash features during training.

4.2 Evaluation Metrics

In terms of model detection performance, the parameter (params) count and the amount of
computation (GFLOPs) are used as evaluation metrics for model size. Among them, params denotes
the number of parameters inside the schema of the network, that aligns with the spatial intricacy and
dictates the size of utilization; GFLOPs denotes computational rate in floating-point operations, that
aligns with the temporal complexity and determines the length of the network execution time. Frames
Per Second (FPS) denotes the model’s image processing rate per second, crucial for assessing real-time
target detection efficiency. The calculation formula is Eq. (6).

_ 1/ (Tpre + Tin + Tposl)

FPS =
1000 ©)
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where T,., T, T, indicate respectively the time taken for preprocessing, inference, and post-
processing.

In terms of model detection accuracy, we choose P (precision rate), R (recall rate) and mAP (mean
average precision) as the evaluation indexes of accuracy. The calculation formulas are Eqs. (7)—(11).

P =P,/ (P;+Py) @
R =P/ (Pr+Ny) ®
1 < 1 1 1
AP@0.5=-> Pi=-P + =P+ + =P, ©)
n _ n n n
1 N
mAP@0.5 = — > 4P@0.5, (10)
k=1
1 1 1
mAP@0.5:095 = -mAP@0.5 + 1omAP@0.55 + -+ + 7-mAP@0.95 (11)

where the number P; denotes the samples that are predicted accurately, while P, stands for the
mispredicted samples; Ny represents the number of unpredicted samples; A P@0.5 denotes the mean
accuracy for this sample class, with an IoU threshold of 0.5 in the confusion matrix; mAP@0.5 is
the average of the AP@0.5 values of samples taken across all categories; N is the total number of
categories; the computed mAP score, encompassing loU thresholds from 0.5 to 0.95, evaluated in
steps of 0.05, is referred to as mAP@0.5:0.95.

4.3 Visualisation Results

According to the experimental findings that the enhanced Ghost-YOLO v8 model presented in
this paper surpasses the YOLO v8n baseline in detecting small objects, Fig. 6 demonstrates comparison
of detection effectiveness of baseline models YOLO v8n and the Ghost-YOLO v8 model.

YOLO v8n

Ghost -
YOLO v8

(a) (b) (©

Figure 6: Comparison of the detection results of YOLO v8n and Ghost-YOLO v8 models, (a)
represents the comparison of missed detection (b) represents the comparison of false detection (c)
represents the comparison of confidence level
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As clearly illustrated in the comparison graph in Fig. 6, the Ghost-YOLO v8 model surpasses the
baseline YOLO v8n in detecting objects, especially small targets such as unknowns. Not only does
Ghost-YOLO v8 detect more of these objects, but it also enhances the confidence level for the same
target. From Fig. 64, it is evident that in scenarios where the objects are minute in size, the YOLO v8n
model overlooks the presence of unrecognized object targets, resulting in a missed detection situation,
while the Ghost-YOLO v8 algorithm does not have a missed detection situation; from Fig. 6b, it is
evident that the YOLO v8n model experiences a case of misdetection, which misclassifies the floating
foam as a jar, while the Ghost-YOLO v8§ algorithm does not suffer from misdetection; from Fig. 6¢
it is noticeable that concerning the detection of the same small target, the Ghost-YOLO v8 algorithm
generally detects it with higher confidence than the benchmark model.

4.4 Improvement Methods and Results

4.4.1 SE-Backbone Improvement Experiment

Enhancement of the backbone network is achieved by appending the SE attention mechanism
module, in addition to Self [35] (Self-Attention Mechanism), CBAM [36], GAM [37] (Global Attention
Mechanism) module, and MHSA [38] (Multi-Head Self-Attention), respectively, the enhancement
is directed towards the 10th level of the backbone framework (beginning with layer 0) within the
YOLO v8n model. Within identical experimental settings, the inclusion of the attention module leads
to varying levels of improvement in the model’s detection accuracy, in particular, on the mAP@0.5
metric, Self, CBAM, GAM, and SE attention mechanisms brought 1.5%, 0.7%, 1.5%, and 1.7%
accuracy improvements, respectively, and on them AP@0.5:0.95 metric, Self, GAM, and SE attention
mechanisms brought 0.7%, 1%, and 0.5% accuracy improvements, respectively and the performance
comparison is shown in Table 1, with the highest detection benefit by integrating of the SE attention
module. Without increasing the computational effort, there was a 1% improvement in precision and a
2.4% jump in recall. Similarly, the mAP@0.5 enhanced by 1.7%, and the mAP@0.5:0.95 incremented
by 0.5%.

Table 1: Contrasting the model’s efficiency with the attention mechanism integrated into the backbone

Model mAP@0.5/%  mAP@0.5:0.95/%  Precision/%  Recall/%  GFLOPs
YOLO v8n 90.3 61.1 91 82.3 8.1
YOLO v8n+Self 91.8 61.8 92 84.4 8.2
YOLO v8n+CBAM 91 60.7 91.7 82.5 8.1
YOLO v8n+GAM 91.8 62.1 92.6 84.2 9.4
YOLO v8n+MHSA  90.3 60 90.7 82.5 8.2
YOLO v8n+SE 92 61.6 92 84.7 8.1

4.4.2 Small Target Detection Head Improvement Experiments

By adding 160 x 160 scale Miniature target identification head in the bottom network of FPN and
convergence the features with C2f at the bottom of the backbone network (as shown in the red box in
Fig. 2), the detailed information in the image can be better extracted, and in this way, the explanatory
data and feature portrayal of the tiny entities in the floating litter on the water surface can be enhanced.
The comparison of performance outcomes is depicted in Table 2, mAP@0.5 showcasing enhancements
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of 0.6 and 4.2 percentage points in precision and recall, resulting in a 3.1% and 1.4% enhancement in
the mAP@0.5:0.95 score, respectively, and the amount of parameters is reduced by 0.11 MB.

Table 2: Comparison of model performance with the addition of Head detection head at neck-end

Model Params/MB GFLOPs Precision/% Recall/% mAP@0.5/% mAp@0.5:0.95/%
YOLO v8n 11.47 8.1 91 82.3 90.3 61.1

+Head 11.36 12.5 91.6 86.5 93.4 62.5

Self+-Head 11.87 12.6 91.9 86.5 93.3 63.1
GAM+Head 17.62 13.8 92 85.7 93 63

SE+Head 11.39 12.5 91.9 87 93.6 63.4

By analyzing the data from the backbone improvement experiments, the detection performance
can be optimized further by using the Self module, the GAM module, and the SE attention module
in combination with the Head detection head. Table 2 presents the experimental outcomes, the
SE attention module combined with head-detection has the best detection effect, demonstrating a
3.3% and 2.3% enhancement in mAP@0.5 and mAP@0.5:0.95 respectively without any increase in
parameter count.

4.4.3 GhostNet Lightweight Structure Improvement Experiments

Utilizing diverse convolutional strategies, the model’s neck-end in the YOLO v8n model is
streamlined for efficiency and the C2f module constructed by this convolutional approach to assess
and evaluate the effect of various streamlined designs on detection accuracy. The comparisons of per-
formance outcomes are presented in Table 3, and the experimental findings indicate that the DSConv
[39], GSConv [40] and GhostConv convolution methods with their constructed C2f modules enables a
range of reductions in the model’s computational burden. Since the lightweight model structure trades
detection accuracy for speed, the DSConv+DSConv2D structure and the GSConv+VoV-GSCSPC
[41] structure cannot satisfy both point and speedup. In this paper, we advocate utilizing GhostConv
as an alternative to conventional convolution in the neck-end of the feature fusion process, and
replace the lightweight structure of ordinary C2f module with the newly designed C2f Ghost module,
that enhances the model’s precision by 0.6 percentage points and its recall by 1.1 percentage points,
respectively, improves the mAP@0.5 by 0.9%, and decreases the parameter count and the computation
volume by 2.03 MB and 12.34%, which really achieves both point and speedup.

Table 3: Comparison of model performance of neck-end fusion lightweight structure

Model Params/ GFLOPs Precision/% Recall/% mAP@0.5/% mAP@O0.5:
MB 0.95/%
YOLO v8n 11.47 8.1 91 82.3 90.3 61.1
DSConv+DSConv2D 9.12 6.2 91.5 83 90.9 59
GSConv+VoV-GSCSPC 10.77 7.3 91 81.8 90.1 58.5

GhostConv+C2fGhost ~ 9.44 7.1 91.6 83.4 91.2 59.8
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4.4.4 WlioU v3 Loss Function Improvement Experiments

To validate the WIoU loss function within the assignment of spotting floating trash targets atop
water, the commonly used IoU [42] loss function is compared on the Marine dataset to compare and
analyse the effects of CloU [43], GIoU, SIoU [44], EIoU, DIoU and WIoU on the model performance.
Among them, box_loss (box regression loss) is employed to quantify the discrepancy between the
anticipated and actual bounding box positions, the lower the box_loss, the more accurately the model
predicts the position of the target; cls_boss (classification loss) assesses the model’s performance
in correctly classifying diverse groups, the lower the cls_boss, the more accurate the model is in
distinguishing different categories. accuracy of the model. As evident from the comparative analysis
of the loss function depicted in Fig. 7, WIoU v3 exhibits the minimal loss and superior model fitting
capabilities. The outcomes of the experiments indicate that the model using the WIoU loss function
(Ghost-YOLO v8+WIoU v3) improves mAP@0.5 and mAP@0.5:0.95 by another 1.8% and 1.6%,
respectively, over the original model (Ghost-YOLO v8+-CloU).
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Figure 7: Comparison of loss functions (a) is the comparison of the bounding box loss function during
training; (b) is the comparison of class loss function during training process

4.5 Ablation Experiment

To validate the efficacy of the enhancement module, YOLO v8n is employed as the baseline model.
A series of ablation studies are performed, exploring various permutations of multiple improvement
components, utilizing precision, recall, mAP@0.5, mAP@0.5:0.95, parameter count, and computa-
tional load as evaluation metrics. The outcomes of these ablation experiments are presented in Table 4.

Table 4: Ablation experiment results

Head SE GhostConv WIoUv3 FPS Params/ GFLOPs P/% R/% mAP@ mAP@O.5:

+C2fGhost MB 0.5/%  0.95%
294.1 11.47 8.1 91 823 90.3 61.1
Vi 196.7 11.36 12.5 91.6 86.5 93.4 62.5

(Continued)
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Table 4 (continued)

Head SE GhostConv WIoUv3 FPS Params/ GFLOPs P/% R/% mAP@ mAP@0.5:

+C2fGhost MB 0.5/%  0.95%
N 303 11.5 8.1 92 847 92 61.6
Vi 303 94 7.1 91.6 834 91.2 59.8
J Vi 217.1 11.39 12.5 919 87 93.6 63.4
v v Y 2449 9.59 11.6 919 87.2 93.8 63.9
Vi v Y v 2249 9.59 11.6 943 899 95.6 65.5

According to Table 4, the following key observations can be drawn:

By incorporating a 160 x 160 Minute target recognition layer in the feature fusion neck, precision
and recall improved by 0.6% and 4.2%, respectively, there was an increase of 3.1% in mAP@0.5 and
a 1.4% improvement in mAP@0.5:0.95. Incorporating the SE Attention Module into the backbone
architecture led to a 1% boost in precision and a 2.4% increase in recall, respectively, and increased
mAP@0.5 and mAP@0.5:0.95 by 1.7% and 0.5%. Implementing the lightweight GhostConv structure
with the C2fGhost module in the neck boosted mAP@0.5 by 0.9% while reducing parameters and
computations by 2.07 MB and 12.34%, respectively. The integration of the Head detection head and
SE Attention Module led to gains of 3.3% and 2.3% in mAP@0.5 and mAP@0.5:0.95, respectively.
The combined use of the Head detection head, SE attention mechanism, and lightweight structure
lifted mAP@0.5 and mAP@0.5:0.95 by 3.5% and 2.8%, respectively, with a 1.88 MB reduction in
parameters. With the addition of these three modules and the adoption of WIoU v3 as the loss
function, precision and recall surged by 3.3% and 7.6%, respectively, and there was a 5.3% rise in
mAP@0.5 and a 4.4% improvement in mAP@0.5:0.95, while computations were reduced by 1.88 MB
and FPS almost unchanged. In summary, our proposed Ghost-YOLO v8 model maintaining superior
real-time capabilities, while enhancing detection accuracy.

The trained network architecture’s performance in detecting targets is showcased in Fig. &.
Specifically, Fig. 8a illustrates the results of the experimental tests conducted on the baseline model,
YOLO v8n, while Fig. 8b showcases the outcomes of the Ghost-YOLO v8 model. Notably, across all
categories, the Ghost-YOLO v8 model exhibits superior detection accuracy compared to the YOLO
v8n baseline. achieving improvements of 5.5%, 2.2%, 3.7%, and 10% in the “can,” “foam,” “plastic
bottle,” “plastic,” and “unknown” categories, respectively. When the IoU threshold is set to 0.5,
the Ghost-YOLO v8 model attains a mAP@0.5 of 95.6%, outperforming the baseline model by 5.3
percentage points.

Incorporating the SE attention module, a small target detection header, and the lightweight
GhostConv+C2fGhost structure, the refined Ghost-YOLO v8 algorithm exceeds the YOLO v8n
baseline in both accuracy and parameter efficiency. Respectively, there is a 5.3% gain in mAP@0.5
and a 4.4% gain in mAP@0.5:0.95 on the Marine dataset, while achieving a 1.88 MB reduction in
parameter size, ultimately enhancing network speed and precision.
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Figure 8: Comparison of Precision-Recall curves (a) mAP detection effect of YOLO v8n algorithm (b)
mAP detection effect of Ghost-YOLO v8 algorithm

4.6 Comparative Analysis of Detection Performance Among Different Models

To conduct a thorough assessment of the Ghost-YOLO v8 model’s performance, this paper selects
seven YOLO v3n [45], YOLO v5n, SSD, YOLO v6n [46], DETR [47], Fast R-CNN, and YOLO v8n [48§]
representative models are used as comparison objects. Table 5 reveals that in terms of the mAP@0.5
measure, the experimental results demonstrate, the Ghost-YOLO v8 model improves by 3.1 percentage
points over the YOLO v3n model, outperforming the YOLO v5n model by 5.5 percentage points,
surpassing the SSD model by 14 percentage points, outperforming the YOLO v6n model by a margin
of 14 percentage points, surpassing the DETR model by 11.2 percentage points, outperforming the
Fast R-CNN model by 8.2 percentage points, and also has a 5.3 percentage point improvement. The
Ghost-YOLO v8 model also performs well in the mAP@0.5:0.95 metric, improving by 2.7 percentage
points compared to the YOLO v3n model, 7.9 percentage points compared to the YOLO v5n model,
14.5 percentage points compared to the SSD model, 14.4 percentage points compared to the YOLO
v6n model, 10.2 percentage points compared to the DETR model, 8.7 percentage points compared
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to the Fast R-CNN model, and a 4.4 percentage point improvement compared to the YOLO v8n.
In addition, the mAP@0.5 values of the Ghost-YOLO v8 model reached their maximum values in
all five categories of cans, foams, plastics, plastic bottles, and unknowns, which were 95.8%, 97.2%,
94.8%, 98.4%, and 91.7%, respectively, which further proves the advantages of the model in small target
detection.

Table 5: Detection results of different algorithms on Marine dataset

Network Can Foam Plastic bottle Plastic Unknow mAP@0.5/% mAp@0.5:0.95/%
YOLO v3n 92.7 938 92.1 96.6 87.1 92.5 62.8

YOLO v5n 88.6 944  90.7 94.3 82.6 90.1 57.6

SSD 88.7 784 87 82.9 70.5 81.5 51

YOLO v6n 82.7 89.8 83.1 83.9 68.5 81.6 51.6

DETR 85.7 80.1 91.6 86.7 78.2 84.4 55.3

Fast R-CNN 91.2 854 90.5 89.1 80.7 87.4 56.8

YOLO v8n 90.3 95 89.7 94.7 81.6 90.3 61.1
Ghost-YOLO v8 958 97.2 948 98.4 91.7 95.6 65.5

4.7 Comparative Results of Validation Tests on Different Datasets

To validate the authenticity and reliability of the enhanced algorithm, this paper is based on
the VisDrone2019 dataset. The dataset was collected by the laboratory team of Tianjin University
through UAVs in the diverse environments of 14 domestic cities and towns, and contains 10 types
of common traffic targets, which is an authoritative dataset for evaluating the performance of small
target detection. When baseline against the YOLO v8n, the Ghost-YOLO v8 model’s average detection
accuracy improves by 4.4%, as evidenced by the test results. Compared with classical algorithms such
as DetNet59 [48], CornerNet [49], Fast R-CNN [50], CenterNet [51] and Mixed YOLO v3-LITE [52],
Ghost-YOLO v8 demonstrates superior performance in small target detection, significantly proving
the notable advancement and proven effectiveness of this paper’s method within the realm of small
target detection in Table 6.

Table 6: Target detection results for different models on the VisDrone2019 dataset (%)

Networks Pedestrain People Car Van Truck Tricycle Bus Motor mAP@0.5
DetNet59 15.3 4.1 36.1 17.3 209 135 26 109 15.3
CornerNet 20.4 6.6 409 20.2 205 14 244 12.1 17.4
Fast R-CNN 21.4 15.6 51.7 29.5 19 13.1 31.4 20.7 21.7
CenterNet 22.6 20.6 59.7 24 21.3 20.1 37.9 23.7 26.2
Mixed YOLO v3-LITE 34.5 23.4 70.8 31.3 21.9 153 40.9 32.7 28.5
YOLO v8n 33.5 27.3 75.5 379 27.7 21.6 45 355 32.5

Ghost-YOLO v8 40.2 32.7 773 452 329 251 56.4 422 369
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5 Conclusion

This paper presents a Ghost-YOLO v8 model that is both efficient and resource-friendly for
detecting and identifying floating litter on water surfaces. Incorporating the SE attention module
within the backbone network, the model’s feature extraction and target localization accuracies are
enhanced. The inclusion of a 160 x 160 layer designed for detecting small targets optimizes the
fusion of deep and shallow semantic information, bolstering small target feature representation. The
GhostConv module and a novel C2fGhost module significantly reduce network parameters, achieving
a lightweight design. Furthermore, the dynamic non-monotonic focusing mechanism of WloU v3
replaces CloU as the loss function, improving the model’s bounding box regression performance.
Experimental results demonstrate that the Ghost-YOLO v8 model outperforms the baseline by 3.3%
and 7.6% in precision and recall, respectively, while achieving improvements of 5.3% and 4.4% in
mAP@0.5 and mAP@0.5:0.95, while keeping the FPS almost the same. Additionally, the model
reduces computational requirements by 1.88 MB compared to the baseline, exhibiting a superior
detection effect. The goal of our future work is to enhance the model’s detection accuracy and speed
even further and optimize its porting and deployment on edge mobile platforms.
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