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ABSTRACT

Imbalanced data classification is the task of classifying datasets where there is a significant disparity in the number
of samples between different classes. This task is prevalent in practical scenarios such as industrial fault diagnosis,
network intrusion detection, cancer detection, etc. In imbalanced classification tasks, the focus is typically on
achieving high recognition accuracy for the minority class. However, due to the challenges presented by imbalanced
multi-class datasets, such as the scarcity of samples in minority classes and complex inter-class relationships with
overlapping boundaries, existing methods often do not perform well in multi-class imbalanced data classification
tasks, particularly in terms of recognizing minority classes with high accuracy. Therefore, this paper proposes a
multi-class imbalanced data classification method called CSDSResNet, which is based on a cost-sensitive dual-
stream residual network. Firstly, to address the issue of limited samples in the minority class within imbalanced
datasets, a dual-stream residual network backbone structure is designed to enhance the model’s feature extraction
capability. Next, considering the complexities arising from imbalanced inter-class sample quantities and imbalanced
inter-class overlapping boundaries in multi-class imbalanced datasets, a unique cost-sensitive loss function is
devised. This loss function places more emphasis on the minority class and the challenging classes with high inter-
class similarity, thereby improving the model’s classification ability. Finally, the effectiveness and generalization
of the proposed method, CSDSResNet, are evaluated on two datasets: ‘DryBeans’ and ‘Electric Motor Defects’.
The experimental results demonstrate that CSDSResNet achieves the best performance on imbalanced datasets,
with macro_F1-score values improving by 2.9% and 1.9% on the two datasets compared to current state-of-the-art
classification methods, respectively. Furthermore, it achieves the highest precision in single-class recognition tasks
for the minority class.
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1 Introduction

Classification is a critical task in data mining with substantial research significance. In practical
applications, class imbalance is a common issue, prevalent in domains such as disease detection,
intrusion detection, and industrial fault diagnosis. These scenarios often emphasize identifying
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minority samples, such as faults and anomalies, amidst a vast majority of normal data samples.
The substantial differences in sample sizes and the complexity of data distributions make accurately
identifying minority class samples particularly challenging.

Currently, extensive research is focused on multi-class imbalanced data classification. Solutions
typically fall into two categories: data-level methods, such as resampling and feature selection, and
algorithm-level methods, including multi-class decomposition techniques, ensemble learning, and
cost-sensitive learning. Data-resampling methods involve either undersampling majority class samples
or oversampling minority class samples before training a classifier. Hybrid resampling methods can
also be used to balance class distributions. For instance, Li et al. [1] proposed an entropy-based
undersampling method that balances datasets using a new class imbalance metric called entropy-
based imbalance degree (EID), which mitigates information loss associated with basic undersampling
methods [2]. Similarly, Li et al. [3] introduced an undersampling method based on minority class
neighborhood distance, addressing data imbalance in sentiment classification by removing majority
text within minority text neighborhoods. Features selection, on the other hand, involves filtering
out redundant features while retaining relevant ones to improve classifier performance. Fu et al. [4],
for example, proposed a feature selection algorithm based on Hellinger distance, suitable for high-
dimensional imbalanced classification. Maldonado et al. [5] explored embedded feature selection
methods in support vector machine classification. While undersampling and feature selection methods
can enhance classification performance, they often involve removing data samples or features, which
can lead to varying degrees of information loss.

Oversampling techniques, on the other hand, involve creating new samples for the minority class
to balance the dataset. Notable methods include the Synthetic Minority Over-sampling Technique
(SMOTE) and Generative Adversarial Network (GAN)-based approaches for generating minority
class samples. Asniar et al. [6] proposed SMOTE-LOF method to synthesize minority data by the
Synthetic Minority Oversampling Technique (SMOTE) which has added local outliers’ factors and
achieved a better effect on dataset with a large number of data examples and a smaller imbalance
ratio. Joloudari et al. [7] proposed an effective method for class-imbalanced learning based on
Synthetic Minority Over-sampling Technique and Convolutional Neural Networks (SMOTE-CNN),
which combines the SMOTE oversampling technique with a CNN classifier to effectively address
imbalanced data. Lee et al. [8] proposed an intrusion detection system based on generative adversarial
networks, which uses GAN networks to oversample minority class samples and improve the accuracy
of classification models on imbalanced datasets. However, oversampling methods inevitably introduce
noise while balancing the dataset, and may even lead to severe overfitting issues.

Algorithm-level methods focus on developing new algorithms or improving existing ones, such as
Logistic Regression (LR), Support Vector Machines (SVM), and ResNet [9], to enhance performance
in imbalanced multiclass problems. These methods do not alter the dataset by adding or removing
samples, thereby maintaining the original data distribution, making them well-suited for complexly
distributed imbalanced classification challenges. Multiclass decomposition techniques, on the other
hand, employ divide-and-conquer strategies to break down multiclass problems into simpler binary
subproblems, thereby simplifying the overall problem. For example, Gao et al. [10] proposed a dif-
ferential partition sampling ensemble method (DPSE), which splits a multiclass dataset into multiple
binary datasets using the One-vs.-All (OVA) strategy for model training, achieving good performance
in imbalanced learning. Mohammed et al. [11] combined the OVA decomposition strategy with
ensemble learning, introducing an adaptive window adjustment method based on the imbalance ratio
to reduce uncertainty during imbalanced data stream learning. Such methods can reduce the burden on
each classifier and exhibit better robustness to imbalanced data. However, multiclass decomposition
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techniques may not capture more complex relationships between multiple classes, potentially reducing
the recognition rate for certain classes.

Ensemble learning involves combining multiple weak base classifiers with modest classification
abilities to create a strong classifier with improved performance. For example, AdaBoost [12] typically
uses decision trees as its base classifier. AdaBoost is an adaptive ensemble algorithm, where each
new model is adjusted based on the performance of the previous model, leading to highly accurate
classification results. XGBoost [13] is an optimization algorithm based on gradient boosted decision
tree, adding a new decision tree in each iteration to fit the residual between the prediction result of the
previous decision tree and the true value, and the final integrated classifier has high classification
accuracy. RUSBoost [2] first utilizes resampling techniques to process imbalanced datasets into
balanced datasets, and then utilizes ensemble methods to classify them. Random Forest is a highly
flexible machine learning algorithm that integrates multiple decision trees to learn and classify input
samples. The decision trees that make up the random forest have no association with one another. This
bagging-based approach increases prediction accuracy and is resistant to data that is not balanced.
Ensemble learning often requires more time and computational resources because multiple classifiers
need to be trained. In some cases, these techniques can help balance class distributions and improve
the performance of classifiers affected by class imbalance. However, they may struggle to achieve
high classification accuracy when there are several minority groups in the imbalanced data and the
boundaries between classes overlap.

The above-described data imbalance is not an isolated phenomenon; it also occurs in a number of
industries and agricultural sectors, for example, in the identification of similar motor defects and close-
source biological classification. In such circumstances, it is essential to recognize minority classes effec-
tively and accurately. However, the four previously mentioned methods may not meet these demands,
as they lack targeted improvement measures for these specific cases. Cost-sensitive learning addresses
this by assigning different costs to the misclassification of various classes, thereby enhancing the per-
formance of general classifiers. This is typically achieved by improving the loss function in the baseline
model. Specifically, a cost-sensitive loss function sets a greater misclassification cost for the positive
class compared to the negative class, making the model more attentive to the accurate classification
of minority classes. Existing research on improving loss functions can be broadly categorized into
three types: weighted cross-entropy loss, weighted support vector machine loss, and improved hybrid
loss functions. Weighted cross-entropy loss assigns different weights to the cross-entropy loss terms of
different classes to reduce the dominance of the majority class in the loss function, thereby improving
the classification accuracy of minority classes. For example, Focal Loss [14] reduces the weight of
easily classified samples and increases the weight of hard-to-classify samples (usually minority classes)
to diminish the influence of easily classified samples on the loss function. Class-Balanced Loss [15]
adjusts the contribution of each class to the loss function based on the number of samples in each
class, giving higher weight to samples from minority classes. Cost-Sensitive Convolutional Neural
Network (CSCNN) [16] is an improved algorithm based on Convolutional Neural Networks (CNNs)
that incorporates weighted cross-entropy loss to differentiate the misclassification costs of imbalanced
classes. In the task of imbalanced encrypted traffic classification, CSCNN outperformed general
machine learning and deep learning classification algorithms, achieving an F1-score exceeding 96%.
ECG-CNN [17] utilizes a cost-sensitive CNN model to address the imbalanced data issue in ECG
rhythm detection, achieving higher classification performance. Cost-Sensitive Residual Network (CS-
ResNet) [18] is an enhanced algorithm based on Residual Neural Networks (ResNet). It strengthens
the standard ResNet by incorporating weighted cross-entropy loss. Specifically, it sets cost-sensitive
factors according to the degree of imbalance between classes, assigning larger weights to classes with
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fewer samples. By combining ResNet’s excellent feature extraction capabilities with the balancing
ability of the cost-sensitive layer, CS-ResNet ultimately improves the accuracy of printed circuit board
defect detection, achieving a maximum sensitivity of 0.89. Weighted support vector machine loss
enhances the handling of class imbalance by assigning different weights to the support vector machine
loss function terms. For example, Cost-Sensitive Support Vector Machine (CS-SVM) [19] adjusts
the SVM loss function according to a cost matrix, focusing more on the classification of minority
classes. CS-SVM has demonstrated superior classification accuracy across more than ten datasets,
indicating good generalization performance in experiments. FCSSVM (fine cost-sensitive support
vector machine classifier) [20] addresses imbalanced data classification by using a fined cost-sensitive
support vector machine, which improves classification performance by finely tuning class cost weights.
Improved hybrid loss functions combine different types of loss terms and apply weighting based on
class imbalance to enhance model performance in imbalanced data classification tasks. For instance,
Dice Loss [21] combines cross-entropy loss and Dice coefficient loss, balancing their proportions to
improve model performance in handling minority classes. Cost-sensitive learning offers advantages
over other methods by directly addressing the issue of imbalanced data. It prioritizes minority classes,
thereby improving their classification accuracy while reducing unnecessary computational costs. This
makes cost-sensitive learning a potential approach for accurately classifying imbalanced data with
multiple minority classes and overlapping class boundaries.

Existing cost-sensitive learning methods have focused on addressing the issue of imbalanced class
sizes, which has improved the recognition accuracy of minority classes to some extent. However,
they still struggle with overlapping imbalanced class distributions. Therefore, this paper introduces
an imbalanced data classification method named CSDSResNet, based on a cost-sensitive dual-stream
residual neural network. It utilizes an optimized residual network as the base classifier and designs
a dual-stream backbone network structure to enhance the classifier’s feature extraction capability.
Additionally, it incorporates cost-sensitive functions that account for class imbalance and inter-class
similarity, directing the model’s attention to minority classes and highly similar inter-class categories.
This approach aims to achieve accurate classification for imbalanced data scenarios involving multiple
minority classes with imbalanced overlapping inter-class sample distributions, providing a solution for
real-world problems characterized by such imbalanced data.

The main contributions and innovations of this paper are as follows:

• Proposed a classifier based on a dual-stream residual network model. Designed the dual-
stream residual backbone structure to provide the model with different scales of receptive fields,
enhancing its feature extraction capabilities. This allows the classifier to quickly learn from
multi-class imbalanced data.

• Designed a cost-sensitive function based on inter-class sample imbalance and inter-class similar-
ity. This function directs the model’s attention towards minority classes and the challenging task
of distinguishing highly similar classes. This approach aims to address the complex classification
issues arising from imbalanced sample sizes and imbalanced sample distribution overlap in
multi-class imbalanced data.

• Addressed practical tasks in multi-class imbalanced data classification, specifically focusing
on dry beans classification and motor defect detection: evaluated the effectiveness of the
proposed CSDSResNet method on the “DryBeans” and “Sensorless_drive_diagnosis” datasets.
These datasets exhibit characteristics of imbalanced sample sizes and imbalanced inter-class
distribution overlaps due to the presence of biologically closely related bean categories in
“DryBeans” and multiple similar yet distinct defects in “Sensorless_drive_diagnosis”.
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The remaining parts of the paper are organized as follows: Section 2 demonstrates the design
of the proposed method CSDSResNet in detail. Experimental setting is stated in Section 3. In
Section 4, we introduce the detailed experimental results. Finally, Section 5 provides conclusions and
future works.

2 Methods

To address the issue of imbalanced inter-class sample quantities and overlapping sample distri-
butions in multi-class imbalanced datasets, this paper proposes an improved residual network model
called CSDSResNet. This is an improved algorithm based on the residual network concept, taking
into account the excellent feature extraction capability of residual networks. Therefore, residual units
are selected as the fundamental building blocks of the model. The overall structure of CSDSResNet
is shown in Fig. 1.

Figure 1: Overview of the CSDSResNet

2.1 Overall Structure of CSDSResNet

The CSDSResNet model is designed with a dual-stream backbone network to acquire different
receptive fields, thereby further optimizing the model’s fundamental feature extraction capability. It
couples the cost-sensitive factor with the model’s loss function, enabling the model to gain a special
focus on minority classes during the backward propagation learning process. The overall structure
of the model is illustrated in Fig. 1. The backbone network consists of stacked dual-stream residual
blocks, skip connections, two convolutional layers, and one fully connected layer. More details about
the main innovations of the proposed method will be elaborated in Sections 2.2 and 2.3, respectively.

2.2 The Dual-Stream Residual Block

To enhance the model’s feature extraction capability, we designed a backbone network composed
of stacked dual-stream residual blocks, as shown in Fig. 2. The introduction of residual structures
reduces information loss in the lower layers of the network compared to the upper layers during the
convolution process, and residual connections can prevent network degradation [9].

Figure 2: The structure of the dual-stream residual block
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The gray line path represented in Fig. 2 is Path 1 with a feature extraction stride of 2. Due to
the small number of samples in the minority class in the imbalanced dataset, the single-path network
structure cannot adequately extract features. Therefore, we added an additional feature extraction
path, represented by the blue Path 2 in Fig. 2, with a feature extraction stride of 3. We designed
convolutional kernels with odd-even differences in size. This is because the size of convolutional kernels
determines the receptive field of the model, and this design allows the model to extract data features
from different dimensions. Compared to simply increasing the depth of the network to enlarge the
receptive field, the dual-stream network structure is evidently more suitable for dealing with the limited
sample size of minority classes in multi-class imbalanced datasets.

2.3 Cost-Sensitive Loss Function

The cross-entropy loss function is frequently utilized with the softmax classifier. The latter
calculates cross-entropy using the one-hot form of the real category to derive the associated loss, which
is suited for multi-classification learning. Cross entropy loss considers misclassification of different
categories to be equally relevant, which can only be used to minimize misclassification of all samples.
However, because of the tiny proportion of minority samples in imbalanced data, it has little influence
on the overall sample classification accuracy, and the recognition rate of the majority of samples
is crucial in the overall sample recognition rate. As a result, the misclassification of minority class
samples is ignored to some extent, causing the classifier to tend to improve the accurate recognition
of the majority class, resulting in minority class misclassification.

There are two main reasons for the difficulty of classifying imbalanced datasets: on the one
hand, the sample number of the minority class is small, which differs greatly from the majority
classes. The model can obtain considerable performance by biasing the classification results to the
majority classes; On the other hand, the high-dimensional features of the inter-class samples have
overlapping parts, the imbalance in the overlap of inter-class distributions increases the classification
difficulty. While this kind of imbalance also exists in balanced data distributions, having an abundance
of training data allows the model to eventually learn classifier-friendly features and recognize and
classify them correctly. In the case of imbalanced multi-class tasks, due to the lack of training data
for minority classes, it’s necessary to strengthen the learning capability of the classifier. Therefore, we
design cost-sensitive functions to help the classifier quickly learn more discriminative and classifier-
friendly features in imbalanced classification tasks where minority class sample distribution is uneven.
Considering the above two points, we will define inter-class imbalance cost-sensitive factor CSI

and inter-class similarity cost-sensitive factor CSD to optimize the loss function, which affects the
optimization of model parameters in the backward pass of model training. The new loss function is
defined as follows:

Loss = − 1
N

∑N

i=1

∑C

c=1

(
yi,c log ŷi,c · CSI (τ , c) · CSD (τ , c)

)
(1)

In this study, we enhance the conventional multi-class cross-entropy calculation by integrating the
inter-class imbalance cost-sensitive matrix CSI and the inter-class similarity cost-sensitive matrix CSD

into the classification error computation. Specifically, N denotes the total number of samples in the
dataset, C represents the number of classes, yi,c is the true label (0 or 1) of sample i for class c, and
ŷi,c is the predicted probability of the model assigning sample i to class c. τ represents the true class
of sample i. From the Eq. (1), it is evident that the values of the inter-class imbalance cost-sensitive
factor CSI (τ , c) and the inter-class similarity cost-sensitive factor CSD (τ , c) depend solely on the true
class τ of sample i and the predicted class c. These values are precomputed before the model training
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begins. The matrix CSI has dimensions C × C, with the sensitivity factor in the τ -th row and c-th
column being:

CSI (τ , c) =
√

Numτ

Numc

(2)

Numτ represents the total number of samples in class τ , while Numc represents the total number
of samples in class c. Thus, Numc and Numτ are independent of each other and also independent of
other classes. The benefit of taking the square root of the ratio of sample quantities is that it reduces
the magnitude of factor variation, making the final loss value changes smoother, which aids in the
stable training of the model. The inter-class similarity cost-sensitive factor CSD also has dimensions
of C × C, with the sensitivity factor in the τ -th row and c-th column being:

CSD (τ , c) = (1 + exp (ϕ (τ , c)))−1 + 1 (3)

ϕi,j =
√∑K

k=1

(
χτ ,k − χc,k

)2 (4)

Here, K denotes the number of features of the samples, and χτ ,k represents the k-th feature value of
the central feature vector within the 95% confidence space of class τ . It is important to note that before
calculating the central feature vector, the sample set has been standardized. The central feature vector
for a class is obtained by averaging the corresponding dimensions of all samples in that class. ϕ (τ , c)
represents the Euclidean distance between the central vectors of classes τ and c. When the distributions
of the two classes are close, ϕ approaches 0, and the cost-sensitive factor CSD (τ , c) approaches 1.5.
Conversely, when the distributions of the two classes are significantly different, CSD (τ , c) approaches
1. Therefore, this sensitivity factor effectively increases the penalty for misclassification between classes
with similar distributions.

The following pseudocode details the computation process for the inter-class similarity cost-
sensitive factor (Algorithm 1):

Algorithm 1: Interclass Similarity Cost-Sensitive Algorithm
Input: Initialize original training data X , total number of categories C, The number of samples for
each category is Num. Initialize training feature dimension K and Confidence threshold T , default
value T = 1.96.
Output: the matrix of Interclass Similarity Cost-Sensitive CSD.
1. Standardize the training data X , get X ′;

// Step 1. Remove samples outside 95% confidence interval for each class.
2. for c in {1, 2, . . . , C} do
3. X ′

c represents the sample set with category c;
4. X ′

c has Numc samples and forms a sample sequence
(
xc1, xc2, . . . , xcNumc

)
, Each vector is

represented as: xci = (xci1, xci2, . . . , xciK);

5. μcj = 1
Numc

∑Numc
i=1 xcij // Calculate the mean for each dimension.

6. σcj = 1
Numc

∑Numc
i=1

(
xcij − μcj

)2

// Calculate the total z-score for each sample.
7. for i in {1, 2, . . . , Numc} do

(Continued)



4250 CMC, 2024, vol.80, no.3

Algorithm 1 (continued)

8. zci =
√√√√∑K

j=1

((
xcij − μcj

)
σcj

)2

9. if zci ≤ T then
10. drop off sample xci;
11. end if
12. Update category sample size from Numc to Num′

c;

13. χc =
(

1
Num′

c

∑Num
′
c

t=1 xct1,
1

Num′
c

∑Num
′
c

t=1 xct2, . . . ,
1

Num′
c

∑Num
′
c

t=1 xctK

)
// Step 2. Calculate Cost-Sensitivevalue between two categories.

14. for i in {1, 2, . . . , C} do
15. for j in {1, 2, . . . , C} do

16. ϕ (i, j) =
√∑K

k=1

(
χik − χjk

)2

17. CSD (i, j) = 1
1 + eϕ(i,j)

+ 1

3 Experiment Setting
3.1 Experimental Environment

Our experiments were conducted on a computer with an i7-12700K processor and 32 GB memory,
running Windows 10. The system is equipped with NVIDIA GeForce RTX 3060Ti GPUs featuring
8 GB memory, a 14 GHz memory clock, and a 256-bit width. The model was implemented using
TensorFlow 2.0, with PyCharm as the IDE. Key toolkits included numpy, random, glob, imageio,
math, time, and os, with Python 3.7 as the primary programming language.

3.2 Datasets

We conducted our research on the “DryBean” [22] and “Sensorless_drive_diagnosis” datasets. In
imbalanced classification tasks, the category with a large number of samples is typically referred to as
the negative class, while the category with a small number of samples is known as the positive class.
The class imbalance ratio (IR) is defined as the ratio of the number of negative class samples to the
number of positive class samples. Generally, the larger the IR, the more challenging the classification
task becomes. t-SNE [23] is a non-linear dimensionality reduction algorithm particularly suited for
reducing high-dimensional data to 2D or 3D, while preserving the similarity in the joint probability
distribution between the low-dimensional and original data.

The DryBean dataset, includes size and shape features of seven different dry beans, with 16
attributes like Area and Perimeter. The t-SNE visualization (Fig. 3a) shows distinct class distributions
and varying degrees of overlap, especially among the minority classes Bombay, Sira, and Horoz.
To validate the model’s generalization, we used the Sensorless_drive_diagnosis dataset, containing
11 classes with 48 attributes each, and displayed t-SNE results for Classes 6 to 10 (Fig. 3b). Both
datasets were randomly sampled to create different class imbalance ratios. Specifically, we employed
stratified sampling, where samples were randomly drawn from each class according to the imbalance
ratio (IR). The sampled datasets are described in Tables 1 and 2. In our experiments, we also divided
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the datasets into training and test sets using an 8:2 ratio within each class, ensuring that the IRs
remained consistent.

Figure 3: T-SNE visualization results

Table 1: Description of DryBean dataset

Category Dried bean species Number of attributes Sample size IR

1 Dermosan 16 3536 1
2 SEKER 16 304 11.63
3 Sira 16 211 16.76
4 Horoz 16 193 18.32
5 Cali 16 489 7.23
6 Barbunya 16 397 8.91
7 Bombay 16 157 22.52

Table 2: Description of Sensorless_drive_diagnosis dataset

Class Number of attributes Sample size IR

0 48 2660 1
1 48 2530 1.05
2 48 2340 1.14
3 48 2050 1.30
4 48 2100 1.27
5 48 2370 1.12
6 48 2500 1.06
7 48 1410 1.89
8 48 850 3.13

(Continued)
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Table 2 (continued)

Class Number of attributes Sample size IR

9 48 930 2.86
10 48 1010 2.63

3.3 Evaluation Metric

The performance of the proposed method is evaluated using accuracy, precision, recall, and F1-
score. The macro average of these metrics effectively assesses classifier performance in multi-class
tasks, emphasizing the importance of accurately classifying minority classes.

Accuracy = TP + TN
TP + FP + TN + FN

(5)

Precision = TP
TP + FP

(6)

Recall = TP
TP + FN

(7)

F1 − score = 2TP
2TP + FN + FP

(8)

macro−S = 1
n

n∑
i=1

Si (9)

TP, FP, TN and FN represent the samples belong to True Positive (TP), False Positive (FP), False
Negative (FN), and True Negative (TN) of the category, respectively.

3.4 Parameter Configuration

We compare the performance of the model at a learning rate of 0.001, 0.005, and 0.01, respectively.
The experimental results are shown in Fig. 4. The subfigure (a–c) shows that when the learning rate
is 0.01, the loss-training epoch curve declines the fastest, reaching roughly 1.3 at 10 epoch and 1.2 at
60 epoch before becoming stable. When the learning rate is 0.005, it falls to around 1.3 at 20 epoch,
reaches approximately 1.2 at 60 epoch, and then remains stable. When the learning rate is 0.001, the
curve decreases the slowest, and gradually be stable at 120 epochs. The ultimate accuracy of the model
is at its maximum when the learning rate is 0.005, as can be seen in subfigure (d). We finally chose a
learning rate of 0.005, because it has the highest training accuracy and is more stable.

In order to improve training efficiency, we set a comparison experiment as shown in Fig. 5 to
determine the most appropriate mini batch size. According to subfigure (a–c), it can be shown that
the loss curve falls below 1.3 at 20 epochs when the mini batch size is 128 and 64. The fastest and
most stable model convergence occurs when the mini batch size is 128. The subfigure (d) shows that
the model training accuracy increases the fastest when the mini batch size is 128 and that the ultimate
accuracy attained by the three is essentially the same. Therefore, we set the mini batch size to 128.
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Figure 4: Model training performance at different learning rates

Figure 5: Model training performance at mini batch sizes
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4 Results and Discussion

In this section, a significant variety of experiments are carried out to completely demonstrate the
effectiveness of the proposed method for imbalanced classification tasks.

4.1 Ablation Study

Ablation experiments involve removing certain enhancement elements from the final model to
assess their necessity. In this section, we evaluate the effectiveness of the proposed cost-sensitive loss
function and dual-stream residual block for imbalanced classification.

To further validate the effectiveness of the cost-sensitive factors CSI and CSD in addressing class
imbalance, we designed an ablation experiment. The results, shown in Fig. 6, compared with the
methods without cost-sensitive factors CSI and CSD, the accuracy of CSDSResNet is improved by
1.3% and 1.3%, respectively. Macro_P is improved by 5% and 4.4%, respectively. Macro_F1 improved
by 3.3% and 1.8%, respectively, indicate that the inclusion of these cost-sensitive factors enhances
the classifier’s attention to and accuracy in identifying minority classes. The introduction of the cost-
sensitive factor resulted in a slight decrease in Macro_Recall, which we attribute to the classifier
becoming more conservative. It tends to lean towards predicting negatives to avoid false positives.
This inclination enhances precision and accuracy but sacrifices recall. This observation aligns with
our experimental findings.

Figure 6: Ablation study results of cost-sensitive loss functions

Table 3 presents the ablation study results of dual-stream residual blocks. We retained only a
single path as the model’s main backbone for feature extraction, effectively degrading the model
to a standard residual neural network while keeping all other components unchanged. The best
results are highlighted in bold. It can be observed that the dual-stream structure achieves the best
performance, with the model’s Accuracy and Macro_F1-score improving by 1.39% and 1.89%,
respectively, compared to the model with only Path 1. Similarly, compared to the model with only Path
2, the Accuracy and Macro_F1-score improved by 2.02% and 2.94%, respectively. The ablation study
results demonstrate that dual-stream residual blocks effectively extract and fuse high-dimensional
features, enhancing the model’s learning capability.



CMC, 2024, vol.80, no.3 4255

Table 3: Ablation study results of dual-stream residual blocks

Path 1 Path 2 Accuracy Macro_precision Macro_Recall Macro_F1-score

� 0.9660 0.9242 0.9527 0.9417
� 0.9597 0.9098 0.9507 0.9312

� � 0.9799 0.9697 0.9531 0.9606

4.2 Model Comparison

This subsection compares the performance of our proposed method, CSDSResNet, with sev-
eral classical methods for imbalanced classification, including CSCNN, XGBoost, SVM, RUS-
Boost, Random Forest, Logistic Regression, SMOTE-CNN, FCSSCM, ECG-CNN and AdaBoost.
Table 4 presents the performance metrics of various methods on the “DryBean” dataset. Our pro-
posed method, CSDSResNet, outperforms all other methods across accuracy, macro precision, and
macro_F1-score. For example, compared to the second-best method, CSDSResNet shows a 1.64%
improvement in accuracy, a 2.48% increase in macro precision, and a 2.72% enhancement in macro
F1-score. To understand which class recognition improvements most impact CSDSResNet’s overall
performance, we visualized the recognition performance for each class, as shown in Fig. 7.

Table 4: Results of several methods on “DryBean”

Methods Accuracy Macro_precision Macro_Recall Macro_F1-score

CSCNN 0.9242 0.9356 0.9287 0.9321
XGBoost 0.9635 0.9306 0.9125 0.9203
SVM 0.9598 0.9449 0.9061 0.9195
RUSBoost 0.8956 0.8754 0.6811 0.7073
RF 0.9623 0.9389 0.9126 0.9251
LR 0.9591 0.9250 0.8983 0.9080
SMOTE-CNN 0.9509 0.9057 0.9521 0.9238
FCSSVM 0.9415 0.8867 0.9428 0.9075
ECG-CNN 0.9610 0.9442 0.9579 0.9334
AdaBoost 0.6467 0.5393 0.5223 0.4777
CSDSResnet 0.9799 0.9697 0.9531 0.9606

CSDSResNet and ECG-CNN achieved the top two F1-scores in single-class recognition. Notably,
CSDSResNet demonstrated the best single-class recognition ability for the minority classes Seker and
Sira, with improvements of 6.6% and 13.7%, respectively, compared to ECG-CNN. These results
indicate that the overall performance enhancement of CSDSResNet is primarily due to its superior
recognition ability for minority classes, demonstrating its effectiveness in handling highly imbalanced
classification tasks.
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Figure 7: Single-class identification results on “DryBean”

4.3 Model Transfer

To validate the generalization performance of the proposed model, experiments were conducted
on the Sensorless_drive_diagnosis dataset. Table 5 compares the performance of 11 classification
algorithms. CSDSResNet outperforms all other methods across all metrics, achieving improvements
of 1.4% in accuracy, 1.1% in macro precision, 0.7% in macro recall, and 1.4% in macro F1-score.
ECG-CNN and XGBoost ranked second and third, respectively.

Table 5: Results of several methods on Sensorless_drive_diagnosis

Methods Accuracy Macro_precision Macro_Recall Macro_F1-score

CSCNN 0.923 0.905 0.908 0.908
XGBoost 0.937 0.945 0.921 0.929
SVM 0.910 0.905 0.889 0.895
RUSBoost 0.882 0.878 0.863 0.869
RF 0.936 0.947 0.911 0.923
LR 0.879 0.902 0.847 0.861
SMOTE-CNN 0.919 0.905 0.899 0.901
FCSSVM 0.928 0.893 0.897 0.926
ECG-CNN 0.934 0.935 0.934 0.934
AdaBoost 0.907 0.919 0.887 0.898
CSDSResNet 0.951 0.958 0.941 0.948
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Due to the high number of classes in the Sensorless_drive_diagnosis dataset, single-class recogni-
tion results for several minority classes are shown in Fig. 8. The data’s high similarity among classes
makes single-class recognition challenging. CSDSResNet excels in recognizing minority Classes 6, 7, 8,
and 9, with a 3.7% improvement in F1-score for Class 8. CSDSResNet, along with XGBoost and ECG-
CNN, ranks among the top three in single-class recognition, consistent with Table 5. These results
highlight CSDSResNet’s effective classification of imbalanced data with overlapping distributions.

Figure 8: Single-class identification results on Sensorless_drive_diagnosis

Given that the Sensorless_drive_diagnosis dataset is relatively large, several cost-sensitive deep
learning methods have shown promising results in comparison experiments. We are also curious
about the performance of these methods on smaller datasets. To further evaluate the performance
of the proposed CSDSResNet in imbalanced classification tasks, we performed a 10-fold random
undersampling for each class of the Sensorless_drive_diagnosis dataset. Specifically, Classes 4, 5, and
6 were undersampled by a factor of 100 to further increase the imbalance ratio and classification
difficulty. The description of the adjusted dataset is shown in Table 6.

Table 6: Description of the Small-Sized Sensorless_drive_diagnosis dataset

Class Number of attributes Sample size IR

0 48 266 1
1 48 253 1.05
2 48 234 1.14
3 48 205 1.30
4 48 21 12.67

(Continued)
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Table 6 (continued)

Class Number of attributes Sample size IR

5 48 23 11.57
6 48 25 10.64
7 48 141 1.89
8 48 85 3.13
9 48 93 2.86
10 48 101 2.63

Table 7 shows the results for the Small-Sized Sensorless_drive_diagnosis dataset. While reducing
the training set size decreased performance across all methods, CSDSResNet still performed the best.
It improved accuracy by 1.9%, macro precision by 4%, macro recall by 6.2%, and macro F1-score by
5.2% compared to ECG-CNN. These results highlight that CSDSResNet excels in handling highly
imbalanced tasks with limited minority class samples and overlapping distributions, demonstrating
its robustness in challenging classification scenarios.

Table 7: Results of several methods on the Small-Sized Sensorless_drive_diagnosis

Methods Accuracy Macro_precision Macro_Recall Macro_F1-score

CSCNN 0.903 0.870 0.786 0.803
XGBoost 0.926 0.759 0.794 0.791
SVM 0.899 0.773 0.753 0.759
RUSBoost 0.812 0.703 0.675 0.667
RF 0.954 0.781 0.795 0.787
LR 0.839 0.713 0.718 0.706
SMOTE-CNN 0.908 0.813 0.778 0.786
FCSSVM 0.917 0.834 0.814 0.814
ECG-CNN 0.944 0.864 0.848 0.849
CSDSResNet 0.963 0.904 0.910 0.901

Fig. 9 shows the single-class recognition results on this dataset. CSDSResNet achieved the best
results for Classes 4, 6, 7, and 9, with Classes 4 and 6 being high IR minority classes. From the subplots
of Classes 4 and 5 in Fig. 9, it is evident that the sharp reduction in training set size had a devastating
impact on some methods. For instance, FCSSVM failed to recognize minority Class 4, and ECG-
CNN failed to recognize minority Class 5. In contrast, our proposed CSDSResNet maintained good
performance, which is noteworthy.

Although CSDSResNet performs exceptionally well across various multi-class imbalanced classi-
fication tasks, it improves the accuracy of minority classes but has a limited effect on the overall dataset
accuracy, partly because minority class samples contribute less to the total accuracy. Additionally, the
method does not specifically focus on learning features from majority class samples.
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Figure 9: Single-class identification results on the Small-Sized Sensorless_drive_diagnosis

5 Conclusion

To tackle the challenges of multi-class imbalanced data with multiple minority classes and
overlapping distributions, this paper proposes the cost-sensitive dual-stream residual network model
(CSDSResNet). CSDSResNet employs a dual-stream residual backbone network and enhances
feature extraction using convolutional kernels with odd-even differences to expand the receptive
field. It also addresses the problem of attention shift due to class imbalance and performance
degradation caused by overlapping sample distributions among minority classes through a cost-
sensitive loss function based on sample imbalance and inter-class similarity. This function increases
the model’s sensitivity to misclassifications of minority classes and strengthens its ability to distinguish
among them.

In experiments on the “DryBean” and “Sensorless_drive_diagnosis” datasets, CSDSResNet
outperformed existing techniques, showing notable improvements in macro F1-score of 2.72% and
1.4%, respectively. It excelled in single-class recognition, boosting precision by 13.7% for the “Sira”
class and achieving a 3.7% increase in F1-score for Class 8 compared to the second-best method.
CSDSResNet also demonstrated strong generalization for imbalanced tasks with smaller sample sizes,
highlighting its effectiveness in complex classification scenarios. Future work will aim to further
improve CSDSResNet to address a broader range of classification tasks.
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