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ABSTRACT

Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional (2D)
images, such as short detection distance, strong influence of environment and lack of distance information, we
propose Rail-PillarNet, a three-dimensional (3D) LIDAR (Light Detection and Ranging) railway foreign object
detection method based on the improvement of PointPillars. Firstly, the parallel attention pillar encoder (PAPE) is
designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss
in PointPillars pillars encoder. Secondly, a fine backbone network is designed to improve the feature extraction
capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual
structure. Finally, the initial weight parameters of the model were optimised by the transfer learning training
method to further improve accuracy. The experimental results on the OSDaR23 dataset show that the average
accuracy of Rail-PillarNet reaches 58.51%, which is higher than most mainstream models, and the number of
parameters is 5.49 M. Compared with PointPillars, the accuracy of each target is improved by 10.94%, 3.53%, 16.96%
and 19.90%, respectively, and the number of parameters only increases by 0.64 M, which achieves a balance between
the number of parameters and accuracy.
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1 Introduction

With the rapid development of railway transport and railway network systems, the railway-driving
environment has become increasingly complex. In the process of train travel, the foreign objects into
the railway boundaries can cause serious traffic accidents, seriously threatening the safety of people’s
lives and property, so there is an urgent need to conduct research on railway foreign object detection to
ensure the safe operation of the train. However, the existing railway foreign object detection research
is basically based on 2D images, and in the case of low light, bad weather, and long-distance small
objects, the foreign object features in the image are not obvious, and there will be different degrees
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of omission and misdetection [1–3]. In addition, 2D images lack distance information, and accurate
distance perception is important for improving the level of train automation [4,5]. Unlike optical
cameras, LiDAR has the advantages of all-weather operation, wide application environment, and long
detection distance, etc. Its 3D point cloud data contains the real size, shape, and distance information
of the foreign object, which is more suitable for railway operation characteristics.

Currently, LiDAR-based railway obstacle detection is still mainly based on traditional point cloud
filtering and clustering methods. Vatavu et al. [6] designed a grid map estimation method based on
particle filtering, which can estimate the speed of the objects, but it is difficult to track the objects when
they are occluded. Xie et al. [7] clustered foreign objects by rasterizing and using the eight-neighbour
cell clustering method, but it is still difficult to distinguish between neighbouring objects.

In recent years, deep learning-based lidar point cloud 3D object detection methods have achieved
great success in the field of automated vehicle driving. The 3D object detection methods can be
classified into multi-view-based, voxels or pillars-based [8,9] and point-based [10,11]. Yuan et al. [12]
proposed a car detection method, which maps the point cloud onto a 2D image from a bird’s eye view
perspective but only achieves the detection of the car. Liu et al. [13] proposed a combined image and
point cloud method for Bus Rapid Transit vehicle detection with good detection results. Wang et al. [14]
fused cameras and LiDAR to detect targets on railway tracks, but the detection effect depends on the
semantic segmentation results of 2D images. Wen et al. [15] used a semantic segmentation network
based on Double Spiral Transformer module to achieve the detection of multiple types of obstacles
under complex weather conditions by using an obstacle anomaly sensing cross-modal discrimination
strategy. Neri et al. [16] produced a virtual railway environment to generate railway point cloud datasets
and proposed a VoxelNet-based method for railway 3D object detection. Wisultschew et al. [17]
designed a lightweight object detection and embedded detection platform, which realized the detection
and tracking of car and pedestrian targets at railway level crossings.

The above methods are only for a single object, a single scene, or rely on the detection results
of 2D images, which have certain limitations in terms of generality. In addition, some methods use
the computationally heavy Transformer and VoxelNet structures. Recently, the first generic multi-
sensor dataset for the railway domain, OSDaR23 [18], has been published by a research group led by
German Centre for Rail Traffic Research. Recorded in Hamburg, Germany, the dataset contains data
from various sensors, and provides fine-grained data labels that offer a new solution idea for detecting
foreign objects in railways.

This paper adopts LiDAR data from the universal multi-sensor dataset OSDaR23 [18] for the
study of railway foreign object detection, and proposes a deep learning-based LiDAR railway foreign
object 3D detection network, Rail-PillarNet. The main contributions of this paper are as follows:

(1) Based on PointPillars, for the long-range small objects in the railway scenario, we propose
Parallel Attention Pillar Encoding (PAPE), which reduces the loss of fine-grained information
in the pillars.

(2) Combined the LIDAR point cloud encoding characteristics, the fusion of information at
different scales is achieved by a finely designed 2D backbone network.

(3) The model performance is further improved by pre-training on a similar traffic scene dataset,
KITTI [19], while using transfer learning for training.

The general structure of this paper as follows. Section 2 describes the general framework of
PointPillars. Section 3 describes the structure of Rail-PillarNet. Section 4 conducts the experiments.
Section 5 discusses the conclusion of the experimental results. Section 6 gives the conclusion.
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2 Structure of PointPillars

PointPillars [9] represents the original point cloud as pillars while extracting the point cloud
features using a pillar encoder. Next, the pillars are converted into a sparse pseudo image, feature
extraction is performed using a 2D convolutional backbone network, and finally the detection results
are output through the detection head as shown in Fig. 1. PointPillars [9] greatly reduces the amount of
data to be processed by converting the 3D point cloud into a 2D pseudo image, and detects the object
on the pseudo image using the 2D object detection algorithm, avoiding the use of computationally
expensive 3D convolutions, making the algorithm lightweight and easy to use.

Figure 1: PointPillars network structure

PointPillars [9] uses a simplified PointNet [20] in the pillars encoder to aggregate features in each
pillars. However, this results in the loss of local fine-grained information, which is critical for 3D
detection (small object at long distances) [21]. In addition, the backbone network of PointPillars uses
a 2D convolutional network with the structure of Vgg [22,23] for feature extraction, which ignores the
exchange of local features and input-output information, and feature extraction is insufficient [24,25].

3 Structure of Rail-PillarNet

This paper proposes Rail-PillarNet to address the above issues. Rail-PillarNet takes the LIDAR
point cloud as input and first processes the point cloud by pillar division, then extracts the pillars
features by Parallel Attention Pillar Encoding (PAPE), reduces the loss of local information, and
obtains finer pillars features, which are then converted into 2D pseudo image. The extraction and
fusion of features at different scales is achieved by a finely designed 2D backbone. Finally, object
classification and box regression are performed using the detection head to generate prediction results
as shown in Fig. 2.

Figure 2: Rail-PillarNet network structure
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3.1 Parallel Attention Pillar Encoding (PAPE)

PointPillars [9] simply uses fully connected and max pooling to extract pillars features, which leads
to the loss of fine-grained information in the pillars, and is prone to problems such as omission and
misdetection of long-distance small objects in railway scenes. To improve the model’s ability to detect
small objects at long distances, the Parallel Attention Pillar Encoding (PAPE) module is embedded in
the point cloud pillar encoding to mitigate the problem of fine-grained information loss in the point
cloud encoding. As shown in Fig. 3, the PAPE module mainly consists of three units: (1) point-coding,
(2) point-attention coding, (3) channel-attention coding.

Figure 3: Parallel attention pillar encoding

3.1.1 Point-Coding

Assuming that the point cloud extends L, W and H along the X , Y and Z-axes in 3D space, the
point cloud is uniformly divided into specific pillars of size l, w and H. As with PointPillars, only the
point cloud in the X -Y plane is divided into pillars. Let P = {pi = [xi, yi, zi, ri] ∈ RNv × 4]}, where P is
a non-empty pillars consisting of N points, pi is the i-th point in the pillars, and each pi has feature
dimension D = 4, i ∈ {1,...,Nv}, and Nv is the number of points in pillars v.

During the point encoding process, the points in each pillar is expanded as pi = {[xi, yi, zi, ri, xci,
yci, zci, xpi, ypi, zpi] ∈ RNv × 10], where [xi, yi, zi, ri] are the coordinates and reflectance intensities of each
point in the pillars, [xci, yci, zci,] are the offset of each point from the mean of all point clouds in that
pillars, and [xpi, ypi, zpi] are the offset of each point from the centre of the coordinates of that pillars.

3.1.2 Point-Attention Coding

After obtaining the augmented non-empty pillars Pk, in order to capture the features in the
pointwise dimension within the pillars, we use the point-attention coding to aggregate the pointwise
features of the input pillars, as shown in Fig. 3. First, two different kinds of pointwise information
are generated in the pointwise dimension using the max pooling and average pooling: Fp

mean ∈ RP × N × 1

and Fp
max ∈ RP × N × 1. Second, the two kinds of information are fed into a shared network consisting

of a fully connected layer and a nonlinear activation function. Finally, the two types of information
are summed and normalised weights are generated by the sigmoid activation function to describe the
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importance of each point within the pillars. The formulas are as follows:

Fp
mean = avgpool

(
Pk

)
(1)

Fp
max = maxpool

(
Pk

)
(2)

Ap = σ
(
w1

(
w0δ

(
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mean
)) + w1

(
w0δ

(
Fp

max
)))

(3)

where Ap ∈ RP × N × 1 is the attention score of each point, δ is the Relu activation function, w0 and w1 are
the weight parameters of the two fully connected layers, σ is the Sigmoid function.

3.1.3 Channel-Attention Coding

To capture the channel characteristics of the augmented pillars more comprehensively. Similarly,
we extract features in the channel direction using max pooling and average pooling. Then, the
importance of each feature channel is computed using the fully connected layer and the activation
function. The corresponding equations are as follows:

Fc
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)
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)
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where Ac ∈ RP × 1 × C is the attention score of each channel, δ is the Relu activation function, w′
0 and w′

1

are the weight parameters of the two fully connected layers, σ is the sigmoid function.

The parallel mechanism is used to combine point-attention coding and channel-attention coding
to form a parallel attention pillars encoder. By multiplying the point attention Ap and the channel
attention Ac with the original pillars P, respectively, the attention-weighted features of the pillars in
the channel direction and in the point direction can be obtained. The output features are obtained by
adding both with the original pillars P. Finally, the output is processed by fully connected layers and
max pooling to obtain refined pillars features. The definition is as follows:

Po = (
P + (

P × Ap

) + (P × Ac)
)

(7)

f = maxpool (w (Po)) (8)

where Ap ∈ RP × N × 1 is the attention score per point, Ac ∈ RP × 1 × C is the attention score per channel, P
is the original pillars feature, w is the weight parameter of the fully connected layer.

3.2 Backbone Networks

The Vgg [22] structure of the backbone network is used in PointPillars, which ignores the exchange
of local features and input-output information. In this paper, the residual structure block [23] is used
instead of the ordinary convolution block to improve the feature extraction capability of the backbone
network. In addition, unlike RGB images, features such as spatial distances and shapes of objects
are explicitly encoded in the LIDAR point cloud, which does not require too much computational
resources for later geometric modelling [25,26]. By adjusting the number of iterations in each stage
of the backbone networks, more computations are allocated to the early stage to better integrate the
geometric information contained in the point cloud.

The structure of backbone network is shown in Fig. 4. For the feature extraction module with
stride of 1, two 3 × 3 convolutions are used to extract features, while the skip connection fuses the
inputs and outputs of the modul. For the feature extraction module with stride of 2, a two-branch



3824 CMC, 2024, vol.80, no.3

structure is used. In the main branch, a 3 × 3 convolution with stride of 2 is used for feature extraction
and downsampling, followed by information fusion via another 3 × 3 convolution. In the other branch,
feature mapping is performed on the input using a 1 × 1 convolution with stride of 2. In addition, the
outputs of both branches are fused. Finally, the pseudo-image is downsampled using the backbone
network to obtain feature maps of different sizes, and the downsampled multiple feature maps are
upsampled to the same size for stitching to generate the final feature map.

Figure 4: Backbone network structure

Table 1 shows the proposed backbone network structure. The size of the pseudo-image is assumed
to be 640 × 320 × 64. In the table, Stage is the three stages of feature extraction, Residual is the residual
block, Stride is the size of the step in the operation, Repeat is the number of repetitions.

Table 1: Network structure of backbone network

Feature map Input size Operate Output channels Stride Repeat

Pseudo-image 640 × 320 × 64 – – – –
Stage1 640 × 320 × 64 Residual 64 2 1

320 × 160 × 64 Residual 64 1 4
Stage2 320 × 160 × 64 Residual 128 2 1

160 × 80 × 128 Residual 128 1 2
Stage3 160 × 80 × 128 Residual 256 2 1

80 × 40 × 256 Residual 256 1 1
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3.3 Detection Head and Loss Function

In this paper, 3D object detection is performed by the single shot multibox detector (SSD)
detection head [27], which uses 3D intersection over union (IoU) to match the anchors boxes with
the ground-truth boxes. The network detection head finally outputs a 3D prediction frame with seven
parameters, denoted as (x, y, z, w, l, h, θ ), where x, y and z are the centroids of the prediction boxes, w,
l and h are the width, length, and height of the prediction boxes, and θ is the angle of the orientation
of the prediction boxes. The ground-truth boxes are defined as (xgt, ygt, zgt, wgt, lgt, hgt, θ gt). The position
errors between the ground-truth boxes and the prediction boxes are (�x, �y, �z, �w, �l, �h, �θ ):

Δx = xgt − x
d

, Δy = ygt − y
d

, Δz = zgt − z
h

(9)

Δw = log
wgt

w
, Δl = log

lgt

l
, Δh = log

hgt

h
(10)

Δθ = sin
(
θgt − θ

)
(11)

where the subscript gt denotes the parameters of the ground-truth boxes, using the SmoothL1 loss as
the 3D prediction boxes localisation loss:

Lloc =
∑

b∈(x, y, z, w, h, l, θ)

SmoothL1 (�b) (12)

Using Focus Loss to alleviate the problem of inefficient training and difficulty in model conver-
gence, the object classification loss can be expressed as:

Lcls = −αt

(
1 − pt

)γ

log pt (13)

where pt is the category probability of the object in the anchor boxes, α, γ are set to 0.25 and 2.0,
respectively.

In addition, the cross-entropy function is used to perform directional regression on the anchor
boxes. Then the total loss function is defined as:

L = β1Lloc + β2Lcls + β3Ldir (14)

where β1, β2 and β3 are the weighting parameters for the different loss components, set to 2.0, 1.0 and
0.2, respectively.

3.4 Transfer Learning

Transfer learning uses the knowledge already learned in one domain and applies it to another
related but different domain, thus avoiding the need to learn the model from scratch and providing
the model with better initialised weight parameters. Rail-PillarNet is pre-trained on the KITTI dataset
[19], which contains a rich variety of traffic scene objects (e.g., cars and pedestrians, etc.) in different
environments such as city streets and highways. By pre-training on the KITTI dataset, the model
can learn rich scene features and objects behaviours to better adapt to similar traffic scene objects
in railway scenarios. The specific steps are as follows: following the training strategy of PointPillars,
Rail-PillarNet is pre-trained on the KITTI dataset and the weights file is saved. Next, when training
on the OSDaR23 [18] dataset, the originally saved pre-training weights are loaded and the mismatched
operational layers are skipped.
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4 Experimental Datasets and Environment
4.1 Experimental Datasets

In this paper, we use the LiDAR dataset from OSDaR23 [18], released by German Centre for
Rail Traffic Research in 2023, for model training. As shown in Fig. 5a, the acquisition equipment
for the dataset consists of multiple calibrated and synchronised cameras, sensors such as LiDAR and
millimetre-wave radar. The dataset includes 45 sequences totalling 1534 frames of data, and contains 20
categories of moving and static objects such as passengers, workers, vehicles, trains and buffer stop, as
shown in Fig. 5b. However, the number of samples for some of the categories in the dataset is extremely
limited. Therefore, in this paper, four common and more numerous target categories: pedestrians,
vehicles, trains and buffer stop are selected, and the original point cloud is filtered and sifted, resulting
in a total of 1356 frames of LIDAR point cloud, divided into 1084 frames of the training set and 272
frames of the validation set with a ratio of 8:2.

Figure 5: OSDaR23 acquisition equipment and part of the data. (a) Dataset acquisition equipment,
(b) Example of dataset

4.2 Experimental Environment and Setup

The experiments were conducted using the OpenPCDet object detection framework, the operating
system was Centos 7, and the network was trained using the Nvidia TITAN RTX GPU (24G) platform
with a batch size of 2. Training was performed using the Adam optimiser with an learning rate of 0.03,
a weight decay value of 0.01, and a momentum value of 0.9. The X -Y -Z dimensions of each voxel are
set to [0.16, 0.16, 12] m. The maximum number of pillar is 16,000, and each pillar contains 32 points.

In addition, due to the very long probing distance of the LIDAR in the dataset, the detection
range of the setup point cloud is limited to [−30, 354] m along the X -axis, [−25, 39] m along the Y -
axis and [−4, 8] m along the Z-axis, and the points beyond this range are excluded from consideration.
The anchor boxes dimensions for vehicles, pedestrians, buffer stop and trains were set to the average
dimensions of the corresponding ground-truth boxes, the length, width and height ([l, w, h]) were [4.29,
3.06, 2.78] m, [0.88, 0.85, 1.89] m, [1.78, 2.85, 2.50] m and [62.95, 3.99, 4.28] m, respectively.
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5 Experimental Results and Analysis
5.1 Ablation Experiments

We perform ablation experiments on OSDaR23 to validate the contribution of each module in
Rail-PillarNet to model performance improvement. In the ablation experiments, the accuracy of the
model based on 40 recall thresholds under the IoU of 0.5 is mainly used as the evaluation indicator,
and the ablation experiments include PAPE, fine-designed backbone network and transfer learning.
Table 2 shows the experimental results.

Table 2: Comparison of ablation study results

Model PA CA Backbone TL Vehicles (AP/%) Pedestrians (AP/%) Buffer stop (AP/%) Trains (AP/%)

0.7 0.5 0.5 0.25 0.7 0.5 0.7 0.5
Model A 30.56 61.58 16.42 20.47 43.88 65.64 20.77 39.07
Model B √ 32.39 63.37 14.68 18.95 45.48 59.31 23.78 45.18
Model C √ 31.23 62.51 18.92 23.57 54.95 65.88 4.26 32.42
Model D √ √ 39.85 64.38 16.53 20.45 59.93 77.45 23.79 49.64
Model E √ 34.06 63.02 14.54 18.81 61.88 73.69 24.10 41.70
Model F √ √ √ 34.82 67.17 16.03 19.80 57.67 74.49 25.98 48.92
Model G √ √ √ √ 45.42 72.52 19.95 24.30 67.60 82.60 26.01 58.97

Using PointPillars as a baseline (Model A), point-attention (PA) and channel-attention (CA) are
first individually integrated into the baseline model to form Model B and Model C. Model B has
improved accuracy by 1.79% and 6.11% for the vehicle and train categories, respectively, i.e., the point-
attention module is more effective for objects with larger dimensions and is better able to aggregate
features in the point dimension of large objects. There is a small improvement in accuracy for small
objects using the channel-attention. However, a more significant improvement was obtained by fusing
the two.

In addition, the proposed backbone network takes into account the explicit encoding of the object
in the point cloud and at the same time improves the feature extraction capability of the network
through the residual structure, which increases the detection accuracy. The accuracy of vehicles, buffer
stop and trains in the experiment improved by 1.44%, 8.05% and 2.63%, respectively. Finally, the
effectiveness of the transfer learning (TL) training method is further analysed and the model obtains
better initial weight parameters based on the results of the experiments and is able to adapt better to
traffic scene targets similar to those in the KITTI dataset. Compared to Model F without transfer
learning, its accuracies for vehicles and pedestrians are improved by 5.35% and 4.50%, respectively,
and the detection accuracies for the remaining objects are also improved.

5.2 Comparison Experiments

Rail-PillarNet is compared with common 3D object detection algorithms to verify its effectiveness.
The comparison algorithms include SECOND [8], PointPillars [9], PartA2 [10], PV-RCNN [11],
PillarNet [24], Voxel RCNN [26], and Centerpoint [28].

Table 3 shows the experimental results, where P is the number of model parameter values. Rail-
PillarNet achieves satisfactory performance, where the average accuracy (mAP@0.5) reaches 58.51%,
and the accuracies for each objective are 72.52%, 24.30%, 82.60% and 58.97%, respectively. Compared
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to PointPillars, the proposed method achieves an improvement of 12.83% in the average accuracy and
about 10.94%, 3.53%, 16.96% and 19.90% for each category. SECOND consists of the 3D convolution,
which achieves an average accuracy of 58.91%. This is attributed to the power of 3D convolution, but
the high amount of 3D convolutional computation has a negative impact on the real-time performance
of the model. However, Rail-PillarNet is able to achieve a significant increase in detection performance
with a small increase in the number of parameters.

Table 3: Comparison of the results of each model in the OSDaR23 dataset

Model Vehicles (AP/%) Pedestrians (AP/%) Buffer stop (AP/%) Trains (AP/%) mAP@
0.5/%

P/M Tavg/
ms

0.7 0.5 0.5 0.25 0.7 0.5 0.7 0.5
PointPillars 30.56 61.58 16.42 20.47 43.88 65.64 20.77 39.07 45.68 4.85 26.57
SECOND 39.54 74.53 15.16 20.36 43.10 73.58 31.32 72.35 58.91 9.83 57.96
PartA2_anchor 34.03 58.94 15.50 22.49 44.42 69.52 25.78 54.48 49.61 63.83 346.09
Centerpoint 41.69 49.09 13.66 20.21 8.61 9.64 20.16 44.42 29.20 8.89 58.23
Voxel RCNN 35.72 47.39 15.24 18.13 5.77 8.65 18.40 29.41 25.17 16.75 108.41
PillarNet 12.67 38.28 7.36 15.68 11.27 25.65 23.86 44.51 28.95 11.00 73.20
PV-RCNN 21.44 54.12 0.06 2.20 9.07 35.65 23.85 39.03 32.20 13.08 76.10
Rail-PillarNet 45.42 72.52 19.95 24.30 67.60 82.60 26.01 58.97 58.51 5.49 31.77

In addition, the proposed method is tested using a single TITAN RTX GPU (24 G) with an
input point cloud size of 189,069 × 4, where 189,069 is the total number of points in the point cloud
and 4 is the feature carried by each point (real world coordinates and reflectivity). In the Table 3,
Tavg is the average inference time in milliseconds (ms) for 500 repetitions. The inference time of the
proposed method on TITAN RTX GPU is 31.77 ms, which is ahead of the SECOND model with the
best accuracy and also significantly ahead of other models (PartA2, Centerpoint, PV-RCNN, etc.). In
conclusion, the proposed method has satisfactory effect accuracy and real-time performance.

5.3 Qualitative Experiments

Qualitative experiments are conducted to further evaluate Rail-PillarNet. As shown in Fig. 6, the
detection results of Rail-PillarNet under different scenes [29] in the validation set are shown. The
upper left part of the figure shows the corresponding camera image under the scene, the lower left
part shows the 3D object detection results, and the right part shows the detection results under the
bird’s eye view, where the ground-truth box is green and the predicted box is red. As shown in Fig. 6a,
for the scene with sparse objects and small objects at a long distance, this paper’s algorithm is able
to detect most of the objects, but for some small objects at a long distance, this paper’s method also
has some leakage detection. As shown in Fig. 6b, for the scene with denser objects and close distance,
this paper’s method has better detection results. However, due to the near point cloud is too dense,
resulting in other objects similar to the target, also produces a certain amount of misdetection.

In addition, we perform robustness tests in different weather lighting conditions. As shown in
Fig. 6c, under foggy weather conditions, the proposed method is able to better detect pedestrians
located on the platform. As shown in Fig. 6d, Rail-PillarNet is also able to detect foreign objects
under the condition of thick smoke obscuration. In conclusion, Rail-PillarNet achieves satisfactory
results under different lighting conditions.
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Figure 6: Visual inspection results of Rail-PillarNet in different scenarios. (a) Long distance scene,
(b) Close distance scene, (c) Foggy weather scene, (d) Thick smoke scene

The detection results of Rail-PillarNet are compared with the PointPillars in different scenarios.
As shown in Fig. 7, where the first column is the corresponding camera image in the scene, the second
column is the 3D object detection result of the PointPillars algorithm, and the third column is the 3D
object detection effect of Rail-PillarNet, where the ground-truth box is green and the predicted box is
red. From the first and second rows of the figure, it can be seen that the PointPillars algorithm has more
misdetections in the sparse object and small object far away scenarios, as shown in the dashed red box
in the figure. Compared to PointPillars, Rail-PillarNet reduces the false alarm rate in the long range
scenarios. From the third and fourth rows of the figure, it can be seen that the PointPillars algorithm
has a certain amount of leakage and misdetection in the scenes with denser objects and close distances,
as shown in the dashed red box in the figure, Rail-PillarNet reduces the false and missed detections in
the close range scenario.
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Figure 7: Comparison of visual inspection results between Rail-PillarNet and PointPillars

6 Conclusions

In this paper, a LiDAR railway object detection method, Rail-PillarNet, is proposed. Firstly, the
PAPE is proposed to mitigate the loss of fine-grained information during the PointPillars point cloud
encoding, obtain finer pillar features, and effectively improve detection accuracy. Secondly, a fine
backbone network is designed by combining the LIDAR point cloud coding characteristics and the
residual structure, and effectively improves the feature extraction capability of the network. Finally,
the initialisation weight parameters of the model are optimized using the transfer learning training
method, which further improves the detection accuracy.

In summary, the experimental results on the OsDar23 dataset demonstrate the effectiveness of
the above method. the algorithm compared with PointPillars accuracy increased by 12.83%, and the
number of parameters increased by only 0.64 M. In addition, the proposed method also achieved a
satisfactory performance compared to other mainstream 3D object detection models.
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However, the methodology in this paper focuses on exploring a perceptual approach, which has
limitations in terms of decision-making for trains. Future work will consider the detection of track
regions based on a priori knowledge to delineate the intrusion limit regions. Next, the detection
results of potential foreign objects are combined to determine their location in the real world. Finally,
based on the location of the potential foreign object and the delineated intrusion limit regions, it is
determined whether an intrusion has occurred. The foreign object intrusion information is sent to the
control room for train control commands.
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