
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.054581

ARTICLE

Leveraging Uncertainty for Depth-Aware Hierarchical Text Classification

Zixuan Wu1, Ye Wang1,*, Lifeng Shen2, Feng Hu1 and Hong Yu1,*

1Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing,
400000, China
2Division of Emerging Interdisciplinary Areas, Hong Kong University of Science and Technology, Hong Kong, 999077, China

*Corresponding Authors: Ye Wang. Email: wangye@cqupt.edu.cn; Hong Yu. Email: yuhong@cqupt.edu.cn

Received: 01 June 2024 Accepted: 04 August 2024 Published: 12 September 2024

ABSTRACT

Hierarchical Text Classification (HTC) aims to match text to hierarchical labels. Existing methods overlook two
critical issues: first, some texts cannot be fully matched to leaf node labels and need to be classified to the correct
parent node instead of treating leaf nodes as the final classification target. Second, error propagation occurs when
a misclassification at a parent node propagates down the hierarchy, ultimately leading to inaccurate predictions
at the leaf nodes. To address these limitations, we propose an uncertainty-guided HTC depth-aware model called
DepthMatch. Specifically, we design an early stopping strategy with uncertainty to identify incomplete matching
between text and labels, classifying them into the corresponding parent node labels. This approach allows us to
dynamically determine the classification depth by leveraging evidence to quantify and accumulate uncertainty.
Experimental results show that the proposed DepthMatch outperforms recent strong baselines on four commonly
used public datasets: WOS (Web of Science), RCV1-V2 (Reuters Corpus Volume I), AAPD (Arxiv Academic Paper
Dataset), and BGC. Notably, on the BGC dataset, it improves Micro-F1 and Macro-F1 scores by at least 1.09% and
1.74%, respectively.

KEYWORDS
Hierarchical text classification; incomplete text-label matching; uncertainty; depth-aware; early stopping strategy

1 Introduction

Hierarchical Text Classification (HTC) is a classic multi-label text classification problem, where
labels exhibit a hierarchical structure represented by a tree or directed acyclic graph [1]. Many related
tasks represent hierarchy, such as international patent classification [2], product annotation [3], web
page categorization [4], and news classification [5]. Accurate HTC helps the system to organize and
retrieve information more effectively, provide personalized recommendation services, and improve user
experience and operational efficiency. In the real world, one text sample may have multiple labels.
As shown in Fig. 1, taking news classification as an example, the text corresponds to labels such as
‘News’, ‘Business’, ‘Sports’ and ‘Stock’, which usually contain hierarchical dependencies. However,
in practical scenarios, some texts cannot be matched to appropriate leaf node labels. The text is
matched with the hierarchical labels “News”, “Business”, “Sports” and “Stock”. While, regarding the
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leaf node labels “Football” and “Tennis”, the text cannot be assigned to appropriate labels, resulting
in the classification stopping at the parent node label “Sports”. In practical applications, existing
label hierarchies might not comprehensively cover all possible text topics. This means that some texts
may not have corresponding leaf node labels and can only be matched to higher-level parent node
labels. Therefore, for texts that cannot be assigned to appropriate leaf node labels, the model should
only predict the correct parent node labels. Due to the incomplete match between text data and the
hierarchical structure, directly predicting the leaf node labels becomes challenging [6].

Figure 1: Samples that cannot be assigned to leaf nodes

Global approaches are the mainstream methods in current HTC, regarding the label structure
as flattened, which leads to the issue of “incomplete text-label matching” in classification results [7].
The Seq2Seq-based approaches can solve this problem by generating label sequences from the root
node to the leaf node along the hierarchical structure [8]. The current Seq2Seq procedures focus on
classifying leaf node labels as the end goal, concentrating on improving classification performance
[9] and reducing parameter size [10]. However, existing ways overlook certain issues where some texts
cannot be perfectly matched to leaf node labels, and not all samples should be classified as leaf nodes.
One solution is to introduce multiple nodes within the hierarchical structure, capturing semantic
information of texts at different levels, balancing specificity and correctness [11]. Further, other
methods leverage probability to provide better classification by normalizing the output of Softmax into
probability distributions for each category [7]. Currently, these hierarchical text classification (HTC)
methods focus on extracting label features to achieve better hierarchical representations. They flatten
the hierarchical structure for label prediction, which may result in inconsistent predicted labels due
to ignoring the hierarchy. Moreover, errors can affect subsequent label predictions because errors in
parent node labels propagate step-by-step to leaf node labels. Accumulated errors can significantly
impact the model’s performance.

To address the aforementioned issue, we propose a model (DepthMatch1) leveraging uncertainty
for dynamic depth matching. Further, to prevent incomplete text-label matching, we propose to
classify texts into appropriate parent node labels instead of leaf node labels. Inspired by the Dempster-
Shafer evidence theory (DST), we leverage evidence to describe the uncertainty of the classifier’s
prediction on label sequences. Meanwhile, we design an adaptive depth-aware method integrated with
the hierarchical structure, dynamically determining whether to stop or proceed with classification.

1 Our code is available at https://anonymous.4open.science/r/DepthMatch-157E/ (accessed on 1 August, 2024).

https://anonymous.4open.science/r/DepthMatch-157E/
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During the prediction process, we proactively stop classification to prevent error propagation and
ensure credible and robust predictions. The DeepMatch model addresses the issue of improperly
matched texts by introducing uncertainty measures and a dynamic adaptive classification approach.
Additionally, DeepMatch employs a depth-aware strategy based on uncertainty to mitigate error
propagation. The contributions of this paper are as follows:

1. We propose an uncertainty model based on a sequence-to-sequence structure, leveraging
the Dempster-Shafer evidence theory to obtain uncertainty sharing among hierarchical sequences.
Further, text and local label sequences are cross-fused, enhancing comprehensive representations with
uncertainty from parent node labels to classify leaf nodes.

2. To address the problem of error propagation in classification, we propose a dynamic early stop-
ping strategy. Specifically, for texts with incomplete text-label matching, it is necessary to adaptively
determine the depth of classification to prevent error propagation.

3. We conduct comprehensive experiments on four public datasets to validate our proposed model,
representing its superior performance over the current state-of-the-art (SOTA) models. Furthermore,
we analyze the performance without leaf node labels in the ground truth, demonstrating the necessity
of the proposed strategy.

2 Related Work
2.1 Hierarchical Classification

In hierarchical multi-label classification, a text corresponds to multiple class labels, and these
labels have natural hierarchical dependencies, such as parent-child relationships. Effectively utilizing
the hierarchical structure is crucial for HTC. Various studies have focused on representing hierarchical
information. The hierarchical-aware global model HiAGM [12] represents the hierarchy as a directed
graph and then aggregates node information using the prior probabilities of label dependencies. Based
on HiAGM, the HTCInfoMax model [13] was proposed, which is based on maximizing mutual
information between text and labels. Additionally, some techniques utilize both local and global
hierarchical information and unify them. The HARNN model [14] uses attention mechanisms in local
classifiers to extract label features, while the global classifier concatenates features extracted from each
level for prediction. The LA-HCN model [15] uses common factors to establish connections among
sibling categories, propagating text representations from parent to child layers to determine the most
compatible category in the child layer and giving it more attention. The hierarchical-guided contrastive
learning HGCLR model [16] embeds the hierarchy into the text encoder rather than modeling it
separately. Although these hierarchical classification methods focus on extracting label features to
obtain better hierarchical representations, they often flatten the hierarchy to predict labels. This can
lead to incomplete text-label matching due to the limited size of the label hierarchy.

2.2 Sequence-to-Sequence Learning

Sequence to Sequence (Seq2Seq) learning [17] is widely used in machine translation tasks and
text generation tasks. Researchers use the Seq2Seq ways for multi-label classification, encoding each
text into contextual representations. Then they integrate historical information into the attention
mechanism to assist in label decoding [18]. The Seq2Image means [19] converts genome sequences
into images and uses Convolutional Neural Networks (CNNs) for classification. In multi-label sen-
timent classification, the application of Seq2Seq performs better than other approaches by implicitly
modeling emotion relevance [20].
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In the application of Seq2Seq to hierarchical classification, the Seq2Tree [7] framework introduces
a sequence-to-tree approach. It addresses the “incomplete text-label matching”problem in HTC, where
each predicted leaf node within a path should not conflict with its parent node. They combine the
tree structure with the Depth-First Search (DFS) algorithm, ensuring that nodes within the same
path can be predicted in a top-down order. Initially, they use DFS to convert hierarchical labels
into label sequences, and then map the text and label sequences in a Seq2Seq manner. Additionally,
they design a Constrained Decoding (CD) strategy, which guides the generation process using label
dependencies. The candidate labels generated by the CD strategy are constrained to the child nodes
of the generated parent node. Specifically, after encoding the input sequence, the decoder predicts the
DFS label sequence. The i-th token in the sequence and its decoder expression are:

ŷi, hd
i = Decoder

([
Hi, hd

<i

]
, ŷi−1, T

)
, ŷi ∈ DVŷi , (1)

where Decoder represents the decoder, hd
<i is the state from the previous time step, ŷi−1 depicts the token

from the last time step, and DVŷi describes the generated vocabulary.

In summary, the DepthMatch (Ours) model is compared with the Seq2Tree model as shown
in Fig. 2. The Seq2Tree model adopts the DFS strategy and uses the Softmax output of category
probability distribution as the classification basis. However, errors occurring at parent nodes during the
decoding process can affect the classification of child nodes, leading to error accumulation over time.
Our DepthMatch model quantifies the prediction uncertainty of each layer label in a top-down manner
using evidence theory, combining uncertainty with parent-child dependencies during decoding. During
decoding, we can quantify the model’s confidence in classification. When uncertainty is high, we early
stop classification at parent nodes to ensure robust predictions and avoid error propagation.

Figure 2: Seq2Tree vs. the proposed DepthMatch model



CMC, 2024, vol.80, no.3 4115

3 Methodology

The overall framework of the model is illustrated in Fig. 3. The training process consists of
three parts: constructing local label sequences, measuring the evidence uncertainty of hierarchy, and
performing label encoding-decoding under a depth-aware strategy. We first flatten the labels in each
layer and construct label sequences based on dependencies. Then, we measure the uncertainty of
the label sequences using the Dempster-Shafer evidence theory (DST). Finally, we share text and
label embeddings to generate text representations with local label information, and then decode label
sequences guided by uncertainty.

Figure 3: The overall framework of the proposed DepthMatch, an uncertainty-guided depth-aware
model for hierarchical text classification

3.1 Problem Definition

Hierarchical Text Classification (HTC) aims to predict corresponding labels from input text.
Given input text T = {c1, c2, · · · , cn}, where n is the sequence length, the task is to predict a subset
of the label set K = {k1, k2, · · · , km}, where m is the length of the label set. Each label corresponds to
a unique node in the hierarchical structure, typically a tree-like structure. The predicted label subset
includes leaf nodes and their parent nodes. Current approaches target classifying leaf nodes, but there
exist cases where the ground-truth labels for some texts do not include leaf node labels. Therefore, our
task is to ensure that the model can classify text T to both parent node labels and the correct leaf
node labels.
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3.2 Local Label Sequence Construction

We represent a local label hierarchy as a subgraph of the global label structure, flattening a local
label hierarchy into a label sequence.

Sh =
j∈lh∑

j

yj, S = {S1, S2, · · · , Sz} . (2)

Here, Sh ∈ Rd represents the h-th layer in the hierarchy, lj denotes the true labels for the h-th layer,
yj defines the label feature containing hierarchical information, z indicates the maximum number of
layers, and S is the local hierarchical sequence representation.

To combine local hierarchical sequences with textual features, we propose a top-down sequence-
to-sequence approach:

p (S|x) =
z∏

h=1

p (Sh|S<h, x) , (3)

S<h represents the hierarchical sequence representation of layers lower than the h-th layer, and
x is the hidden layer representation corresponding to each token in the text. Sh corresponds to the
hierarchical representation of labels for the h-th layer, which ensures a top-down directionality in
sequence-to-sequence modeling.

3.3 Hierarchical Evidence Uncertainty Quantification

The Dempster-Shafer evidence theory (DST) is a way for uncertain reasoning, where different
textual features are utilized to obtain classification evidence. It quantifies the uncertainty of assigning
a text to labels, thus providing uncertainty estimates for each label in the label sequence. For a
classification problem, the set of all possible labels is represented by the identification framework Θ.
Any label corresponding to a text belongs to a subset of Θ, denoted by the set 2Θ. Evidence from the
text can provide support for labels at different levels in the sequence, and this support can be obtained
through a basic trust allocation function.

The basic trust assignment function m (C) is a mapping from the set 2Θ to [0, 1], where C represents
any subset of the identification framework Θ, denoted as C ∈ 2Θ. The basic trust assignment function
m (C) satisfies properties 0 ≤ m (C) ≤ 1, m (∅) = 0, and

∑
A∈2Θ

m (C) = 1, where ∅ is the empty set.

Any subset C in the identification framework that satisfies m (C) > 0 is called a focal element. The
basic trust assignment function m (C) is distributed over the Dirichlet distribution:

D (p|α) =
⎧⎨
⎩

1
B (α)

∏K

k=1 pαk−1
k for p ∈ SK

0 otherwise
, (4)

where αk represents the distribution parameter, B (·) describes the beta function, and SK ={
p| ∑K

k=1 pk = 1 and 0 ≤ pk ≤ 1, ∀k
}

is the k-dimensional unit simplex. αk represents the Dirichlet
parameters for the k-th class, while S = ∑K

k=1 αk denotes the Dirichlet strength.

We adopted the text encoder component of the pre-trained BERT model, which consists of a
stack of 12 layers of Transformer Encoder structure. We transform the given input text T into word
embeddings x0 = W0T , x0 = {x1, x2, · · · , xn}, where W0 represents the weights of the word embedding
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layer. The hidden state of the given x0 text encoder can be represented as:

x = TextEncoder
(
x0

)
. (5)

Here, x ∈ Rn×dh represents the hidden layer representations for each token, and dh is the size
of the hidden layer. The hidden layer features x ∈ Rn×dh are input to a linear layer, resulting in
logits, representing the evidence e = [e1, e2, · · · , eK ] for each class. The parameters of the Dirichlet
distribution can be computed using αk = ek + 1, and the total quantity of uncertainty and belief mass
is a constant, denoted as u + ∑K

k=1 m (Ck) = 1. Both the uncertainty and belief mass are determined

by the parameters: u = K
S

and m (Ck) = αk − 1
S

.

The advantage of evidence uncertainty lies in its modeling based on the Dirichlet distribution,
which directly parameterizes the belief mass from the neural network outputs. Through the Dirichlet
distribution, it is possible to flexibly control the allocation of belief mass, hence better reflecting the
uncertainty of the model at different hierarchical sequences during decoding.

3.4 Uncertainty-Based Depth-Aware Hierarchical Classification

By leveraging DST, we can better handle classification uncertainty and flexibly perform inference
and decision-making under label sequence decoding. In DST, we can derive more accurate conclusions
by combining evidence from multiple different sequences of preceding layers. The uncertainty from
multiple sequences is combined incrementally, formalizing the pairwise Dempster combination rule:

u1 ⊕ u2 = 1
1 − E

u1u2, (6)

where E = ∑
C1∩C2=∅

m (C1) m (C2) is discordant factors. In DST evidence theory, when the earlier labels

in the sequence reach a consensus on the majority of the belief mass, it indicates that they can be
confidently combined despite the presence of discordant factors.

Utilizing the combination rule, labels are sequentially combined from the front to the back of the
sequence:

u = u1 ⊕ u2 ⊕ · · · ⊕ uN =
∏N

n=1 un∏N

n=1 (1 − En)
, (7)

where E = ∑
C1∩C2∩···∩Cn=∅

(∏
1≤i≤n m (Ci)

)
represents the discordant factors between labels across multiple

consecutive layers. Uncertainty combination takes into account the independent uncertainty of each
layer’s label as well as the consistency between different layers. By applying combination rules,
uncertainty is propagated between the layers of the label sequence.

Next is evidence combination, defining the accumulation of uncertainty for each layer as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w1 = 1;
w2 = u1;

wn+1 = wn ⊕ un = 1
1 − En

wnun,

for n = 2, 3, · · · , N − 1

. (8)

The uncertainty accumulation wn is a measure of the overall uncertainty from the current layer up
to the nth layer. This dynamic weight allocation mechanism allows the model to flexibly choose the
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stopping position for decoding hierarchical labels based on different samples. For easily classifiable
samples, decoding can proceed to leaf nodes as much as possible, while for complex samples, robust
predictions can be made based on uncertainty. Through the adjustment of uncertainty accumulation,
the model can intelligently determine the stopping position for early termination, effectively reducing
error propagation during the sequence-to-sequence prediction process. Specific depth-aware objectives
are presented in Section 3.5.2.

3.5 Training Process

3.5.1 Encoding of Hierarchical Label Structure

To obtain the comprehensive feature representation, we utilize Graphormer to model the hierar-
chical structure of labels. Then, we map category indices to corresponding embedding vectors L =
[l1, l2, · · · , lk], with an output size of Rk×dh vectors. For each node’s embedding vector L from previous
iterations, we enhance the vectors using self-attention layers to fuse hierarchical relationships. Within
each graph layer’s iteration, node features are passed as input to the hidden layers, and modifications
are made to the Query-Key product matrix AH of the self-attention layer using spatial encoding and
edge encoding:

AH
ij =

(
liW

H
Q

) (
ljW

H
K

)
√

dh

+ cij + bφ(yi ,yj), (9)

In the given context, cij = 1
D

∑D

n=1 wen represents edge encoding, indicating the edge information

between two nodes, where wei ∈ R1 denotes the learnable weight of each edge. D = φ
(
yi, yj

)
describes

the distance between two nodes, yi and yj. AH
ij depicts attention weights, where query and key are

projected onto WH
Q ∈ Rdh×dh and WH

K ∈ Rdh×dh . bφ(yi ,yj) explains spatial encoding, measuring the
connectivity between two nodes.

To achieve effective training and accelerate convergence, we apply softmax to the attention
weights AH , followed by element-wise multiplication with the value matrix V. Additionally, to enhance
model training efficiency and generalization capability, we utilize residual connections and layer
normalization operations. The self-attention is computed as follows:

Y = LayerNorm
(
Softmax

(
AH)

V + L
)

, (10)

We obtain the label feature representation Y = [y1, y2, · · · , yk], completing the encoding of the
hierarchical structure.

3.5.2 Decoding of Label Sequences

During the training phase, our DepthMatch model employs local hierarchical sequences to classify
each layer’s label in a top-down manner. To achieve shared text and label embedding weights, we extend
and perform element-wise multiplication between the attention mask of the input text and the label
attention mask, resulting in a cross attention mask:

Amn = qmkT
n√

dh

. (11)

This mask is used to control the multiplication matrix between Query and Key in the cross-
attention mechanism. Here, qm = xmWQ and kn = ynWK correspond to the text embeddings and label
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features, while WQ ∈ Rdh×dh and WK ∈ Rdh×dh are weight matrices. By computing the dot-product
attention between query and key, the correlation between the current text and labels can be measured.
In this way, during the decoding phase, different parts of the input sequence are weighted based on
the current position of the decoder and the generated parts, leading to a better understanding of the
dependency relationship within the hierarchical sequence. We input text embeddings, local hierarchical
sequence representation, and cross-attention mask into the encoder part of BERT to obtain the hidden
layer representation of the h-th layer.

hh = BERTEncoder
([

x0, S<h

]
, Amn

)
, (12)

where x0 is the word embedding of the text, S<h represents the hierarchical sequence representation
lower than the h-th layer. The hidden features are input into a linear layer, and probabilities are
calculated using the sigmoid function to output the probability of appearing on the j-th sub-label of
the current label vi, thus obtaining the model’s prediction result. The calculation formula is as follows:

pij = sigmoid (Whh + b)j , (13)

where W is the weight coefficient, b is the bias term, hi is the feature vector, and pij is the predicted
probability.

In multi-label classification, for the h-th layer, we use a binary cross-entropy loss function for the
label vi, as shown below:

Lh = − 1
IJ

I∑
i=1

J∑
j=1

yij log
(
pij

) + (
1 − yij

)
log

(
1 − pij

)
, (14)

where J represents the number of sub-labels, yij is the j-th sub-label of the current label vi, and pij is the
corresponding probability.

The final loss function integrated with the depth-aware strategy is:

L = λ
(
wh

) H∑
h=1

Lh, s.tλ
(
wh

) =
{

0, if wh > δ

1, otherwise (15)

where wh is the measure of uncertainty from the previous h−1 layers to the current h-th layer, and
λ (·) represents considering whether to stop classification based on the magnitude of uncertainty. In
this approach, we recognize the importance of not classifying to leaf nodes when uncertainty is high,
to obtain more robust prediction results. If the accumulated uncertainty of a sample in the preceding
layers of the label sequence exceeds a threshold δ, then the loss on that sample in subsequent sequences
will be eliminated. Consequently, the entire sequence decoding process exhibits a decreasing trend,
allowing the model to have more confidence in decoding each layer’s label.

4 Experiments
4.1 Dataset

We conduct our experiments on four datasets: WOS (Web of Science) [21], RCV1-V2 (Reuters
Corpus Volume I) [22], AAPD (Arxiv Academic Paper Dataset) [23], and BGC. The BGC dataset
is available at: www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/blurb-genre-collection.html
(accessed on 1 August, 2024). We evaluate our experimental results using multiple metrics. WOS covers
abstracts of academic papers published in the Web of Science database, AAPD collects abstracts of
Arxiv academic papers along with corresponding subject category information, RCV1-V2 is a news

https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/blurb-genre-collection.html
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classification corpus, and BGC dataset consists of blurbs (short texts) of books and metadata such
as authors, publication dates, and page numbers. WOS is used for single-path HTC, while RCV1-
V2, AAPD, and BGC contain multi-path classification labels. The labels in all four datasets form
hierarchical tree-like structures. Detailed statistics are shown in Table 1.

Table 1: The statistical details of datasets

Dataset |Y| Avg (yi) Depth #Train #Dev #Test

WOS 141 2.0 2 30,070 7518 9397
RCV1-V2 103 3.24 4 20,833 2316 781,265
AAPD 54 2.41 2 43,872 10,968 1000
BGC 146 3.01 4 58,800 14,700 18,394

4.2 Baseline Models and Evaluation Metrics

We selected several baseline methods for comparison, including FastText [24], TextVDCNN [25],
HTCInfoMax [13], TextRCNN [26], HiAGM [12], HBGL [27], HiMatch [28], HGCLR [16], HiTIN
[29] and Seq2Tree [7] models.

We follow the evaluation metrics of baseline models such as [12,13,27,28], using Micro-F1 and
Macro-F1. The specific formulas are as follows:

Micro − F1 = 2 · Pmicro · Rmicro

Pmicro + Rmicro

(16)

Macro − F1 = 1
N

N∑
i=1

2 · Pi · Ri

Pi + Ri

(17)

where Pmicro = ∑N

i=1 TPi/
∑N

i=1 (TPi + FPi), Rmicro == ∑N

i=1 TPi/
∑N

i=1 (TPi + FNi), Pi = TPi/TPi +
FPi, Ri = TPi/TPi + FNi. Micro-F1 is evaluated by first calculating the global True Positives (TP),
False Positives (FP), and False Negatives (FN) for all categories. Macro-F1 is evaluated by separately
calculating the Precision and Recall for each category, and then averaging these values. By using these
two metrics, we can comprehensively understand the model’s performance from different perspectives.

4.3 Experimental Settings

For the text encoder, we use the BERT model, with the transformer’s bert-base-uncased as the
base architecture. For Graphormer, we set the adaptive graph attention heads to 8 and feature size to
768. The model is trained on the training set, and after each epoch, evaluation is performed on the
validation set. The detailed hyperparameter information is shown in Table 2.

4.4 Experimental Results

The proposed model is experimentally compared with baseline models on the WOS, RCV1-V2,
AAPD, and BGC datasets. The specific experimental results are shown in Table 3. On the four public
datasets, compared to previous mainstream models, our proposed model achieves better performance.
The model’s Micro-F1 values on the WOS, RCV1-V2, AAPD, and BGC datasets are 87.59%, 86.90%,
78.81%, and 80.46%, respectively, all reaching state-of-the-art (SOTA) performance. The Macro-F1
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values are 81.54%, 69.32%, 63.37%, and 66.55%, respectively, achieving optimal results on WOS and
BGC as well. The performance is significantly improved.

Table 2: The list of hyperparameters along with their explanations and optimal settings

Hyperparameter Explanation Default

lr Learning rate 3e-5
batch Batch size 16
early_stop Epoch before early stop 10
update Gradient accumulate steps 1
warmup Warmup steps 2000
thre Threshold for keeping tokens 0.02
layer Label layer 2 (WOS, AAPD), 4 (RCV1-V2, BGC)
δ If prefix weight ≤δ, the loss of expert m

on the sample will be eliminated
0 (WOS), 0.5 (RCV1-V2, AAPD,
BGC)

Table 3: The comparison of different models on WOS, RCV1-V2, AAPD and BGC

Dataset
WOS RCV1-V2 AAPD BGC

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

FastText 74.21 69.13 72.25 29.13 66.80 56.96 59.43 44.69
TextVDCNN 75.71 59.77 63.25 28.66 65.89 51.20 64.96 52.35
TextRCNN 83.55 76.99 81.57 59.25 66.58 55.16 72.37 54.18
HiAGM 85.82 80.28 83.96 63.35 75.96 58.26 77.19 58.01
HTCInfoMax 85.28 79.76 83.95 61.13 77.84 57.99 75.14 56.97
HiMatch 86.10 80.44 84.73 64.11 76.47 59.97 76.88 57.96
HGCLR 87.03 81.18 86.49 68.33 78.44 63.20 78.63 64.59
HiTIN 87.08 81.42 86.65 69.45 78.69 63.47 79.59 65.41
Seq2Tree 86.70 81.22 86.41 69.03 78.57 63.18 79.05 65.24

DepthMatch
(Ours)

87.59 81.54 86.90 69.32 78.81 63.37 80.46 66.55

4.5 Performance Analysis

4.5.1 Performance Analysis of Text with Incomplete Text-Label Matching

We first extract all texts from the ground-truth labels in the RCV1-V2 dataset that have parent
node labels but no corresponding leaf node labels. In Table 4, we present statistics on the number of
texts corresponding to each parent node label and their proportion in the dataset. By summarizing,
we observe that texts with incomplete matching leaf node labels account for 23.47% of the entire test
set, indicating that approximately one-fourth of the texts should not be assigned corresponding leaf
node labels. Therefore, we test the performance of the Seq2SESeq and HGCLR models on these texts,
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as shown in Fig. 4. The horizontal axis represents the performance of different parent node labels
corresponding to the texts, all of which should terminate classification at the current parent node
label. We use lines to indicate the Micro-F1 and Macro-F1 scores of the two models on these classes,
and use bar charts to reflect the performance gain compared to the SOTA model. It can be seen that
we outperform the SOTA model in the majority of classes, with a 33% improvement in Micro-F1 score
for class E41 and over 120% increase in Macro-F1 score for Class C18.

Table 4: Statistics of the parent node labels for the subset of texts with incomplete matching

Parent node CCAT C15 C151 C17 C18 C31 C33 C41 ECAT E12 E13
Amount 2064 225 56710 4609 29 28402 13710 1057 606 24333 126
Proportion (%) 0.26 0.03 7.26 0.59 0.004 3.64 1.75 0.14 0.08 3.11 0.02

Parent node 14 E21 E31 E41 E51 GCAT G15 MCAT M13 M14 Total
Amount 416 920 571 14490 3915 23811 1492 878 440 4584 183388
Proportion (%) 0.05 0.12 0.07 1.85 0.50 3.05 0.19 0.11 0.06 0.59 23.47

Figure 4: The Micro-F1 and Macro-F1 scores and their performance gain between DepthMatch and
HGCLR under incomplete text-label matching

4.5.2 Mean and Standard Deviation

We analyze two types of F1 scores and their standard deviations for the model under different
random seeds during the training process, as shown in Fig. 5. Two dashed lines represent two types
of F1 scores, and the shaded area indicates the standard deviation across multiple experiments.
It is commonly observed across the four datasets that during the early stages of training, the
model’s performance varies significantly, and there is also a considerable difference across multiple
experiments. As the number of epochs increases, the model gradually stabilizes.

Figure 5: Mean and standard deviation of F1 score
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4.5.3 Model Parameter Analysis

We analyze the parameter count of our model and compare it with other mainstream models,
as shown in Fig. 6. Our model’s parameter count is slightly smaller than HGCLR but significantly
smaller than other types of models. One important reason is that, apart from our text encoder and
local hierarchical structure encoder, no additional parameters are required. In contrast, models like
HiAGM and HiMatch consume additional space to project text feature parameters onto labels, while
HTCInforMax introduces additional auxiliary neural networks.

Figure 6: Comparison of model parameters between DepthMatch and current mainstream models

4.5.4 Analysis of Uncertainty and Accuracy

We visualize the data uncertainty of difficult samples with low accuracy and the model uncertainty
one layer above the leaf nodes, as shown in Fig. 6. We utilize the semantic vectors extracted directly
from the extensively pre-trained BERT model to measure the evidence uncertainty of the samples,
indicating the difficulty of the samples themselves. As seen from Fig. 7a, this uncertainty typically
ranges between 0.6 and 0.9. Directly using such texts for classification poses significant risks. The
model uncertainty one layer above the leaf nodes accumulates based on the uncertainty of predictions
from higher-level models, typically exceeding 0.75. Such high uncertainty indicates challenges in
robustly classifying leaf nodes. Fig. 7b demonstrates the impact of using an early stopping strategy
on difficult samples. It can be observed that the error rate in classification significantly decreases
for multiple difficult classes, with a reduction of 15.1% for Class E31 and an average reduction of
around 10%. The bar chart results confirm the effectiveness of the depth-aware strategy, enabling
more accurate classification results for samples with high uncertainty.

Figure 7: The uncertainty of difficult samples and the comparison of classification error rates on
challenging samples with and without depth matching. (a) Epistemic and aleatoric uncertainty. (b)
Error rates for classification
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4.5.5 Ablation Experiments

We replace the components in DepthMatch with a standard self-attention model and a standard
attention masking model, as shown in Table 5. After the replacement, the model performance declined.
Firstly, compared to the standard self-attention model, we introduced edge encoding and spatial
encoding. These components learn the information between two edges and the connectivity between
two nodes, respectively, enhancing the representation capability of the label hierarchy. Secondly,
compared to the standard attention masking model, we extended and performed a product operation
on the label attention mask. Then, we generated a cross-attention mask to measure the relevance
between the current text and the labels. Our model improves performance through the representation
of the hierarchy and the interaction between the text and labels.

Table 5: The results of replacing components with the standard self-attention model and standard
attention masking model on the WOS and RCV1-V2 datasets. “r.p.” stands for replace

Ablation study WOS RCV1-V2

Micro-F1 Macro-F1 Micro-F1 Macro-F1

DepthMatch 87.59 81.54 86.90 69.32
r.p. standard self-attention model 86.65 80.37 86.21 68.67
r.p. standard attention masking model 86.33 79.98 86.01 68.48

We conduct experiments on the WOS and RCV1-V2 dataset, and the results are shown in Table 6,
the model’s classification performance is superior to previous results, with improvements of 1.48% and
1.39% in Micro-F1 and Macro-F1, respectively. A good hierarchical representation is crucial for HTC
tasks. Similarly, under the depth-aware strategy, the model also shows significant improvement, with
increases of 1.17% and 1.2% in Micro-F1 and Macro-F1, respectively. The model can produce more
reliable classification results.

Table 6: The ablation study of different modules on WOS and RCV1-V2

Ablation study WOS RCV1-V2

Micro-F1 Macro-F1 Micro-F1 Macro-F1

DepthMatch 87.59 81.54 86.90 69.32
w/o λ

(
wh

)
86.42 80.34 86.53 68.65

w/o λ
(
wh

) \&Graph Encoder 86.11 80.05 86.08 68.29
BERT 85.75 79.36 85.62 67.41

4.5.6 Statistical Analysis

In Table 7, we repeated the experiments for the proposed method and the baseline Seq2Tree five
times (using different random seeds). We conducted experiments on the WOS and RCV1-V2 datasets.
It can be seen that these improvements are statistically significant based on the paired t-test at the 95%
significance level.
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Table 7: The standard deviation and p-value of different models on WOS and RCV1-V2

Model WOS RCV1-V2

Micro-F1 Macro-F1 Micro-F1 Macro-F1

DepthMatch 87.39 ± 0.2 81.16 ± 0.4 86.50 ± 0.4 68.81 ± 0.6
Seq2Tree 86.12 ± 0.6 80.45 ± 0.8 85.69 ± 0.7 68.33 ± 1.1

p-value 4.96 × 10−3 6.82 × 10−2 9.60 × 10−2 3.59 × 10−1

5 Conclusions

Hierarchical Text Classification (HTC) aims to match text with labels in a structured manner. To
address the issues of incomplete text-label matching and error propagation, this paper proposes an
uncertainty-guided HTC deep awareness model called DepthMatch. The model employs Dempster-
Shafer Evidence Theory to enable uncertainty sharing between hierarchical sequences. Additionally, a
dynamic stopping strategy is introduced, using uncertainty to determine the depth of text classification
and prevent error propagation. In real-world datasets, most labels have relatively few data, especially
at the leaf nodes of the hierarchy. This situation poses challenges for model learning and can lead to
unpredictable problems. Therefore, addressing the long-tail problem in hierarchical multi-label text
classification is an important research direction for the future.
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