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ABSTRACT

Heart disease remains a leading cause of morbidity and mortality worldwide, highlighting the need for improved
diagnostic methods. Traditional diagnostics face limitations such as reliance on single-modality data and vulner-
ability to apparatus faults, which can reduce accuracy, especially with poor-quality images. Additionally, these
methods often require significant time and expertise, making them less accessible in resource-limited settings.
Emerging technologies like artificial intelligence and machine learning offer promising solutions by integrating
multi-modality data and enhancing diagnostic precision, ultimately improving patient outcomes and reducing
healthcare costs. This study introduces Heart-Net, a multi-modal deep learning framework designed to enhance
heart disease diagnosis by integrating data from Cardiac Magnetic Resonance Imaging (MRI) and Electrocardio-
gram (ECG). Heart-Net uses a 3D U-Net for MRI analysis and a Temporal Convolutional Graph Neural Network
(TCGN) for ECG feature extraction, combining these through an attention mechanism to emphasize relevant
features. Classification is performed using Optimized TCGN. This approach improves early detection, reduces
diagnostic errors, and supports personalized risk assessments and continuous health monitoring. The proposed
approach results show that Heart-Net significantly outperforms traditional single-modality models, achieving
accuracies of 92.56% for Heartnet Dataset I (HNET-DSI), 93.45% for Heartnet Dataset II (HNET-DSII), and 91.89%
for Heartnet Dataset III (HNET-DSIII), mitigating the impact of apparatus faults and image quality issues. These
findings underscore the potential of Heart-Net to revolutionize heart disease diagnostics and improve clinical
outcomes.
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1 Introduction

Heart disease is a leading cause of death worldwide, responsible for an estimated 18 million deaths
each year according to the World Health Organization [1]. This accounts for approximately 32% of
all global deaths, highlighting the critical nature of this health issue [2]. The most common causes of
heart disease include unhealthy lifestyle factors such as poor diet, lack of physical activity, excessive
alcohol consumption, and smoking [3]. Additionally, high blood pressure, high cholesterol, diabetes,
and genetic predispositions significantly contribute to the development of heart disease [4]. Stress and
obesity also play a crucial role in exacerbating heart-related conditions [5]. The widespread impact
of heart disease underscores the need for effective prevention strategies and improved diagnostic and
treatment methods to reduce its global mortality rate [6–10].

Traditional methods for diagnosing heart disease include electrocardiograms (ECGs), echocar-
diograms, stress tests, and blood tests. ECGs measure the heart’s electrical activity to identify abnor-
malities [11]. Fig. 1 shows the ECG graph of normal heart disease. Echocardiograms use ultrasound
to create images of the heart, assessing its structure and function, but their accuracy can be affected
by image quality and operator interpretation. Stress tests evaluate heart function under physical or
pharmacological stress, yet they may not be suitable for all patients, can miss less severe disease, and
also yield false positives or negatives [12–15]. Blood tests measure levels of substances like cholesterol
and troponin to indicate heart disease presence, but they might not provide a complete picture on their
own. These limitations highlight the need for more accurate and comprehensive diagnostic methods.

Figure 1: The normal ECG with heart architecture adopted from [16]
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Computer-based methods for diagnosing heart disease utilize advanced algorithms and machine-
learning techniques to improve diagnostic accuracy and efficiency [17]. Machine learning algorithms
analyze patterns in large datasets to predict heart disease, but they require extensive and high-
quality data for training and can suffer from bias if the data is not representative. Artificial Neural
Networks (ANNs) mimic the human brain’s neural networks to process data and identify relationships,
yet they can be computationally intensive and require significant tuning to avoid overfitting [18].
Support Vector Machines (SVMs) classify data points by finding the optimal hyperplane that separates
different classes, but their performance depends on the choice of kernel and parameters, and they
can be less effective with noisy data. Decision Trees and Random Forests use tree-like models to
classify data based on decisions and consequences. But these approaches are complex and may overfit
the training data if not properly managed. Despite these limitations, computer-based methods hold
promise for improving the accuracy and reliability of heart disease diagnosis.

The justification for combining MRI and ECG data in Heart-Net is based on addressing specific
limitations in traditional single-modality diagnostic methods. Traditional approaches often rely on
either structural imaging (MRI) or functional data (ECG) alone, which can miss critical diagnostic
information. For instance, MRI provides detailed spatial resolution of cardiac structures but may
not capture transient electrical anomalies detectable in ECG. Conversely, ECG excels at identifying
electrical abnormalities but lacks spatial context.

Empirical studies support the efficacy of multi-modal approaches in various medical applications.
For example, research has demonstrated that integrating MRI and ECG data can improve the detec-
tion of complex cardiac conditions like arrhythmogenic right ventricular cardiomyopathy (ARVC)
and hypertrophic cardiomyopathy (HCM). These conditions may present subtle structural changes
detectable in MRI and specific electrical patterns identifiable in ECG, highlighting the complementary
nature of the two modalities.

A comprehensive literature review reveals gaps in current diagnostic methods, particularly in the
combined analysis of MRI and ECG data. Studies have shown that multi-modal frameworks can
enhance diagnostic accuracy, reduce false positives, and improve patient outcomes compared to single-
modality approaches. By addressing these gaps, Heart-Net aims to leverage the strengths of both MRI
and ECG to provide a more holistic and accurate assessment of cardiac health, ultimately leading to
better clinical decision-making and patient care.

This work introduces Heart-Net, an innovative multi-modal deep learning framework designed
to enhance the accuracy and comprehensiveness of heart disease diagnosis. Heart-Net integrates data
from cardiac MRI and heart ECG to leverage the unique strengths of each modality. Utilizing a 3D
U-Net for volumetric MRI analysis and a sequential network for ECG feature extraction, Heart-Net
captures a holistic view of a patient’s cardiac health. The fusion of these diverse data types is achieved
through an attention mechanism, emphasizing the most relevant features, followed by classification
using an optimized sequential network. This integrated approach improves early detection and
reduces diagnostic errors, supports personalized risk assessments, and facilitates continuous health
monitoring. The model’s scalability and adaptability ensure it can evolve with emerging medical
knowledge, making it a versatile tool in clinical settings.

Research Contributions

The summarized contribution of this work is as follows:
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• This study identifies a critical gap in the existing literature by addressing the limitations of
single-modality heart disease diagnosis methods, paving the way for more comprehensive
solutions.

• It introduces novel feature extraction techniques, leveraging 3D U-Net for MRI and a sequential
neural network for ECG, significantly enhancing the integration of diverse data types.

• Developed Heart-Net, a highly accurate multi-modal deep learning model, which markedly
improves diagnostic reliability and early detection of heart disease, setting a new standard in
the field.

• Experimental evaluation indicated that the proposed model archived an accuracy of 92.56% for
HNET-DSI, 93.45% for HNET-DSII, and 91.89% for HNET-DSIII.

The remainder of the paper is organized as follows: Section 2 reviews the current literature, while
Section 3 details the proposed methodology. Section 4 describes the experimental setup and presents
the findings to evaluate the efficacy of the proposed method. Finally, Section 5 provides the conclusion
and outlines future work.

2 Literature Review

Many researchers, some of which are also described in Table 1, have added their contributions
to the field of diagnosis of heart disease. The work of Reddy et al. [19] highlighted the prevalence
of heart disease in developing countries over the past two decades has increased significantly. They
also discussed that timely detection of heart diseases can help to recover mortality rates and treatment
costs. In addition to this, they proposed a model named adaptive genetic algorithm with fuzzy logic
used to predict heart disease in its early stages. Their proposed model included rough set-based feature
selection and fuzzy rule-based classification modules. Their adaptive genetic algorithm optimized the
rules of fuzzy classifier-generated. The foremost step in their approach was the selection of essential
features that influence heart disease using the rough set theory that further led to the prediction of
heart disease using the hybrid Adaptive genetic algorithm with a fuzzy logic classifier. They conducted
different experiments on known University of California Irvine (UCI) heart disease datasets. The
outcomes showed that their proposed method exceeded existing methods. In the end, they concluded
that their proposed AGAFL model has the potential for accurately predicting heart disease at an early
stage.

Amin et al. [20] employed various techniques to predict heart disease, highlighting the impor-
tance of identifying key features that significantly influence cardiovascular disease predictions. They
emphasized that choosing the right combination of features is crucial for enhancing the accuracy of
prediction models. Their analysis aimed to identify critical features and assess different data mining
techniques to refine the prediction accuracy for cardiovascular diseases. Their findings revealed that
the combination of specific influential features and the Vote method yielded a high prediction precision
of 87.4%, underscoring the potential of targeted feature selection and hybrid classification approaches
in improving diagnostic models for heart disease.

Similar work, as detailed in [21], the study explores the effectiveness of ensemble classification, a
strategy designed to enhance the precision of weaker algorithms through the integration of multiple
classifiers. The investigation involved conducting experiments using a dataset specifically focused
on heart disease. The primary objective of this research was to assess how ensemble techniques,
particularly bagging and boosting, could refine the predictive capabilities for heart disease. The
findings indicated that these ensemble techniques significantly improved the accuracy of weaker
classifiers, effectively identifying heart disease risk. By employing ensemble classification, there was a
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notable increase in accuracy by 7%. Additionally, the precision of this method was further augmented
through the implementation of feature selection, leading to a substantial improvement in prediction
accuracy.

Alex et al. [22] discussed the challenges associated with diagnosing heart diseases without
traditional medical tests, particularly in a context where changes in daily routines have increased
the risk of such conditions. Cardiovascular diseases can lead to severe outcomes, including heart
failure, aneurysms, and sudden cardiac arrest. Although various medical tests are typically required
for diagnosis, this study aims to leverage data mining techniques to predict and diagnose heart diseases
early, thereby enhancing affordability and accessibility. The approach involves feeding attributes into
several algorithms, including SVM, K-Nearest Neighbor (KNN), and ANN, to predict heart diseases.
The preliminary results of this technique show promise in early detection and accurate diagnosis,
potentially leading to complete cures. This project underscores the potential to enhance the accuracy
of heart disease predictions, thus mitigating risk and improving individual medical care.

Bharti et al. [23] focused on heart disease, a major cause of mortality, and emphasized the
importance of accurate prediction to prevent life-threatening outcomes. The research involved a
comparative analysis of various machine learning algorithms and deep learning techniques applied
to the UCI Machine Learning Heart Disease dataset, which includes 14 main attributes. The findings
were promising, and validated through accuracy metrics and a confusion matrix. Additionally, the
study explored the integration of these predictive approaches with multimedia technology, such as
mobile devices, to enhance accessibility and utility. The results indicated that the deep learning
approach achieved a significant improvement in accuracy, reaching 94.2%, which surpassed previous
results obtained with machine learning algorithms like SVM and decision trees. These findings
underscored the potential of deep learning to enhance the accuracy of heart disease predictions, thus
playing a crucial role in clinical decision-making and improving patient care.

Sekar et al. [24] highlighted the increased prevalence of heart disease and the corresponding need
for early diagnosis and treatment. To facilitate this, the utilization of tele-diagnostic equipment has
become increasingly vital. Nevertheless, the prediction process of heart disease was impeded by the
challenge of feature extraction due to the high-dimensional nature of the data. The study utilized a
neuro-fuzzy interference system, achieving an accuracy of approximately 99.7%, which represented
a significant improvement of up to 5.4% over existing algorithms. This high level of accuracy was
attributed to the optimized tuning parameters of the proposed classifier. The use of the proposed
classifier in heart disease prediction provided a more accurate system, enhancing the effectiveness of
diagnostic processes.

Based on the reviewed literature, it has been concluded that most of the techniques are good and
have good accuracy and time prediction in the heart prediction technique but have limitations, as
shown in Table 1. The development of Heart-Net is conclusively vital due to the increasing necessity
for accurate and early diagnosis of heart disease. The studies emphasize the limitations of traditional
diagnostic methods and even some computer-based techniques, which often struggle with issues like
high-dimensional data and the need for precise feature extraction. Heart-Net, with its multi-modal
deep learning framework, addresses these challenges by integrating robust algorithms such as 3D U-
Net and sequential neural networks, improving the accuracy of predictions significantly, as seen in
comparative analyses. Furthermore, the integration of such advanced technologies aligns with the
current shift towards enhancing tele-diagnostic capabilities and utilizing machine learning to achieve
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higher predictive accuracies, ultimately aiming to reduce mortality rates and improve patient care
outcomes. This highlights the pressing need for advanced solutions like Heart-Net in the clinical field.

Table 1: Summary of existing state of art methods

Ref. Method Dataset Accuracy Limitations

[25] Ensemble deep
learning approach

Cleveland dataset 98.5% • Needs substantial
computational power, which may
limit real-time application.
• Prone to overfitting due to
model complexity, reducing
effectiveness on new data.

[26] Genetic approach &
SVM

Cleveland H.D
database

88.34% • Optimization of parameters can
be complex and time-consuming,
affecting practical deployment.
• Does not scale well with larger
datasets, limiting its use in
extensive health data analyses.

[27] NB (Naive Bayes) UCI repository 89.77% • The assumption of feature
independence can lead to
significant prediction errors.
• Struggles with datasets where
features are interdependent,
which is common in medical
diagnostics.

[28] Hybrid random
forest with linear
model

UCL M.L
repository

88.7% • The combination increases
model complexity, making
interpretation difficult.
• May perform inconsistently
across different data distributions
due to sensitivity to class
imbalance.

[29] KNN UCI repository 88.52% • High memory usage makes it
inefficient for large datasets.
• Performance can deteriorate
with the inclusion of irrelevant or
redundant features.

[30] Multilayer
perceptrons
(MLPs), Deep belief
networks (DBNs)

MIT-BIH,
PTB-ECG

96.2% for
MIT-BIH and
95.3% for
PTB-ECG

• Limited to ECG data; potential
for overfitting; may not
generalize well to diverse
populations or other data types.
• Computationally intensive;
may struggle with noisy data;
requires significant tuning for
optimal performance.

(Continued)
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Table 1 (continued)

Ref. Method Dataset Accuracy Limitations

[31] Decision tree (DT),
SVM, adaptive
boosting
(ADA-Boost),
ANN, recurrent
neural network
(RNN), etc.

Time-domain and
morphological ECG
signal data

82.23% • Data imbalance issue with
overfitting problem.
• High memory usage makes it
inefficient for large datasets.
• Performance can deteriorate
with the inclusion of irrelevant or
redundant features.

3 Materials and Methods

This section presents a detailed discussion of the proposed model, including schematic diagrams
to illustrate its operation. The model consists of four main components: data collection, preliminary
preprocessing, feature extraction, and final classification. Fig. 2 displays the architecture and work-
flow of the proposed model.

3.1 Data Collection

Three benchmark datasets, as depicted in Table 2, have been collected for the evaluation of the
proposed work. The first dataset is Sunnybrook Cardiac Data (SCD) abbreviated as HNET-DSI in
this research, and also known as the 2009 Cardiac MR Left Ventricle Segmentation Challenge data.

The very next is abbreviated as HNET-DSII, consisting of 1200 records of cardiovascular ECGs,
with 300 records for each of the four considered ailments. The original signals are sourced from the
MIT-BIH PhysioNet Database. From these four databases, ECG records have been segmented into
4120 samples each, forming 300 signals per ailment. These signals are normalized according to the
specified gain for each database and preprocessed using bandpass filters. The MODWPT (Multiscale
Discrete Wavelet Packet Transform) technique was used to extract 54 features, which are provided as
columns in the Comma-Separated Value (CSV) file uploaded here. The resulting file contains records
with dimensions of 1200 × 54. Graphical Visualization of Cardiac MRI Data representing different
heart conditions is given in Fig. 3.

The final dataset, HNET-DSIII, is a hybrid collection specifically curated from published studies.
It includes data from 1300 subjects from the UK Biobank imaging study featuring paired cardiac cine
MRI images and electrocardiograms. Of the 1300 subjects, 1150 were presumed healthy, while 150
had at least one cardiovascular pathology. Graphical Visualization of Cardiac EEG Data representing
different heart conditions is given in Fig. 4.
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Figure 2: The proposed architecture of heart-net



CMC, 2024, vol.80, no.3 3975

Table 2: Dataset description

Dataset name Dataset type and description Web-link

HNET-DSI • Cardiac Data (SCD), Cardiac MR
Left Ventricle Segmentation
Challenge data.
• A collection of 450 cine-MRI
images representing a variety of
patients and conditions.

https://www.cardiacatlas.org/
sunnybrook-cardiac-data/ (accessed
on 2 March 2024)

HNET-DSII • 1200 records of Cardiovascular
ECGs where each of the 300 records
belongs to one ailment.
• Four databases, ECG records have
been segmented at 4120 samples
each forming 300 signals.
• Each have 1200 × 54 size records.

https://www.kaggle.com/datasets/
akki2703/ecg-of-cardiac-ailments-
dataset (accessed on 4 March 2024)

HNET-DSIII • Multimodal consisting of paired
MR images.
• Voxel resolution of 1.8 × 1.8 ×
8.0 mm3.

Gethub

Figure 3: Graphical visualization of cardiac MRI data representing different heart conditions

https://www.cardiacatlas.org/sunnybrook-cardiac-data/
https://www.cardiacatlas.org/sunnybrook-cardiac-data/
https://www.kaggle.com/datasets/akki2703/ecg-of-cardiac-ailments-dataset
https://www.kaggle.com/datasets/akki2703/ecg-of-cardiac-ailments-dataset
https://www.kaggle.com/datasets/akki2703/ecg-of-cardiac-ailments-dataset
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Figure 4: Graphical visualization of ECG data representing different heart conditions

3.2 Preprocessing and Data Balancing

To preprocess the multi-modal data consisting of MRI images and ECG numerical data for heart
disease diagnosis, we follow a comprehensive approach. For the MRI images, we normalize the pixel
intensity values to a range of [0, 1] [0, 1], ensuring consistency across all images. Mathematically, for
an image I , the normalized pixel value I ′ at each pixel i, is computed as:

I ′
i,j = Ii,j − min(I)

max(I) − min(I)
(1)

After which, we resize or crop all images to a uniform shape, say 256 × 256 pixels, to maintain
consistency in input dimensions for the model. Data augmentation techniques such as rotation,
flipping, and zooming are applied to increase the variability in the training set, enhancing the model’s
ability to generalize.

Alternative to this, the ECG numerical data has been normalized where each feature column x to
have zero mean and unit variance using:

x′ = x − μ

σx

(2)

where σx are the mean and standard deviation of the feature x, respectively. Class labels in the target
column are encoded using one-hot encoding [28], transforming categorical labels into binary vectors.
This ensures that both image and numerical data are preprocessed in a manner that maximizes the
effectiveness of the training process for heart disease diagnosis.
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Adaptive Synthetic Sampling (ADASYN) is a powerful technique designed to address class
imbalances by generating synthetic samples for the minority class in a data-driven manner. This
approach is particularly useful for a multi-modal heart disease dataset comprising cardiac MRI and
ECG data, where the minority class (e.g., patients with a rare heart condition) is underrepresented.
Here is the complete procedure for applying ADASYN to balance such a dataset:

Firstly, preprocess the cardiac MRI and ECG data to extract relevant features. For MRI images,
this may involve normalization, resizing, and extracting texture or structural features using techniques
such as convolutional neural networks (CNNs). For ECG signals, preprocessing steps might include
filtering, segmentation, and feature extraction using wavelet transforms or Fourier analysis.

Let D = {(xi, yi)}N
i=1)} be the dataset, where xi represents the feature vector (including features from

both MRI and ECG), and yi ∈ {0, 1} denotes the class label, with 1 being the minority class (e.g., heart
disease) and 0 being the majority class (e.g., healthy). Define Nmin and Nmaj as the number of samples
in the minority and majority classes, respectively. To calculate the imbalance ratio r as:

r = Nmaj

Nmin

(3)

For each minority class sample xi, find its k-nearest neighbors using Euclidean distance [xx] for the
continuous feature. Let di be the number of majority class samples among these k-nearest neighbors.
Determine the sampling distribution for generating synthetic samples, the ratio ri for each minority
class sample xi could be computed as:

ri = di

k
(4)

The number of synthetic samples Gi to be generated for each minority sample xi is given by:

Gi = ri × G (5)

where G is the total number of synthetic samples needed, typically set as Nmaj − Nmin.

For each minority class sample xi, generate Gi synthetic samples. Select a random neighbor xi,nn

from the k-nearest neighbors and interpolate to create a synthetic sample xnew:

xnew = xi + δ × (xi,nn − xi) (6)

where δ is a random number drawn from the uniform distribution δ ∼ U(0, 1).

Integrate the generated synthetic samples with the original dataset to form a balanced training set.
Train machine learning models on this balanced dataset to improve the detection of heart diseases. The
models can benefit from the complementary features provided by the cardiac MRI and ECG data.

3.3 Feature Extraction

Feature extraction is fundamental for heart disease diagnosis as it enables the identification and
quantification of relevant patterns within the raw data, which are often not immediately apparent.
Extracting key features significantly reduces the dimensionality of the data while preserving the critical
information needed for accurate diagnosis.

3.3.1 Cardiac MRI-Based Feature Extraction

Although CNN could be considered as better option for MRI based feature extraction, but this
work uses 3D U-Net for cardiac MRI feature extraction because it captures the complete 3D spatial



3978 CMC, 2024, vol.80, no.3

context of the heart, preserving important anatomical details across slices. Algorithm 1 shows the
working flow of 3D U-Net for cardiac MRI feature extraction, where, its 3D convolutional layers
provide richer feature representations, leading to more accurate and detailed segmentations. This is
essential for precise diagnosis and assessment of cardiac conditions.

In 3D convolution, the operation involves a 3D kernel sliding over the input volume. For an input
volume X of size D × H × W × C (depth, height, width, and channels), and a kernel K of size kd ×
kh × kw × C × F (kernel depth, height, width, input channels, and output channels), the convolution
operation is defined as:

Y d,h,w,f =
∑kd −1

i=0

∑kh−1

j=0

∑kw−1

m=0

∑C−1

c=0
X d+i,h+j,w+m,c.Ki,j,m,c,f (7)

where Y is the output feature map, and d, h, w, f are the depth, height, width, and feature channel
indices of the output, respectively.

The architecture consists of an encoder-decoder structure with skip connections that preserve
high-resolution features during the down-sampling and up-sampling processes. In the encoder path,
the network captures contextual information and reduces the spatial dimensions of the input while
increasing the number of feature channels. Each layer in the encoder performs a 3D convolution
followed by a Rectified Linear Unit (ReLU) activation function and max pooling operation.

Zl = MaxPool(ReLU(W l ∗ Zl + bl)) (8)

At the bottleneck layer, where the features have the smallest spatial dimensions but the highest
number of channels, the operation is defined:

Zbottleneck == ReLU(W bottleneck ∗ Zencoder_final + bbottleneck) (9)

In the decoder path, feature maps are up-sampled and convolved to reconstruct the spatial
dimensions. The up-sampling is often done using transposed convolutions:

Zl == ReLU(W l,t*Zl+1 + bl) (10)

where W l, t denotes the transposed convolutional weights. Skip connections are used to concatenate
features from the encoder with the up-sampled features in the decoder, preserving spatial information
and enhancing the reconstruction process:

Zl == Concat(Zl,encoder, Zl,decoder) (11)

The final output of the 3D U-Net is a segmentation map of the same size as the input, highlighting
regions of interest such as the left ventricle, right ventricle, and myocardium. The segmentation
probabilities are computed using a softmax function:

Pd,h,w,c = exp(Yd,h,w,c)∑
c′ exp(Yd,h,w,c)

(12)

where P is the probability map, Y is the output from the last layer, and c represents the class index.

Algorithm 1: The 3D U-Net feature extraction process
Require: I ∈ R

H×W×D ➢ Input 3D MRI image of Dimension
H × W × D

Ensure: F ∈ R
H′×W′×D′×C′

➢ Extract features of Dimension
(Continued)
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Algorithm 1 (continued)
H ′ × W ′ × D′ × C ′

1. Initialize 3D U-Net with weight θ

2. X ← I
3. for l = 1 to L do

X ← Conv3D (X, θt) ➢ Apply 3D convolution
X ← ReLU (X) ➢ Apply ReLU activation function
X ← MaxPool3D (X) ➢ Downsample using 3D max pooling

4. end for
5. for l = L to 1 do

X ← UpSample3D (X) ➢ Upsample using 3D upsampling
X ← Concat (X, skip_connectionl) ➢ Concatenate with skip connection
X ← Conv3D (X, θt) ➢ Apply 3d convolution
X ← ReLU (X) ➢ Apply ReLU activation function

6. end for
7. F ← X ➢ Final extracted features
8. return F

From the segmentation maps, various clinical features can be extracted. For instance, the volume
of a particular region (e.g., the left ventricle) is calculated by summing the number of voxels classified
into that region and multiplying by the voxel volume:

V =
∑

d,h,w
Pd,h,w,LV.voxel_volume (13)

Wall thickness can also be measured by analyzing the distance between the inner and outer
boundaries of the myocardium. These extracted features are crucial for diagnosing heart diseases,
assessing cardiac function, and planning treatment. The 3D U-Net based feature extraction from
cardiac MRI is a powerful method for detailed and accurate cardiac structure analysis, leveraging 3D
spatial context, ReLU activations, skip connections, and softmax functions to provide comprehensive
and clinically relevant features essential for heart disease diagnosis.

3.3.2 ECG Based Feature Extraction

The Temporal Convolutional Graph Neural Network (TCGNN) is employed for EEG (Electroen-
cephalogram) feature extraction in the Heart-Net model, leveraging its ability to capture both temporal
dependencies and structural relationships in EEG data. The EEG signals are represented as a sequence
of graph-structured data, where each node corresponds to an EEG channel, and edges represent the
connections or correlations between channels.

Given an EEG signal X ∈ RC × T , where C is the number of channels and T is the number of time
steps, we construct a graph G = (V , E), where V is the set of nodes (EEG channels) and E is the set of
edges (connections between channels). The adjacency matrix A ∈ RC × C represents the connections
between nodes, typically defined based on functional connectivity. The temporal convolutional layers
in TCGNN capture the temporal dependencies within each EEG channel. For a given layer l, the
temporal convolution operation is defined:

H (l)
(t) = σ(W (l)*Xt + b(l)) (14)



3980 CMC, 2024, vol.80, no.3

Here X ∈ RC × T is the output feature map at time step tt for layer l, (l) and b(l) are the learnable
weights and biases, X t is the input EEG signal, ∗ denotes the convolution operation, and σ is the
activation function. The graph convolutional layers in TCGNN capture the spatial dependencies
among EEG channels. For a given node i in the graph, the graph convolution operation at layer l
is defined as:

H (l+1)

(t) = σ
(∑

j∈N(i)
AijHj (l) W (l)

)
(15)

where is the output feature of node ii at layer l + 1, N(i) denotes the neighbors of node i, Aij is the
adjacency matrix element representing the connection between nodes i and j, H j(l) is the feature of
node j at layer l, and W (l) is the learnable weight matrix.

Combining temporal and graph convolutions, the TCGNN layer at time step tt for node ii can be
expressed as:

H (l+1)

(i,t) = σ(
∑

j∈N(i)
Aij(W (l)*H (l)

(j,t) + b(l)) (16)

This combined operation allows TCGNN to simultaneously capture temporal dynamics and
spatial dependencies in EEG data, providing a rich feature representation for downstream tasks such
as heart disease diagnosis.

The attention mechanism in Heart-Net operates by dynamically focusing on the most relevant
features from the integrated cardiac MRI and ECG data during the diagnostic process. This mech-
anism assigns varying levels of importance to different features based on their contribution to the
overall diagnosis. By highlighting critical information and diminishing less relevant data, the attention
mechanism enhances the model’s ability to detect subtle and significant indicators of heart disease. This
targeted emphasis ensures that the most pertinent features are prioritized in the final analysis, leading
to improved accuracy and reliability in heart disease diagnostics.

3.4 Hybrid Diagnosis

The features extracted from MRI and EEG data are concatenated to form a combined feature
vector:

Fcombined = Concat (FMRI.FEEG) (17)

where Concat denotes the concatenation operation. The concatenated feature vector F combine is fed into
a dense layer for final disease diagnosis. The dense layer applies a linear transformation followed by a
softmax activation function [32]:

y = softmax(Wd.Fcombined + bd) (18)

where W d and bd are the weights and biases of the dense layer, respectively, and y is the output vector
representing the probability of each disease class. Algorithm 2 shows the working process of Temporal
Convolutional Graph Neural Network for feature extraction and diseases diagnosis.

The entire Heart-Net is trained end-to-end involves minimizing a loss function, typically categor-
ical cross-entropy for the final diagnosis:

L = −
∑

i

yi log(y′
i) (19)

where yi is the true label and y′
i is the predicted probability for class i.
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Algorithm 2: Temporal Convolutional Graph Neural Network (TCGNN)
Require: XECG ∈ R

T×FECG ➢ Input ECG data with T time steps and FECG features
Require: XMRI ∈ R

H×W×D×C ➢ Input MRI features of dimensions H × W × D × C
Ensure: Y∈ R

C ➢ Output class probabilities for C classes
1. initialize TCGNN with weights θ

2. HECG ←X ECG

3. for l = 1 to LECG do ➢ Temporal Convolution layers for ECG
HECG ←Conv1D (HECG, θ

conv
l ) ➢ Apply 1D Convolution

HECG ←ReLU (HECG) ➢ Apply ReLU activation function
HECG ←MaxPool1D (HECG) ➢ Downsample using 1D max pooling

4. end for
Construct graph G = (V, E) where V represents nodes (time steps) and E represents edges (temporal
connections)
5. HG ←HECG

6. for l = 1 to LG do ➢ Graph Convolution Layer
HG ←GraphConv (HG, G, θ

gcn
l ) ➢ Apply graph convolution

HG ←ReLU (HG) ➢ Apply ReLU activation function
7. end for
8. A ←Attention (HG) ➢ Apply attention mechanism
9. zECG ← �n

i=1Ai.Hi
G ➢ Weighted sum of node features

10. HMRI ← XMRI

11. for l = 1 to LMRI do ➢ 3D Convolution Layers for MRI
HMRI ←Conv3D (HMRI , θconv3D

l ) ➢ Apply 3D convolution
HMRI ←ReLU (HMRI) ➢ Apply ReLU activation function
HMRI ←MaxPool3D (HMRI) ➢ Downsample using 3D max pooling

12. end for
13. ZMRI ←Flatten (HMRI) ➢ Flatten MRI features
14. Z ←Concat (ZECG, ZMRI) ➢ Concatenate ECG and MRI features
15. Y ←Dense (Z, θDense) ➢ Apply dense layer for classification
16. return Y

The working of Heart-Net is based on integrating features from MRI and EEG data, the proposed
methodology leverages the strengths of both modalities, capturing detailed spatial information from
MRI and temporal-spatial dependencies from EEG. The combined features, processed through a dense
layer, enable accurate and robust disease diagnosis, enhancing the overall performance of the Heart-
Net model.

4 Experimental Evaluation

This section describes the experimental results and evaluates how much the method proposed
really works. Many different experiments were carried out to test the accuracy and efficiency of
the developed system. Experimental evaluation showed that the proposed method significantly
outperforms current cutting-edge methods.
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4.1 Performance Evaluation Measure

Precision, recall, F1 score, and ultimate accuracy are utilized as standard benchmarks to assess the
effectiveness of the proposed model. Eqs. (20)–(23) mentioned the corresponding measures in which
(TP, TN, FN, and FP) stand for (True Positive), (False Negative) and (False Positive), respectively [26].

precision = TP
TP + FP

(20)

recall = TP
TP + FN

(21)

F1 score = 2.Precicion ∗ Recall
Precision + Recall

(22)

Accuracy = TP + TN
TP + TN + FP + FN

(23)

where it has been standard practice to use a Receiver Operating Characteristic (ROC) Curve in
measuring the effectiveness of a classifier [27], display the formula for an indicator of performance.

4.2 Baseline Method

The baseline method establishes a starting point for evaluating advanced algorithms. It is simple
and transparent, providing a basic level of performance. It guides research, highlights limitations, and
sets a minimum threshold for success, fostering fairness in comparisons and driving innovation.

• Baseline 1: Sohaib et al. [32] proposed a technique that was based on the CNN and Long Short-
Term Memory (LSTM) classifier.

• Baseline 2: Ogunpola et al. [33] used different machine-learning algorithms to enhance the
accuracy of heart disease predictions.

• Baseline 3: Raviprakash et al. [34] proposed a technique that were based on the Support Vector
Machines (SVM) and Random Forests have demonstrated notable success in identifying cardiac
abnormalities.

• Baseline 3: Islam et al. [35] presented a technique that was based on Recursive Feature
Extraction (RFE) and Principal Component Analysis (PCA) for heart disease prediction

4.3 Results

K-Fold Cross Validation is a resampling technique used to evaluate the performance of a model.
This process is repeated K times, with each fold used once as the validation data, and the results are
averaged for a final performance estimate. In experiments, we take K as 5, meaning the dataset is
divided into 5 equal subsets. The model is trained and validated 5 times, each time using 4 of the
subsets for training and the remaining subset for validation. This process ensures each subset is used
once for validation, providing a more reliable performance estimate by averaging the results from
all 5 iterations. In the very first step, the experiment performed the efficacy of a novel method, by
measuring its precision, accuracy, and recall. The experimental results are presented graphically in
Fig. 5 which depicts the performance of the proposed approach across different datasets in terms of
precision, accuracy, and recall. Fig. 5 demonstrates that the proposed technique achieved high scores
on all datasets, indicating impressive results in terms of precision, accuracy, and recall across each
dataset.
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Figure 5: Performance measure of the proposed model in terms of precision, recall, and F1 score

The graphical representation in Fig. 6 indicates that the proposed technique achieved high
precision, recall, and accuracy scores across the different datasets. The accuracy, precision and recall of
the suggested technique were specifically 91.74%, 90.15%, and 91.45% when used on the HNET-DSI,
demonstrating outstanding results.

Figure 6: (Continued)
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Figure 6: Confusion matrix on HNET-DSI, HNET-DSII and HNET-DSIII. (a) Actual-predicted
response rate of the proposed model on HNET-DSI. (b) Actual-predicted response rate of the
proposed model on HNET-DSII. (c) Actual-predicted response rate of the proposed model on HNET-
DSIII

Similar results were obtained when the suggested method was applied to the HNET-DSII,
yielding impressive accuracy, precision, and recall of 93.47%, 91.2%, and 92.24%. On the HNET-
DSIII achieved an accuracy of 92.25 precision of 91.45 and recall of 92.05. Another experiment was
conducted to observe the confusion matrix for the prediction of the top three breeds as numbered (1, 2,
3) in the matrix. The results of HNET-DSI, HNET-DSII, and HNET-DSIII in Fig. 7a–c demonstrate
the confusion matrix of each dataset, respectively.

In another experiment, ROC curves were utilized to assess the effectiveness of the proposed
approach in distinguishing between True and False instances as shown in Fig. 7. Across all datasets,
an average Area Under Curve (AUC) of 0.93 indicates that the model attains a notable true positive
rate while simultaneously keeping a low false positive rate across various classification thresholds. The
comparative analysis of the proposed model presented in Fig. 8 highlights incremental improvements
across three baseline models, culminating in superior performance by the proposed model. Baseline
1 sets a moderate foundation with uniform metrics of accuracy, precision, and recall ranging from
84.56% to 85.96%, indicating adequate but improvable performance in emotion detection. Progressing
to Baseline 2, there is a slight improvement in all performance indicators accuracy rises to 87.56%,
precision to 86.14%, and recall to 85.5%. This reflects subtle refinements in the model’s capacity to
accurately identify and classify emotional expressions. Baseline 3 marks a significant enhancement,
achieving 90% across all metrics, suggesting a more robust model that balances the identification
of relevant cases with the accuracy of these classifications. The proposed model, however, outstrips
all baselines with an accuracy of 92.55%, a precision of 90.67%, and a recall of 91.5%. This
superior performance indicates that modifications in the model’s algorithm or underlying technologies
potentially including advanced feature extraction methods and improved classification algorithms
have markedly boosted its efficacy.
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Figure 7: ROC curves on HNET-DSI, HNET-DSII and HNET-DSIII. (a) The true positive and false
positive rate of proposed mode on HNET-DSI. (b) The true positive and false positive rate of proposed
model on HNET-DSII. (c) The true positive and false positive rate of proposed model on HNET-DSIII
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Figure 8: Comparative analysis of the proposed model with existing benchmark methods (a) HNET-
DS1 (b) HNET-DSII and (c) HNET-DS-III

Fig. 9 presents a comparison of heart disease prediction results using three different methods
(HNNet DSI, HNNet DSII, and HNNet DSIII) between the method proposed by Islam et al. [35]
and a new proposed method. For HNNet DSI, the Islam et al. [35] method achieved an accuracy of
91.25%, while the proposed method achieved 92.56%, indicating an improvement of 1.31 percentage
points. For HNNet DSII, the Islam et al. [35] method achieved an accuracy of 91.98%, compared
to 93.45% for the proposed method, showing an improvement of 1.47 percentage points. Lastly, for
HNNet DSIII, the Islam et al. [35] method had an accuracy of 89.02%, whereas the proposed method
achieved 91.89%, marking an improvement of 2.87 percentage points. Overall, the proposed method
demonstrates consistently better performance across all three methods for heart disease prediction
compared to the Islam et al. [35] method.
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Figure 9: Comparative analysis of the proposed model with Islam et al. [35] approach

5 Conclusion and Future Work

Traditional diagnostic methods have inherent limitations, such as dependence on single-modality
data and vulnerability to apparatus faults. These constraints can lead to missed diagnoses and false
positives, ultimately compromising patient care. In contrast, computer-based models, such as machine
learning and deep learning, primarily focus on image data from MRI and X-ray for heart disease
diagnostics. However, these methods may also face challenges like reduced accuracy when dealing
with poor-quality or blurry images, further affecting diagnostic reliability. This study introduces
Heart-Net, an advanced multi-modal deep learning framework designed to enhance the accuracy
and comprehensiveness of heart disease diagnosis. Heart-Net integrates data from Cardiac MRI and
heart ECG to leverage the unique strengths of each modality. By utilizing a 3D U-Net for volumetric
MRI analysis and a Graph Temporal Convolutional Network (GTCN) for ECG feature extraction,
Heart-Net captures a holistic view of a patient’s cardiac health. The experimental results demonstrate
that Heart-Net significantly outperforms traditional single-modality models, achieving accuracies of
92.56% for HNET-DSI, 93.45% for HNET-DSII, and 91.89% for HNET-DSIII. For future work, we
aim to further enhance Heart-Net by incorporating additional modalities and exploring its application
in other cardiovascular conditions. We also plan to refine the attention mechanism and classification
algorithms to boost performance. Expanding the dataset with diverse and representative samples will
ensure the model’s robustness and generalizability across different populations. Finally, integrating
real-time data from wearable devices could facilitate continuous health monitoring, making Heart-
Net an even more powerful tool in proactive cardiac care.
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