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ABSTRACT

The increasing prevalence of Internet of Things (IoT) devices has introduced a new phase of connectivity in recent
years and, concurrently, has opened the floodgates for growing cyber threats. Among the myriad of potential
attacks, Denial of Service (DoS) attacks and Distributed Denial of Service (DDoS) attacks remain a dominant
concern due to their capability to render services inoperable by overwhelming systems with an influx of traffic.
As IoT devices often lack the inherent security measures found in more mature computing platforms, the need
for robust DoS/DDoS detection systems tailored to IoT is paramount for the sustainable development of every
domain that IoT serves. In this study, we investigate the effectiveness of three machine learning (ML) algorithms:
extreme gradient boosting (XGB), multilayer perceptron (MLP) and random forest (RF), for the detection of IoT-
targeted DoS/DDoS attacks and three feature engineering methods that have not been used in the existing state-
of-the-art, and then employed the best performing algorithm to design a prototype of a novel real-time system
towards detection of such DoS/DDoS attacks. The CICIoT2023 dataset was derived from the latest real-world IoT
traffic, incorporates both benign and malicious network traffic patterns and after data preprocessing and feature
engineering, the data was fed into our models for both training and validation, where findings suggest that while all
three models exhibit commendable accuracy in detecting DoS/DDoS attacks, the use of particle swarm optimization
(PSO) for feature selection has made great improvements in the performance (accuracy, precsion recall and F1-
score of 99.93% for XGB) of the ML models and their execution time (491.023 sceonds for XGB) compared to
recursive feature elimination (RFE) and random forest feature importance (RFI) methods. The proposed real-time
system for DoS/DDoS attack detection entails the implementation of an platform capable of effectively processing
and analyzing network traffic in real-time. This involves employing the best-performing ML algorithm for detection
and the integration of warning mechanisms. We believe this approach will significantly enhance the field of security
research and continue to refine it based on future insights and developments.

KEYWORDS
Machine learning; Internet of Things (IoT), DoS, DDoS; cybersecurity; intrusion prevention; network security,
feature optimization, sustainability

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.054610
https://www.techscience.com/doi/10.32604/cmc.2024.054610
mailto:navod.neranjan@ict.cmb.ac.lk
mailto:aashiqmnm@gmail.com


3656 CMC, 2024, vol.80, no.3

1 Introduction

The proliferation of IoT devices has transformed many domains by enabling seamless commu-
nication and automation [1]. Such domains include manufacturing, agriculture, transportation, the
military, medical care, and so on [2]. The IoT is also increasingly becoming integrated into our daily
lives and transforming into an integral part of us. Recent statistics indicate that by 2025, the number
of IoT devices in use worldwide is projected to reach 30.9 billion units [1–4]. Despite the fact that the
number of IoT devices is growing by the day, the majority of IoT devices lack sufficient computing
capacity and acceptable security measures when connected to the Internet, threatening the long-term
sustainability of the ubiquitous IoT ecosystem.

As such, the extensive incorporation of IoT technology is paving the way for cybercriminals to
intrude into digital ecosystems if the security measures are not sufficient. DoS and DDoS represent
two of the most formidable security threats encountered in the realm of IoT [1–3]. DoS and DDoS
attacks occur when a malicious actor orchestrates a coordinated assault on a target system or network
with the intention of rendering it unavailable to legitimate users by overwhelming it with a flood
of network traffic [3–6]. In general, DDoS attacks have been the subject of in-depth research and
analysis in conventional areas of cybersecurity, where mitigation measures have also been designed
[7–10]. However, when these traditional methods are applied, they frequently prove insufficient owing
to the sophisticated nature of modern DoS/DDoS attacks [10–13]. As a result, IoT networks and
devices are left vulnerable to potentially catastrophic security breaches. The main issue in detecting
such attacks is these attacks are often distinguished by an elevated volume of packets originating
from a single IP address (in the case of DoS) or several IP addresses (in the case of DDoS) [4–7].
As IoT network complexity increases, so does the area susceptible to malicious intrusion. In most
cases, Dos/DDoS attacks targeting the IoT can result in substantial disruptions, compromising end-
user safety, causing financial losses, and undermining the very promise of IoT technology [10–12].
Consequently, innovative and adaptable security solutions that can protect IoT ecosystems from the
ever-changing landscape of DoS/DDoS threats are required immediately [13–15]. Fig. 1 shows the total
number of DoS/DDoS attacks encountered since 2018 and predicted numbers according to Cisco [14].
From the figure, it is evident that the number of DoS/DDoS attacks is growing in millions every year.

Figure 1: DoS/DDoS total attack history and predictions according to Cisco
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In the battle against IoT-related DoS/DDoS attacks, Machine Learning (ML), a subset of
Artificial Intelligence (AI), has emerged as a valuable ally. Its ability to process vast amounts of data,
lightweight nature, cost-effectiveness, adaptability to evolving attack patterns, and anomaly detection
make it a promising tool [4–6].

Thus motivated by the fact that employing ML for IoT-related DoS/DDoS attack detection, this
research addresses the specific challenges posed by IoT-based DoS/DDoS attacks and explores the
implementation of ML techniques for detecting such attacks by designing a novel ML-enabled real-
time monitoring system. On the other hand, our study also presents the importance of combining
ML with feature engineering to enhance DoS/DDoS detection in IoT environments. We employ three
ML algorithms-XGB, RF, and MLP-along with three feature engineering approaches to improve
accuracy and resource efficiency. Ultimately, our goal is to highlight the potential synergy between
ML and IoT security, contributing to the development of robust, adaptable, and faster DoS/DDoS
defenses to ensure the sustainable growth of the IoT ecosystem. The following section outlines the key
contributions of this study:

• Propose three efficient ML models (RF, XGB, and MLP) for the classification of fifteen types
of DoS/DDOS attacks using the CICIoT2023 dataset, which is the latest real-time dataset and
benchmark for large-scale attacks in the IoT environment.

• Analyzing the effectiveness of three feature engineering methods (PSO, RFE, and RFI) with the
aim of improving overall accuracy, reducing resource usage, saving costs, and enabling faster
response, which many researchers have overlooked.

• The effect of training settings on classification accuracy (%), precision (%), recall (%), and F1-
score (%) was investigated.

• To determine the effectiveness of employed feature engineering methods, we contrasted the
employed ML models in order to assess their performance. The comparative analysis reveals
that PSO made significant improvements in the performance of the ML models and their
execution time compared to other employed methods.

• By employing the best-performing algorithm, design a prototype of a novel real-time DoS/D-
DoS attack detection system that can effectively identify attacks before they are onset.

The structure of this study is as follows: After the introduction, Section 2 provides a concise
overview of DoS/DDoS attacks and their detection using AI. Section 3 delineates the research
approach. In Section 4, the research findings are presented, along with the implementation of the
real-time detection system, and the study concludes by discussing the results and suggesting future
directions.

2 Related Work

DoS and DDoS attacks would hinder the sustainable growth of many IoT-served domains [16,17].
These attacks are a major challenge for IoT owing to the growth of connected devices and their
vulnerabilities. This section presents a concise synopsis of DoS and DDoS attacks pertaining to the
IoT and highlights the application of AI in detecting such attacks.

2.1 T DoS/DDoS Attacks in the Context of IoT

DoS attacks are among the oldest types of cyberattacks. At their core, they aim to render a digital
service (like a website or an online application) unavailable by overwhelming it with network traffic or
exploiting specific vulnerabilities [18–20]. In the early days of the Internet, it would often take just one
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computer with a decent Internet connection to launch a successful DoS attack. On the contrary, DDoS
attacks are more sophisticated and more potent than DoS attacks. Instead of a single source, DDoS
attacks use a network of compromised computers (often referred to as a botnet) to flood their target
with a substantial quantity of network traffic. Such attacks can be catastrophic, leading to significant
downtimes, financial losses, and a tarnished reputation for the targeted entity [21–23].

The convergence of the IoT and the increasing sophistication of cyber threats has created a
perfect storm. Given their always-on nature, inadequate security provisions, and sheer numbers, IoT
devices/networks/infrastructure are becoming attractive targets for cybercriminals [21–23]. Hence, the
devices/networks/infrastructure themselves can be victims of such DoS/DDoS attacks, rendering them
useless, or they can be harnessed as tools in a broader DDoS campaign against other targets [24–27].

The infamous malware known as the Mirai botnet exploits feeble security measures, including
default usernames and passwords, to target IoT devices that are vulnerable [3–5]. When a device
becomes infected, it is automatically incorporated into a vast botnet, which is a collection of
compromised IoT devices. The Mirai DDoS attack on Dyn occurred in 2016 and caused significant
disruption in its services, a prominent DNS provider, affecting a multitude of prominent online
platforms [3–5]. This danger served as a stark reminder of the critical nature of IoT device security
and prompted enhancements to IoT security awareness and practices. As illustrated in Fig. 2, DDoS
attacks employ a network of compromised computers to inundate their target with an insurmountable
volume of network traffic, in contrast to DoS attacks.

Figure 2: DoS vs. DDoS attacks

2.2 Use of AI for DoS/DDoS Attack Detection in the Context of IoT

The growth of IoT devices has created a slew of security issues, including the potential for DoS
and DDoS assaults. Traditional firewalls, intrusion detection systems (IDS), and intrusion prevention
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systems (IPS) cannot guard against sophisticated DDoS assaults because they filter regular and
suspicious traffic using static, predefined criteria. To counter these threats, the integration of AI has
emerged as a powerful solution for early detection and mitigation [28–31]. As of now, IDS and IPS that
use AI approaches to filter invasive efforts are more dependable and effective than static, predefined
rules in earlier times [30].

AI-driven approaches leverage ML algorithms to analyze the network traffic patterns within an
IoT network. These algorithms are trained on historical data to identify normal network behavior,
which enables them to detect anomalies that may indicate a DoS or DDoS attack [31–35]. For instance,
AI models can scrutinize network traffic for sudden spikes in data volume, unusual packet patterns,
or a high number of connection requests, all of which are indicative of attack attempts [28–31]. The
ability to swiftly recognize these anomalies allows for rapid reaction and alleviation, reducing the
potential impact of the attack. Nonetheless, AI can also facilitate real-time analysis of IoT device
behavior, enabling the identification of compromised devices that may be participating in a botnet-
driven DDoS attack [36–40]. When identifying such attacks, many factors have to be considered owing
to the dynamic nature of IoT and the DoS/DDoS attacks, necessitating feature engineering approaches
for reducing computational resources and improving accuracy, which has been overlooked by many
researchers.

While AI offers promising capabilities for enhancing DoS/DDoS attack detection in IoT, it is
important to consider the dynamic nature of IoT networks and the potential challenges associated with
scaling AI solutions for large-scale deployments. Additionally, ongoing research and development in
this field are essential to stay ahead of evolving attack techniques and to ensure the robustness and
reliability of AI-based security systems [40–43].

For better understanding, Table 1 summarizes and provides a brief comparison of recent related
work in the area, which involves the use of AI for IoT-targeted DoS/DDoS attack detection. It offers
insights into the underlying algorithm(s) used, the domain applied, and the scope of the study.

Table 1: Summary of recent related work in the area

Reference Domain applied Algorithm(s) used Scope of the study

[1] Banking industry Support Vector Machine
(SVM), RF, and K-Nearest
Neighbors (KNN)

The authors employ the Banking dataset to detect
DDoS assaults on financial organizations, and they
apply SVM, KNN, and RF algorithms for
prediction.

[3] Smart agriculture Convolutional Neural
Network (CNN), deep neural
network, and recurrent
neural network

In the context of smart agriculture, the authors
propose a Deep Learning (DL) based IDS for DDoS
attacks based on three DL models. For the
experimental purpose, they have used the
CIC-DDoS2019 dataset and the TON_IoT dataset,
which contain different DDoS attacks.

[4] For the entire IoT
domain

RF The authors investigate DoS/DDoS attack detection
for IoT using ML methods. The experiment was
evaluated based on the Bot-IoT dataset, where the
RF classifier shows an accuracy of 99.81%.

[6] For the entire IoT
domain

Autoencoder network model
and an improved version of
genetic algorithm

The researchers used an IGA-BP network to address
the rising problem of Internet security, detecting
intrusions with a 98.98% detection rate and 99.29%
accuracy.

(Continued)
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Table 1 (continued)

Reference Domain applied Algorithm(s) used Scope of the study

[7] For entire IoT
domain

ResNet The authors presented a method for transforming
network traffic data into images and trained a
cutting-edge CNN model (ResNet) with a 99.99%
accuracy for recognizing DoS and DDoS in binary
categorization. Furthermore, the proposed approach
has an average accuracy of 87% for identifying eleven
various types of DoS and DDoS attack patterns.

[9] For the entire IoT
domain

XGB Through eleven ML algorithms, the researchers
investigate distinct vulnerabilities in the NSL-KDD
dataset that potentially affect sensor nodes and
networks in IoT contexts. According to the data,
XGB is the dominating algorithm among others,
with a 97% accuracy and 99.6% Area Under the
Curve (AUC) performance.

[11] For the entire IoT
domain

RF The researchers demonstrate the utilization of ML
approaches for four types of DDoS attacks using the
CICDDoS-2019 dataset. The proposed ML model
demonstrated an accuracy of 99.92%.

[12] For the entire IoT
domain

Multiple Linear Regression The authors have used regression analysis techniques
to build an ML model for DDoS attack detection
utilizing the CICIDS 2017 dataset. It has been
observed that their proposed model yields a
prediction accuracy of 97.86%.

[13] SDN-enabled IoT
network
infrastructure

SVM, Naive Bayes (NB), RF,
KNN, and Logistic
Regression

The researchers suggested an Adaptive Machine
Learning-based framework for successful detection
and mitigation of DDoS attacks in the context of
SDN-enabled IoT infrastructure.

[15] SDN-enabled IoT
network
infrastructure

advanced version of SVM
algorithms

The authors present an SDN-enabled Distributed
Denial-of-Services attack Detection and Mitigation
System (SDN-DMS) that uses ML to develop a
DDoS detection and mitigation system for IoT
devices.

[16] Smart home/IoT
network
infrastructure

Decision Tree (DT), RF,
Neural Network (NN)

In this research, the authors have employed a variety
of ML algorithms to prove that IoT-enabled
automated home appliances can detect DDoS
attacks using simple, cost-effective ML algorithms.

[17] For the entire IoT
domain

SVM, DT, Naïve Bayes (NB)
and MLP

The authors have presented an Information
Gain-Based Intrusion Detection System (IGIDS),
which is a merger of a filter-based selection approach
with an ML algorithm.

[19] For the entire IoT
domain

MLP, Long Short-Term
Memory (LSTM),
Bidirectional LSTM
(BiLSTM), KNN, SVM, DT,
and RF

This research employs eight ML algorithms to
diagnose DDoS attacks in the context of IoT, where
they have utilized the NSLKDD dataset for the
experiment. It is indisputable that MLP exhibits a
higher level of performance, as nearly 99.9% of
attacks are successfully identified, as indicated by the
results obtained.

(Continued)
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Table 1 (continued)

Reference Domain applied Algorithm(s) used Scope of the study

[20] For the entire IoT
domain

NN The researchers present a detection strategy that is
based on a deep neural network that employs
feed-forward back-propagation in order to
successfully uncover several application layer DDoS
attacks. The suggested model attained an accuracy
rate of 98%.

[22] For the entire IoT
domain

KNN, DT, RF, and Artificial
Neural Network (ANN)

The researchers categorized regular and DDoS
attack traffic utilizing the CICDDoS2019 dataset
amassed by the Canadian Institute of Cyber Security
and employing a number of ML algorithms. ANN,
among the implemented ML algorithms, has
produced the most favorable outcomes.

[23] For IoT network
infrastructure

RF, XGB, Gradient Boosting
(GB), and DT

The researchers utilized a variety of ML algorithms
in order to prevent Man in the Middle (MTM)
attacks and DoS attacks. In order to do so, they
obtained related datasets from the Kaggle website,
which was dedicated to MTM and DoS attacks. The
findings that were collected demonstrated that these
algorithms were extremely capable of detecting
MTM and DoS assaults, which demonstrated the
usefulness of safeguarding IoT networking devices
from these types of attacks.

[24] SDN-enabled IoT
network
infrastructure

KNN, ANN, SVM, and DT In order to Classify SDN traffic as either malicious
or benign, the researchers implemented a number of
ML algorithms that were outfitted with
Neighbourhood Component Analysis (NCA). The
researchers utilized the DDoS-attack SDN dataset
for this purpose. The experimental outcomes
demonstrated that DT outperforms remaining
algorithms in terms of accuracy.

[25] SDN-enabled IoT
network
infrastructure

Advanced Support Vector
Machine (ASVM)

The authors propose a design of an SDN
SDN-based DDoS detection system where they have
used an ASVM algorithm to detect DDoS attacks.

[27] Cyber-physical
systems

DT The researchers adopted an ML approach for
network anomaly detection and constructed various
models based on data to detect distributed (DDoS)
attacks on Industry 4.0 cyber-physical systems. In
this regard, they have used network traffic statistics
obtained from an actual semiconductor production
factory and 11 different ML algorithms, where DT
has proven to be more accurate, with an accuracy of
99.9%.

(Continued)
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Table 1 (continued)

Reference Domain applied Algorithm(s) used Scope of the study

[29] For IoT network
infrastructure

DT and RF Using ML techniques, the researchers developed a
system to detect DDoS attacks employing the
Neighbor Discovery protocol, given the intensity of
the incursion and the significance of the Neighbor
Discovery protocol in Internet Protocol version 6.
Overall, the accuracy of the results produced by the
DT algorithm and RF algorithm is superior to that
of the other algorithms.

[31] For the entire IoT
domain

DT and MLP By exploiting the Bot-IoT dataset’s class imbalance
issue, the researchers constructed an innovative IDS
utilizing ML and DL models. It is evident from their
experiment that DT and MLP performed the best in
detecting DDoS and DoS attacks across IoT
networks.

[32] For the entire IoT
domain

SVM, RF, DT, Logistic
regression, KNN and NB

The authors describe an ML-based attack detection
technique with the intention of identifying attack
traffic in consumer IoT.

[33] For the entire IoT
domain

RF and XGB The researchers employed ML techniques to classify
and forecast DDoS attack types, employing RF and
XGB classification algorithms. In this regard, they
have used the UNWS-np-15 dataset extracted from
GitHub.

[43] For the entire IoT
domain

ANN The researchers conducted research to detect and
mitigate known and unknown DDoS attacks in
real-time environments using the ANN algorithm.

Our work For the entire IoT
domain

RF, XGB, and MLP Our research employs three ML models with three
feature engineering methods for the classification of
fifteen types of DoS/DDOS attacks using the
CICIoT2023 dataset and, with the best-performing
algorithm, design a novel real-time DoS/DDoS
attack detection system. On the other hand, apart
from evaluating the performance of ML models, we
also investigated the efficacy of employed feature
engineering methods, as the reduction of
insignificant features would lead to an effective
classification of such attacks when there is a large
volume of data that has been overlooked by the state
of the art.

According to the state of the art evaluation, it is clear that AI has already been applied to the
majority of IoT domains, including SDN-enabled IoT. Besides this study, research [5] delved into
current DDoS detection systems employing both singular and combined machine learning techniques
in today’s network contexts. It also reviews various ML-based DDoS protection mechanisms that use
virtual environments, including cloud computing, software-defined networking, and network func-
tions virtualization. In [33], the authors undertook a comprehensive literature analysis to investigate
the present state of DDoS detection approaches and to find the most competent and effective DDoS
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detection system utilizing AI. Reference [36] provided a method based on smart contracts and ML as
a countermeasure against DoS/DDoS assaults in the 5G background by concealing a secured server
within a blockchain network and dynamically limiting the size of DoS/DDoS via transaction fees.
Authors in [37] focused their study on detecting DDoS assaults by designing an IDS customized to the
Internet of Vehicle (IoV) systems using AI approaches. Researchers did a study in [38] of the literature
on the application of DDoS to identify DDoS assaults. Research in [41] used RF and MLP models
for predicting application layer DDoS attacks. Meanwhile, reference [40] presented an explainable
artificial intelligence (XAI)-based innovative technique to detect DDoS assaults that identify irregular
network traffic flows by analyzing the traffic at the network layer.

3 Materials and Methods

Having provided a brief overview of related work on DoS/DDoS attacks in the context of IoT and
the use of AI for such attack detection, this section provides an in-depth overview of the methodology
followed, the dataset used, and performance indicators. According to the reviewed literature, the
majority of IoT attack detection systems described in the literature are incapable of identifying the
most recent DoS and DDoS attacks. The main reason for this is that the majority of these models
were trained using obsolete datasets or datasets that fail to encompass a diverse array of DDoS attack
types. These situations are both problematic. Hence, we utilized CICIoT2023, a real-time dataset and
benchmark for large-scale attacks in an IoT environment, to conduct our experiment [44]. Overall it
includes data from 105 IoT devices representing a variety of types and brands. The dataset captures
both benign and malicious traffic, with 33 types of attacks categorized into seven classes: DDoS,
DoS, Recon, Web-based, brute force, spoofing, and Mirai. The attacks are executed by malicious IoT
devices targeting other IoT devices. This comprehensive dataset facilitates the development of security
analytics for IoT environments. Following the filtration of the dataset to retrieve only DoS and DDoS,
data preprocessing techniques were applied to the dataset.

The dataset underwent data preprocessing, which involved deleting null and empty values, as
well as applying scaling and balancing algorithms. Subsequently, we utilized three feature engineering
techniques to ascertain the most significant characteristics. Following this, the dataset was divided
into 80% training data and 20% testing data. The training data was used to train the ML models,
while the testing data was used to evaluate the models’ performance after training. Afterwards, based
on the outlined performance criteria, the best-performing model was used to deploy to the simulation
environment for real-time detection of IoT-targeted DoS/DDoS cyber-attacks. The methodology of
the research is depicted in Fig. 3.
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Figure 3: The methodology followed in the research

3.1 Dataset Description, Preprocessing, and Feature Engineering

Overall, once the dataset is filtered for DoS/DDoS attack types and following the preprocess-
ing stage, it contains 956,382 records. The filtered-out dataset contains 15 classes of DoS/DDoS
attack types that target IoT ecosystems, which are further described in the following for better
understanding:

1. DDoS RST-FIN flood attack
In this type of DDoS attack, the assailant inundates the target server with a large number of
TCP packets containing both the RST (Reset) and FIN (Finish) flags [4,5]. These packets can
disrupt ongoing TCP connections by closing them abruptly, causing service disruptions.

2. DoS TCP flood attack
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An attack in which the attacker inundates a target with a large volume of TCP (Transmission
Control Protocol) packets, overwhelming its resources and making it unresponsive to legiti-
mate traffic [5–7].

3. DDoS ICMP flood
In a DDoS ICMP (Internet Control Message Protocol) flood attack, the attacker sends a
massive number of ICMP packets to the target, overloading its network and causing a denial
of service [4–7].

4. DoS UDP flood attack
A DoS attack wherein the intended recipient or network is inundated with an excessive quantity
of UDP (User Datagram Protocol) packets, resulting in the depletion of its resources and the
subsequent inaccessibility to authorized users [5–8].

5. DoS SYN flood attack
In this form of DoS attack, the assailant inundates a large number of TCP SYN (Synchronize)
packets to the target but does not complete the handshake process. This exhausts the target’s
resources, preventing it from handling legitimate requests [7–10].

6. DDoS synonymous IP flood attack
A variant of DDoS SYN flood attack, where the attacker uses multiple IP addresses to send
SYN packets, which makes it harder to mitigate the attack through IP-based blocking [11–13].

7. DDoS PSHACK flood attack
In this form of DDoS attack, the attacker sends packets with the PSH (Push) and ACK
(Acknowledgment) flags set. These packets can be used to saturate network bandwidth or
overwhelm a server, causing a denial of service [14–18].

8. DDoS TCP flood attack
This attack, which is coordinated by multiple compromised systems in a DDoS fashion [14–
18], works similarly to the DoS TCP flood in that it floods a target with a large number of
TCP packets.

9. DDoS UDP flood attack
This is a DDoS attack that floods the target with a massive number of UDP packets, causing
network congestion and rendering the target unresponsive [5–9].

10. DDoS ACK fragmentation attack
In this form of DDoS attack, the attacker sends TCP ACK (Acknowledgment) packets that
are fragmented, making it harder for network defenses to detect and mitigate the attack [4–7].

11. DoS HTTP flood attack
In a DoS attack using HTTP flooding, the attacker overwhelms a web server with a high
volume of HTTP requests, potentially causing the server to become unresponsive [5–8].

12. DDoS ICMP fragmentation attack
A DDoS attack that involves sending fragmented ICMP packets to a target, potentially
overwhelming its network infrastructure [6–9].

13. DDoS UDP fragmentation attack
In this DDoS attack, the attacker sends fragmented UDP packets to the target [7–10], making
it challenging to detect and mitigate the attack.

14. DDoS HTTP flood attack
A form of DDoS attack where the target is flooded with a high volume of HTTP requests,
overwhelming its capacity to serve legitimate users [14–16].

15. DDoS SlowLoris attack
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SlowLoris is a type of DDoS attack that targets web servers by keeping many connections open
but not completing the HTTP request, effectively tying up server resources and causing it to
become unresponsive [14–18].

The dataset underwent preprocessing to prepare it for ML classifiers subsequent to the data
filtration phase. Firstly, the null, NaN, empty values, and outliers were dropped from the dataset,
and then the dataset was normalized using MinMax scaling method. Overall, MinMax scaling scales
the features of the dataset to a specific range, typically between 0 and 1. This process standardizes the
feature values, making them more consistent and comparable. The scaling formula, denoted as x, is
transformed into the converted data, denoted as x’. The labels “min” and “max” refer to the lowest
and highest values, respectively, in the column where x is located.

x′ = ((x − min))/((max − min)) (1)

Finally, a label encoding was done to convert the textual labels to numerical format to enable the
underlying machine learning system to improve its decision-making capabilities in utilizing these labels.
The dataset was partitioned into 80% training data and 20% testing data following the conclusion of
the preprocessing and feature engineering phases. On the other hand, to provide the comparison of the
employed feature engineering methods, directly after the preprocessing data set was split as training
and test data without applying feature engineering, as highlighted in Fig. 3.

3.1.1 Particle Swarm Optimization (PSO) for Feature Selection

PSO offers a dynamic and efficient way to select the essential features for underlying ML models
employing nature-inspired approaches [45–48]. The central concept of PSO is to simulate the social
behavior of birds flocking or fish schooling [45–48]. Within the framework of feature selection, each
particle symbolizes a prospective solution, specifically, a subset of characteristics derived from the
dataset.

Suppose the dataset has no features. Each particle i in the swarm can be represented as a vector
X i = [xi1, xi2, ..., xin], where each xij can be a binary value indicating the presence (1) or absence (0) of
the j-th feature in the i-th particle’s selected feature subset.

Each particle has a velocity V i = [vi1,vi2,...,vin], which guides its movement through the search space
(the set of all possible feature combinations). The velocity is updated based on the particle’s own best-
known position (personal best) and the best-known position among all particles in the swarm (global
best). This update can be mathematically represented as:

Vi(t + 1) = w · Vi(t) + c1 · rand() · (Pbest, i − Xi(t)) + c2 · rand() · (Gbest − Xi(t)) (2)

Xi(t + 1) = Xi(t) + Vi(t + 1) (3)

Here, w is the inertia weight that controls the impact of the previous velocity, c1, and c2 are the
acceleration coefficients that determine the influence of the personal best position and the global best
position on the movement of the particle. The function rand() generates a random number between 0
and 1. Pbest, i refers to the personal best position of particle i, whereas Gbest represents the best location
found by any particle in the swarm. The position X i(t+1) after the update indicates the new set of
selected features.

The iterative process persists until a specified stopping threshold is achieved, like the highest
number of iterations or a satisfactory error rate. PSO for feature selection is particularly effective in
exploring and exploiting the search space, leading to an optimized subset of features in the ML model.
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3.1.2 Recursive Feature Elimination (RFE) for Feature Selection

RFE is another effective feature selection method used in ML. RFE starts with a set of all possible
features and iteratively removes the least important ones [45–48]. Suppose the initial feature set is X
= {x1, x2, ..., xn} where each xi is a feature and n is the total number of features. The goal of RFE is
to find a subset X′ ⊆ X that maximizes the performance of the ML model. The process begins with
the full set X and iteratively removes features one at a time. At each step, the feature whose removal
causes the least decrease in the performance metric P is eliminated.

This can be represented as:

Xk + 1 = Xk − {argmin x ∈ Xk �P(Xk, x)} (4)

Here, Xk is the set of features at the k-th step, and �P(Xk, x) is the change in performance when
feature x is removed from the set Xk. The process continues until the desired number of features
is reached or until there is a significant drop in model performance. This technique is particularly
effective when working with data that has a large number of dimensions and needs to enhance the
performance or interpretability of the ML model.

3.1.3 RF Feature Importance (RFI) for Feature Selection

RFI is a technique for figuring out how important each feature (input variable) is for generating
predictions [45]. It measures how each variable affects or contributes to the overall predicted accuracy
of the model [46]. Overall, it enables us to determine which features have the greatest impact on the
model’s predictions [45,46]. A popular method for determining RFI is to utilize the Mean Decrease
in Accuracy (MDA) or Gini impurity, where, in our research, we employed the Gini impurity method
for determining the feature relevance towards final classification.

1. Gini impurity
A measurement of a group of data points disorder or impurity is called the Gini impurity. By
calculating how frequently a feature is used to split data at decision tree nodes and how much it
reduces the Gini impurity, one may determine the Gini significance of a feature in the context
of an RF model [45,46].

2. MDA
MDA quantifies the drop-in model accuracy that occurs when a certain feature is eliminated
or has its values randomly rearranged. Features are deemed more significant if their removal
results in a significant drop in accuracy. After determining the feature importance, this data
could be used to identify the features that are most pertinent to the concerned problem, learn
more about the connections between features and predictions, or even create a visual repre-
sentation of the importance scores to help stakeholders understand the relative significance
of various features [45,46]. Ultimately, this would be very helpful in reducing the computing
resources needed to execute the ML algorithms while a huge number of variables are involved.

3.2 Employed Machine Learning Models

This section provides a brief overview of the ML algorithms we employed in the research.

3.2.1 XGBoost

XGB is a highly effective ML algorithm that has gained recognition for its remarkable predictive
capabilities across a range of tasks, with a particular emphasis on structured and tabular data [2]. Its
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architecture is comprised of an ensemble of decision trees, with each tree being constructed iteratively
in order to rectify the mistakes made by its predecessors [2,12]. XGB utilizes a gradient-boosting
architecture to construct a robust learner by aggregating the predictions of numerous weak learners
(typically shallow decision trees). The algorithm optimizes both bias and variance in a principled
manner [12] as it iteratively fits new trees to the residual errors from the previous iteration in order
to minimize a loss function. This is accomplished by combining regularization techniques with an
intelligent split-finding algorithm that efficiently evaluates potential divides in a dataset.

3.2.2 Random Forest

In both classification and regression tasks, the RF algorithm is a widely recognized ensemble
learning method. It comprises a collection of decision trees, with each tree being built by employing
bootstrapping (random sampling with replacement) on a unique subset of the dataset. Furthermore, to
promote diversity among the individual trees during construction, at each split, a selection of features
is made randomly. In order to arrive at a final prediction, the algorithm combines the outcomes of
each tree. This is typically accomplished by aggregating the results for regression or majority voting,
respectively, as depicted in Fig. 4 [1,13]. The mathematical expression denoting RF is derived from the
aggregation method employed (e.g., mean for regression or mode for classification) and is composed of
the contributions of individual decision tree predictions. To summarize, RF is an ensemble technique
that generates numerous decision trees utilizing the collective intelligence of the trees to generate
accurate and reliable predictions through random feature selection and data sampling [46–49].

Figure 4: Random forest algorithm

3.2.3 MLP

The MLP algorithm is a fundamental artificial neural network architecture used for various
machine learning tasks, including classification and regression. Its architecture consists of multiple
layers of interconnected neurons, comprising an input layer, one or more hidden layers, and an output



CMC, 2024, vol.80, no.3 3669

layer [1,10,13]. Neurons inside each layer are linked to all neurons in the neighboring layers, with
each connection being assigned a corresponding weight [50–52]. The mathematical formula for MLP
involves a series of weighted sums and activation functions applied at each neuron. Sigmoid or rectified
linear units (ReLU) activation functions are commonly used to incorporate non-linearity into the
model, which facilitates the discovery of intricate patterns within the data.

Forward propagation and back-propagation are components of an MLP’s training procedure
[10]. During forward propagation, input data is transmitted through the network in order to generate
predictions, while errors are calculated and utilized to iteratively update the weights with the objective
of minimizing a loss function. In conclusion, the MLP is a flexible neural network architecture that
models complex data relationships using interconnected layers of neurons with activation functions,
rendering it a potent instrument for a vast array of ML tasks.

3.3 Performance Metrics

Four metrics were utilized in the study to assess the performance of the ML algorithms: F1-score,
accuracy, precision, and recall [51–54]. Furthermore, the confusion matrix has been implemented to
visually represent the rates of true positives and false positives, enabling a distinct differentiation
between outcomes that were accurately classified and those that were misclassified. The metrics
employed in this research include:

• TP (True Positives)
• TN (True Negatives)
• FP (False Positives)
• FN (False Negatives)

1. Accuracy
This is responsible for assessing the performance of classification models by calculating the
correct prediction percentage in a dataset using the following formula:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (5)

2. Precision
The percentage of labels that were correctly detected in comparison to the total number of
positive classifications:

Precision = TP/(TP + FP) (6)

3. Recall
Proportion of accurately recognized labels in relation to the total occurrences of a specific label
within a dataset.

Recall = TP/(TP + FN) (7)

4. F1-score
F1-score denotes the harmonic average of precision and recall.

F1 = 2 × (Pre × Rec )/(Pre + Rec@.) (8)
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4 Evaluation Results and Implementation

This section demonstrates how our underlying ML models perform with the DoS/DDoS data
using our employed feature engineering methods and the implementation of the real-time detection
system. Overall, there are 15 classes of DoS/DDoS attacks that would be used to test the generalization
ability of proposed ML models. The experiment was executed on a personal computer with an Intel
Core i5 2.70 GHz processor, 8 GB RAM, and 2 GB of video memory. Firstly, the ML models
were trained without using feature optimization methods with all the features. Fig. 5 showcases the
performance evaluation metrics of the XGB model. Overall, XGB showed an accuracy of 99.78%,
along with the same value for other performance metrics. Fig. 6 showcases the confusion matrix based
on the predictions made by the XGB model.

Figure 5: Performance evaluation metrics of the XGB model

The performance evaluation metrics pertaining to the RF model are depicted in Fig. 7. Accord-
ingly, RF showed a 99.78% accuracy and 99.78% for precision, recall, and F1-score.

Fig. 8 showcases the confusion matrix based on the predictions made by the RF model.

The performance evaluation metrics pertaining to the MLP model are depicted in Fig. 9. Accord-
ingly, MLP showed a 99.10% accuracy and 99.10% precision, recall, and F1-score.

Fig. 10 showcases the confusion matrix based on the predictions made by the MLP model.
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Figure 6: Confusion matrix pertaining to the XGB model

Figure 7: Performance evaluation metrics of the XGB model
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Figure 8: Confusion matrix pertaining to the XGB model

Figure 9: Performance evaluation metrics of the MLP model
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Figure 10: Confusion matrix pertaining to the MLP model

Table 2 presents the performance evaluation metrics of all ML models used, along with their
execution time. Accordingly, it is evident that even though both XGB and RF offer a slightly higher
accuracy compared to MLP, the execution time is considerably higher for XGB. On the other hand,
RF showcased similar performance, with better execution time compared to XGB.

Table 2: Performance evaluation metrics of all models (without employing feature engineering)

Model Number of features Accuracy Precision Recall F1-score Execution time (seconds)

XGB 47 99.78 99.78 99.78 99.78 1050
RF 47 99.78 99.78 99.78 99.78 204
MLP 47 99.10 99.10 99.10 99.10 487

As the second step, all ML algorithms were trained employing RFI. Fig. 11 elaborates on the Gini
importance values of all the features we have selected for classification. 21 variables out of 47 variables
have Gini values of 0. Hence, those variables could be considered unnecessary for further analysis.
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Figure 11: Normalized Gini importance values of each variable based on the RF algorithm

Following applying the RFI to all the features, we have measured the execution time for the
classification of DoS/DDoS attacks with a reduced set of feature variables. Table 3 summarizes the
performance metrics along with execution times each ML model has taken after employing the RFI
method.

Table 4 summarizes the performance metrics along with execution times each ML model has
taken, after employing the PSO method.
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Table 3: Performance evaluation metrics of all models (after employing RFI)

ML model Number of features Accuracy Precision Recall F1-score Execution time (seconds)

XGB + RFI 27 99.80 99.80 99.80 99.80 530.45
RF + RFI 27 99.80 99.80 99.80 99.80 198.155
MLP + RFI 27 99.00 99.00 99.00 99.00 256.735

Table 4: Performance evaluation metrics of all models (after employing PSO)

ML model Number of features Accuracy Precision Recall F1-score Execution time (seconds)

XGB + PSO 26 99.93 99.93 99.93 99.93 491.023
RF + PSO 26 99.90 99.90 99.90 99.90 147.554
MLP + PSO 26 99.40 99.40 99.40 99.40 280.16

Table 5 summarizes the performance metrics along with execution times each ML model has taken
after employing the RFE method.

Table 5: Performance evaluation metrics of all models (after employing RFE)

ML model Number of features Accuracy Precision Recall F1-score Execution time (seconds)

XGB + RFE 27 99.90 99.90 99.90 99.90 520.14
RF + RFE 27 99.81 99.81 99.81 99.81 198.1
MLP + RFE 27 99.20 99.20 99.20 99.20 248.780

Figs. 12 and 13 illustrate the accuracy variations and execution time variations of all three machine
learning algorithms after using with PSO method. It clearly shows that PSO has significantly enhanced
the performances of all three algorithms.

Figure 12: Accuracy metric variations of RF, XGB, and MLP algorithms with PSO technique



3676 CMC, 2024, vol.80, no.3

Figure 13: Execution time variations of RF, XGB, and MLP algorithms with PSO technique

From the results highlighted in Tables 4–6, it is evident that feature engineering has played a
crucial role in improving the performance and reducing the execution time taken for the underlying
ML algorithms. A significant improvement can be seen in the performance metrics, as well as the
execution time when employing PSO for feature selection. As a result, this research would provide a
vital contribution to research, dealing with a huge number of feature variables and restricted to limited
computing resources. Overall, PSO excels in feature selection for ML due to its ability to balance
exploration and exploitation effectively in high-dimensional spaces. Its versatility allows it to handle
various types of optimization problems without the need for gradient information. On the other hand,
it is simple to implement, requires fewer function evaluations to reach satisfactory solutions, and
reduces the risk of overfitting by selecting the most relevant features. Overall, with the results obtained
from the research, it is evident that feature engineering is an essential component of ML when it comes
to detecting DoS/DDoS attacks, and XGB outperforms all other employed ML algorithms in terms
of accuracy, precision, recall and F1-score where it also spends a less execution time.

Table 6: Specification of the Raspberry Pi device

Processor Quad-core Cortex-A72 1.8 GHz

Memory (GB) 8
Connectivity 2.4 and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE

Gigabit Ethernet

4.1 Implementation of the Real-Time Attack Detection System

With our experiment results, it is evident that XGB outperforms all other algorithms in terms
of outlined performance criteria when used along with PSO for feature engineering. Thus, for
our real-time DoS/DDoS attack detection system, we intend to use the XGB algorithm to detect
DoS/DDoS attacks in real-time. Once the best-performing model has been selected, the next step
involves serializing/saving the XGB model using the Python pickle module to design the detection
system. The implementation steps are highlighted in Fig. 14.
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Figure 14: Implementation steps

For the design of the real-time monitoring system, a Python-based framework, Flask, was used
to develop the front end of the monitoring system. Further, in order to create an interactive web
application, HTML (Hypertext Markup Language), JavaScript and CSS programming languages were
also used, employing Agile software methodology. The Flask-SocketIO extension was used to integrate
WebSocket functionality with the system so it can communicate with the underlying server to which
the application is deployed to retrieve the incoming network traffic. Once the development was done,
the web-enabled system was deployed to a local Flask web server setup in a Raspberry Pi device (which
acts as a vulnerable IoT device) with the following specifications (depicted in Table 6).

Upon the successful deployment of the system in the network, the real-time attack detection
system was tested for its accuracy using hping3, which is designed for crafting and sending arbitrary
IP packets and is often used for tasks like network stress testing, which was installed on a separate
personal computer with Kali Linux operating system installed; attached to the same network that the
Raspberry Pi is linked. Fig. 15 depicts the hping3 command used to simulate the DoS SYN flood
attack against the IoT Raspberry Pi device.

Figure 15: DoS SYN flood attack against the IoT Raspberry Pi device
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Fig. 16 showcases the illustration of the developed real-time ML-enabled DoS/DDoS attack
detection system, which primarily comprised of two modules to generate alerts and visualization of
the historical data (number of occurrents DoS/DDoS attacks received on each day). Overall, with the
evaluation results, it is evident that the developed system is working as expected without any bugs, and
the system is able to generate alerts in real-time.

Figure 16: Developed ML-enabled real-time DoS/DDoS attack detection system

Table 7 presents a brief comparison of our research with similar studies that have been done in
the area of the use of ML for DoS/DDoS attack detection in the context of IoT. Overall, it is evident
that, apart from encompassing real-time monitoring capability, our research outweighs other research
in terms of obtained accuracy metrics, employing novel feature engineering approaches and a variety
of DoS/DDoS attacks considered.
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Table 7: Comparison of similar research (�-Yes, ×-No)

References Algorithm
used

Feature
engineering was
considered
employing PSO,
RFI and RFE

Variety of
DoS/DDoS
attack
considered

Dataset used Encompasses
real-time
monitoring
capability

Accuracy
metrics
achieved

[1] RF, SVM, and
KNN

× 01 Banking sector
dataset

× SVM–99.5%,
KNN–97.50%
and
RF–98.74%

[4] RF × 01 Bot-IoT dataset × 99.81%
[11] RF × 04 CICDDoS-2019 × 99.92%
[12] Multiple

linear
regression

× 01 CICIDS 201 × 97.86%

[33] RF and XGB × 09 UNWS-np-15
dataset

× RF–89%,
XGB–90%

Our work RF, MLP, and
XGB

� 15 CICIoT2023 � XGB–99.93%,
RF–99.90%,
MLP–99.40%

5 Conclusion

In conclusion, this research underscores the urgent need for robust and efficient DoS and DDoS
attack detection systems tailored to the unique characteristics of IoT devices. With the exponential
growth of IoT and the inherent security vulnerabilities of many devices, the importance of effective
security solutions cannot be overstated to guarantee the sustainable development of domains in which
IoT is served. Our research focused on evaluating the effectiveness of three machine learning algo-
rithms–XGB, RF, and MLP–and emphasized the role of feature engineering in identifying DoS/DDoS
attacks targeting IoT devices. Nonetheless, by employing the best-performing ML algorithm with
an accuracy of 99.93%, which is XGB, a prototype of a novel real-time DoS/DDoS attack detection
system was developed, significantly enhancing the network’s resilience against malicious threats and
showcasing remarkable effectiveness in fortifying network security infrastructure, which also can
be integrated with any IoT networks. Overall, our findings revealed that while all three algorithms
exhibited commendable accuracy in detecting these attacks, employing PSO for feature engineering
made a significant improvement in accuracy (high accuracy) and resource usage (less execution time)
compared to the RFI and RFE.

Looking ahead, future research in this field should consider several key avenues. Firstly, expanding
the dataset to incorporate a broader spectrum of IoT devices and network conditions will enhance
the models’ adaptability to diverse real-world scenarios, focusing on features that are commonly
associated with DoS/DDoS attacks across various contexts, such as rate of requests, packet sizes,
and traffic irregularities. Secondly, research should explore adaptive and self-learning models that
can autonomously adapt to new attack vectors and tactics without requiring manual retraining.
Additionally, implementing inherent security measures in IoT devices can significantly reduce their
vulnerability to DoS and DDoS attacks, warranting further investigation. Lastly, integrating the
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developed models into existing IoT security frameworks will provide a comprehensive approach to
IoT security, combining intrusion detection with other protective measures. In summary, as the IoT
continues its transformative impact across various industries, safeguarding the security and resilience
of IoT devices against DoS and DDoS attacks remains a top priority. The insights gained from this
research lay the groundwork for advanced and adaptable security solutions capable of safeguarding
the expanding IoT landscape against evolving cyber threats.
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