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ABSTRACT

Machine fault diagnostics are essential for industrial operations, and advancements in machine learning have
significantly advanced these systems by providing accurate predictions and expedited solutions. Machine learning
models, especially those utilizing complex algorithms like deep learning, have demonstrated major potential in
extracting important information from large operational datasets. Despite their efficiency, machine learning models
face challenges, making Explainable AI (XAI) crucial for improving their understandability and fine-tuning.
The importance of feature contribution and selection using XAI in the diagnosis of machine faults is examined
in this study. The technique is applied to evaluate different machine-learning algorithms. Extreme Gradient
Boosting, Support Vector Machine, Gaussian Naive Bayes, and Random Forest classifiers are used alongside Logistic
Regression (LR) as a baseline model because their efficacy and simplicity are evaluated thoroughly with empirical
analysis. The XAI is used as a targeted feature selection technique to select among 29 features of the time and
frequency domain. The XAI approach is lightweight, trained with only targeted features, and achieved similar
results as the traditional approach. The accuracy without XAI on baseline LR is 79.57%, whereas the approach
with XAI on LR is 80.28%.
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1 Introduction

Machine fault diagnostics are essential for industrial operations, and advancements in machine
learning (ML) have significantly enhanced these systems by providing accurate predictions and
expedited solutions. The models, particularly those employing deep learning (DL) methodologies,
have demonstrated the ability to identify potential defects by analyzing data from various controllable
variables, such as vibration, temperature, and acoustics. These developments are crucial for predicting
faults before they occur, thereby preventing operational disruptions and minimizing costs [1,2].
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ML models, especially those utilizing complex algorithms like DL, have demonstrated major
potential in extracting important information from large operational datasets [3–5].

Recent studies have underscored the importance of incorporating Explainable AI (XAI) into
machine fault diagnosis. Techniques such as shapley additive explanations (SHAP) and local inter-
pretable model-agnostic explanations (LIME) are employed to elucidate the decision-making mecha-
nisms utilized by models, enabling the recognition of crucial data features that can predict potential
problems, therefore enhancing the understanding of the model’s behavior [6–8].

Feature selection is important in enhancing the performance and interpretability of ML models
for fault diagnosis. By identifying the most relevant features, feature selection reduces data dimen-
sionality and computational complexity. Principal Component Analysis (PCA), Linear Discriminant
Analysis (LDA), and Recursive Feature Elimination (RFE) are prominent feature selection techniques
used in machine fault diagnosis. The PCA reduces the dimensionality of datasets by transforming
original variables into a set of new uncorrelated variables that maximize variance, thus simplifying
data interpretation [9]. The LDA improves class separability by finding a linear combination of features
that best separates different classes, making it useful for distinguishing fault types [10]. The RFE is an
iterative method that removes the least important features based on model performance, often using
techniques like support vector machines (SVM) to rank feature importance, ensuring that only the
most relevant features are retained [11]. Techniques similar to fault diagnosis in machines using image
data play a vital role. Approach to diagnose high-impedance faults, using a combination of semantic
segmentation, signal envelope, and Hilbert marginal spectrum, utilizes 1D-UNet for transient process
identification in zero-sequence voltage, enhancing the detection of fault inception. The integration
of signal envelope and Hilbert marginal spectrum (HMS) and HMS features, transformed into
images and analyzed with ResNet18, showcases superior performance in detecting high-impedance
faults, particularly in resonant distribution networks. Another research introduces an innovative
methodology combining adaptive transient process calibration with multiscale correlation analysis to
enhance the accuracy of fault localization [12,13]. Additionally, SHAP and LIME provide insights
into model decision-making, enhancing interpretability and trust. The SHAP provides a global
perspective by assigning importance values to each feature, revealing how changes in features like
vibration or temperature influence the model’s predictions. This clarity helps maintenance teams
identify critical factors contributing to machine faults and enables preemptive actions. The LIME
offers local interpretability by explaining individual predictions, and showing how specific instances
of sensor readings lead to certain fault diagnoses. This detailed analysis aids engineers in validating
and trusting model decisions on a case-by-case basis. Practical applications, such as pinpointing
acoustic signals associated with bearing faults using SHAP or understanding combined temperature
and vibration patterns through LIME, demonstrate how these techniques turn complex model outputs
into actionable maintenance strategies.

The integration of ML with feature selection techniques in machine fault diagnostics indicates
a synergy of technology, strategy, and user-centered design aimed at improving the reliability and
efficiency of industrial processes. These technical developments are expected to usher in an era of
transformative change in industrial maintenance, marked by major reductions in downtime and
continual improvements in operational efficiency [14].

In the proposed methodology for machine fault diagnosis, feature selection is achieved using XAI
coupled with Logistic Regression (LR). This process iteratively refines the set of features, enabling
the identification and training of the most informative ones, thereby enhancing model accuracy and
reducing unnecessary complexity. Initial results indicate that models trained with a targeted selection
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of three to five features yield the highest accuracy rates, underscoring the effectiveness of the feature
selection strategy.

The approach extends to training various ML algorithms, including Extreme Gradient Boosting
(XGBoost), Random Forest (RF), SVM, and LR. This study also explores the potential of other
algorithms like Gaussian Naive Bayes (GaussianNB) and Neural Networks for comparative analysis.
Crucially, the optimization of hyperparameters is emphasized to maximize each model’s performance.

Further refinement is achieved through the application of SHAP to identify the most important
features for fault diagnosis. This insight allows for the training of an LR model focused solely on these
key features, enhancing diagnostic precision. This methodology is juxtaposed against a traditional
approach, which utilizes a predefined set of classifiers evaluated independently. The structured and
iterative method highlights the substantial benefits of strategic feature reduction and focused model
training in improving fault diagnosis accuracy.

This paper introduces several contributions compared to prior AI-based methods in machine fault
diagnosis:

1. Integration of XAI techniques: Unlike previous works primarily focusing on black-box models,
our study integrates SHAP and LIME to provide transparency in model decision-making. This
integration allows operators to understand the rationale behind predictions, enhancing trust
and facilitating model acceptance in industrial settings.

2. Comprehensive feature selection methods: We employ advanced feature selection techniques
such as RFE, PCA, etc. These methods help in identifying the most relevant features, reducing
dimensionality, and improving model performance and interpretability. This approach con-
trasts with earlier studies that may have relied on a limited set of feature selection methods.

3. Audio sensor data: The approach leverages audio sensor data for fault diagnosis, a relatively
underexplored domain in comparison to traditional vibration or temperature data. This novel
use of sound data opens new avenues for fault detection in scenarios where traditional sensors
might be less effective.

4. Enhanced comparative analysis: We conduct a thorough comparative analysis of state-of-
art models and the proposed method, highlighting the performance improvements achieved
through the proposed approach. The metrics, such as accuracy, F1 score, precision, and recall
are deeply explored, providing a comprehensive evaluation of the model efficacy.

The rest of the paper is organized as follows: Section 2 provides an extensive review of previous
works, Section 3 describes the proposed methodology, Section 4 discusses the results, and finally
concludes the paper in Section 5.

2 Literature Review

The field of fault diagnosis is critical in maintaining the reliability and efficiency of industrial
systems. Accurate fault detection and classification rely on the effective analysis of high-dimensional
data, which can be complex and computationally intensive. Data compression techniques, such as
PCA, LDA, and Partial Least Squares (PLS) are essential in fault diagnosis systems. The PCA
reduces dimensionality, LDA finds linear combinations of features, and PLS identifies fundamental
relations between predictors and responses, handling multicollinearity effectively [15]. These tech-
niques improve model performance by maintaining crucial information and enhancing feature space
separability. However, PCA assumes linear relationships and may not capture nonlinear interactions,
potentially leading to the loss of essential information. The LDA requires normally distributed features
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and might underperform with non-linear data. The PLS, while effective with multicollinearity, can
become computationally intensive with very large datasets, impacting processing time and resource
utilization. Computation increases with the increment of feature dimension. In the proposed approach,
we extracted several features from a sample audio file and then we select only the best few features
among them which makes the model less computationally burdened.

The XAI elucidates the complexity of diagnostic ML models [16]. The XAI applications can
justify AI-driven decisions in industrial environments. Complex models like SHAP and LIME predict
behaviors, clarify decision-making, and ensure regulatory compliance. LIME is a prominent example
of a surrogate model that provides local approximations to explain individual predictions of a black-
box model. It involves generating perturbations of the input data and analyzing the resulting changes
in predictions to identify which features are most influential. It helps users understand the decision-
making process of complex models on a case-by-case basis [17]. Mean Decrease Accuracy (MDA) is
another popular method for feature selection, commonly used in conjunction with Random Forest
models. The MDA measures the importance of each feature by assessing the decrease in model
accuracy when the feature is permuted. This approach provides an intuitive measure of feature
importance, as more critical features will cause a major drop in accuracy when altered [18].

In [19], impulse frequency response analysis-based method employs impulse frequency response
analysis combined with image classification using ResNet18 and Smooth Grad-CAM++ to diagnose
winding short circuit faults in synchronous machines, achieving high diagnostic accuracy and pro-
viding enhanced model interpretability. It utilizes deep learning to analyze complex patterns in image
data, making it highly effective for precise fault detection. It shows the importance of feature selection
and explainability in ML models for fault diagnosis. However, it stands out for its high accuracy
in detecting specific electrical faults using image data, while the proposed approach audio sensor-
based, provides a comprehensive framework for fault diagnosis using sound data, supported by robust
XAI techniques.

Researchers integrate wavelet weight initialization and adaptive threshold for robust and inter-
pretable fault diagnosis in machines [20,21]. The methods leverage physics-informed models to
enhance feature extraction and dynamically adjusts thresholds to improve fault detection accuracy.
The studies focus on integrating domain knowledge with ML for better interpretability and robustness,
particularly in varying operational conditions. Reference [21] introduces the physics-informed wavelet
domain adaptation network designed to improve cross-machine transfer diagnosis by integrating
wavelet-based feature extraction with ML. It employs optimized wavelet weights in the first convolu-
tional layer to enhance domain transferability and extract discriminative features. It shows significant
performance improvements in challenging cross-machine diagnostic tasks, validating its efficacy
across multiple datasets. However, emphasizing real-time audio-based monitoring and explainability
is crucial in noisy industrial environments.

In conclusion, the implementation of ML models, multimodal data, and XAI methods in
diagnostic and predictive maintenance systems indicates a significant transformation towards more
effective and proactive industrial operations. Continuous research and development in these fields
will have a major impact on the capabilities of fault diagnostics and predictive maintenance. Table 1
shows the summary of the state-of-the-art models in fault diagnostics.
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Table 1: Summary of state-of-the-art fault diagnostics models

Reference Contribution Limitation

Al-Kaf et al. [7] SHAP and LIME for diagnosing open
faults in NPC inverters, providing
transparency in model decision-making,
and enhancing the interpretability of
complex ML models in energy
conversion systems.

Computationally intensive,
imposing remarkable processing
power and time; specifically
tailored to energy conversion
applications, which may limit
generalizability to other types of
industrial systems.

Begum et al. [8] User-centric study on the
implementation of SHAP and LIME for
generating explainable alerts in security
operation centers (SOC), highlighting
the effectiveness of XAI techniques in
improving user trust and understanding
in critical security contexts.

Focuses primarily on security
operation centers, potentially
restricting the applicability of
findings to other industrial
environments; the approach may
not directly address the unique
challenges in different sectors.

Islam et al. [9] Recent advancements and applications
in reducing the dimensionality of
high-dimensional datasets, which is
crucial for simplifying data
interpretation and improving model
performance in various industrial
applications.

Assumes linear relationships
among variables, which may
result in the loss of crucial
information in datasets with
nonlinear interactions; may not
be suitable for all types of data.

Xanthopoulos et al. [10] Explanation of LDA for improving
class separability in datasets.

Needs normally distributed
features, which may limit
performance with non-linear
data; and may not handle
complex, non-linear relationships
as effectively as other techniques.

Das et al. [11] Application of RFE for identifying
transformer faults.

The iterative nature of RFE can
be computationally intensive and
time-consuming, especially with
large datasets; it relies heavily on
the underlying model’s
performance, which can be a
controlling factor.

Wold [15] Introduction and application of PLS in
handling multicollinearity.

Computationally intensive when
applied to very large datasets,
which can impact processing time
and resource utilization; may
need careful tuning and
validation to ensure optimal
performance.

Breiman [18] Development of random forests for
robust, ensemble-based ML.

Expects large amounts of data;
may be computationally
expensive.
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3 Methodology

The proposed study integrates feature selection with traditional ML techniques, significantly
enhancing the performance and interpretability of fault diagnosis models. Key innovations include the
use of XAI methods, such as SHAP and LIME, to guide feature selection and provide insights into
the decision-making processes of the models. This comprehensive and structured approach to model
training focuses on the strategic reduction of features to enhance diagnostic accuracy. The integration
of RFE with LR for feature selection stands out as a unique aspect. This method iteratively refines the
feature set, enabling the identification of the most informative features, which are then used to train
various ML models, including XGBoost, RF, SVM, and GaussianNB. This iterative process, validated
through rigorous cross-validation and hyper-parameter tuning, underscores the effectiveness of the
feature selection strategy.

We have divided the studies into two parts, which show the difference between the traditional
approach and the proposed approach to diagnose faults in machines. We have prepared a specific
dataset from the existing large dataset [22]. The traditional approach involves feature extraction of the
dataset and training the LR model to classify faults in the machine, whereas the approach does similar
feature extraction but chooses the most contributing features among all extracted features and trains
the model to classify shown in Fig. 1. This technique shows promising results, which also provide a
lightweight model with better accuracy. We also have trained different ML models for comparative
analysis, which are XGBoost, SVM, GaussianNB, and RF. The following sections describe the details
of the dataset preparation and model training phases. The pseudocode of the proposed model is
defined in Algorithm 1.

Figure 1: Workflow of the proposed methodology
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Algorithm 1:
Input: Audio data from sensors, labels (normal/abnormal)
Output: Trained model, performance metrics, and explanations
1: Load and preprocess audio data
2: Initialize feature extraction functions
3: Initialize classifiers: LR, XGBoost, SVC, GaussianNB, RF
4: Initialize explainable AI tools: LIME, SHAP
Feature Extraction:
5: for each audio sample x in dataset do
6: time_features ← extract_time_domain_features(x)
7: freq_features ← extract_frequency_domain_features(x)
8: features ← time_features + freq_features
9: Append features to feature matrix X
10: Append label to label vector y
11: end for
Model Training and Evaluation:
12: Split data into training set and test set
13: Scale features using StandardScaler
14: for each classifier in classifiers do
15: Train classifier on training set
16: Predict on test set
17: Calculate performance metrics: accuracy, F1 score, precision, recall
18: Plot confusion matrix
19: end for
ROC Curve:
20: Plot ROC curves for all classifiers
Explainable AI:
21: Select an instance from test set for explanation
22: LIME explanation ← explain_instance(LIME, instance, classifier)
23: Display LIME explanation
24: SHAP explanation ← SHAP values for X_test
25: Plot SHAP summary
26: Return trained models, performance metrics, LIME, and SHAP explanations

3.1 Data Collection and Preprocessing

Data collection and preprocessing are critical steps in the methodology of this study, impacting
the quality and reliability of the machine fault diagnosis models. The audio recordings used in this
research were sourced from industrial fans, with the dataset comprising two distinct sound categories:
‘normal’ and ‘abnormal’ [22]. This dataset was extracted from a larger repository of machine sounds,
ensuring a comprehensive representation of operational conditions.

Each audio file in the dataset is 30 s long and saved in the waveform audio file (wav) format.
The total dataset includes 1514 audio files, with 1107 classified as normal and 407 as abnormal. This
distribution allows for a robust analysis of fault detection and diagnosis.
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Preprocessing involves transforming raw audio signals into a set of 29 informative features,
derived from both time and frequency domains. Time domain features include statistical measures
like mean, median, variance, and standard deviation, which provide insights into the central tendency
and dispersion of the audio signals. Additional metrics, such as skewness, kurtosis, and zero-cross rate
offer further characterization of the signal distribution and oscillatory behavior.

In the frequency domain, features, such as spectral centroid, bandwidth, and spectral contrast are
extracted, providing a detailed frequency analysis of the audio signals. This dual-domain approach
ensures a comprehensive feature set that captures both temporal and spectral characteristics of the
sound data.

3.2 Feature Extraction

Feature extraction is crucial in diagnosing machine faults using sound or vibration data. The
approach transforms the raw audio signal into 29 informative features, both from time and frequency
domains, as listed in Table 2.

Table 2: Time domain and frequency domain features

Time domain features Frequency domain features

Mean Mean_freq
Median Median_freq
Variance Variance_freq
Std_dev Std_dev_freq
Skewness Skewness_freq
Kurt Kurt_freq
Zero_cross_rate_value Delta
Num_waves Alpha
Wave_duration Beta
Inst_freq Gamma
Mobility Sigma
Activity Theta
Complexity Zero_a
Energy

3.2.1 Time Domain Features

The time domain features include statistical measures, such as the mean, median, variance, and
standard deviation (Std_dev), which provide insights into the central tendency and dispersion of the
audio signal. Additionally, skewness and kurtosis (Kurt) metrics capture the asymmetry and tailedness
of the signal distribution, respectively. The Zero_cross_rate_value indicates the rate of sign changes in
the audio signal, while num_waves and wave_duration quantify the oscillatory behavior and duration
of waveforms. Instantaneous frequency (Inst_freq) and mobility reflect the rate of phase change and
signal variation, whereas activity and energy denote the signal’s total energy and variance-related
energy. The complexity measure assesses the dynamic changes in the signal’s frequency content, and
the k-complex identifies specific waveform patterns.
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3.2.2 Frequency Domain Features

In the frequency domain, features such as mean frequency (Mean_freq), median frequency
(Median_freq), variance frequency (Variance_freq), and Standard Deviation of Frequency (Std_dev_
freq) offer a detailed understanding of the signal’s frequency components. The Skewness_freq and
Kurt_freq further characterize the distribution of these frequencies. Power or amplitude within specific
frequency bands is quantified through features like delta, alpha, beta, gamma, sigma, and theta, each
relevant to different operational states and potential fault conditions of the fan. The Zero_a feature
represents the rate of zero crossings in the frequency domain, and the b_a ratio (beta to alpha power)
provides additional insights into the operational health of the fan.

The following equations provide a detailed understanding of the features, helping in the accurate
and interpretable diagnosis of machine faults [23]:

Mean = 1
N

N∑
i=1

x [i] (1)

Median = x
[

N + 1
2

]
(2)

Variance = 1
N

∑N

i=1
(x [i] − Mean)

2 (3)

Stddev = √
Variance (4)

Skewness = 1
N

N∑
i=1

(
x [i] − Mean

Std_dev

)3

(5)

Kurtosis = 1
N

∑N

i=1

(
x [i] − Mean

Std_dev

)4

− 3 (6)

Zero_cross_rate_value = 1
N

N−1∑
i=1

1{x[i].x[i+1]<0} (7)

Num_waves = Number of Zero − crossing (8)

Wave_duration = Total duration of signal
Num_waves

(9)

Inst_freq = 1
2π

dφ(t)

dt
(10)

Mobility = Std_dev of the first derivative of the signal
Std_dev of the signal

(11)

Activity = Variance (12)
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Complexity = Mobility of the first derivative of the signal
Mobility of the signal

(13)

Energy =
N∑

i=1

x[i]2 (14)

Zero_a = 1
N − 1

N−1∑
i=1

1{f [i].f [i+1]<0} (15)

b_a = Power in beta band
Power in alpha band

(16)

3.3 Feature Scaling

Before training the ML models, feature scaling was applied as a crucial pre-processing step to
normalize the feature values and enhance the convergence properties of the learning algorithms.
Standard scaling, also known as Z-score normalization, was employed for this purpose. We compute
the mean and standard deviation of each feature of the training data and scale the features accordingly.
We used the same steps for test data to ensure that the scaling parameters were consistent between the
training and testing datasets.

We standardize the range of feature values using standard scaling which prevents features with
larger magnitudes from dominating the learning algorithm during model training. Standard scaling
involves transforming the feature values such that they have a mean of 0 and a standard deviation
of 1. This is achieved by subtracting the mean of each feature from its value and then dividing by
the standard deviation of the feature. This ensures that all features contribute equally to the learning
process, leading to more stable and efficient training of ML models. The formula for standard scaling
is shown in Eq. (17) as:

Xscaled = x − μ

σ
(17)

where x is the original value, μ is the mean of the feature, and σ is the standard deviation of the feature.

3.4 Model Selection

The methodology utilizes a multi-pronged approach, exploring the capabilities of different
algorithms to identify the most effective model for the specific fault diagnosis task. A foundational
aspect of this study is the selection of an appropriate baseline classifier, which serves as a reference
for comparative analysis. We utilized LR for its inherent simplicity and effectiveness in binary classifi-
cation problems. It provides a straightforward linear model that effectively captures the relationships
between the extracted features and the target classes, making it a suitable choice for initial model
evaluation and feature relevance analysis.

Beyond LR, a diverse array of classifiers, including XGBoost, SVM, GaussianNB, and RF,
are evaluated. Each of these models offers unique advantages and complexities, ranging from the
ensemble-based learning of RF to the kernel-based decision boundaries of SVM. XGBoost, known
for its gradient-boosting framework, provides robust performance by combining the predictions
of several weak models to produce a powerful ensemble. The SVM, with its capability to handle
high-dimensional spaces and its versatility with different kernel functions, excels in scenarios where
clear margin separation is crucial. GaussianNB, with its probabilistic approach, offers simplicity
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and computational efficiency, particularly effective when the assumption of feature independence
holds true.

Through rigorous experimentation and cross-validation, these classifiers are trained using the 29
features derived from the training dataset, aiming to recognize their respective capabilities in classifying
abnormal and normal machine operations. This traditional approach serves as a benchmark for
evaluating the performance improvements achieved through feature selection techniques.

In the proposed approach, the entire process mentioned above is repeated but with an emphasis on
using the most important features in the training phase. The important features are selected using RFE,
a method that recursively removes the least significant features based on the model’s performance until
the optimal feature subset is identified. This targeted feature selection enhances the model’s efficiency
and accuracy by focusing on the most relevant data attributes.

To accurately assess the performance of the trained ML models, the dataset was carefully divided
into separate training and testing subsets. For model training, we utilize 80% of the data, while
the remaining 20% is used for model evaluation. To ensure reproducibility and robustness in the
model evaluation process, a random seed is assigned as a deterministic factor that controls the
pseudo-random division of the dataset. This ensures that the training and testing sets are consis-
tently generated, allowing for reliable performance comparisons across different models and feature
selection strategies.

3.4.1 Hyper-Parameter Tuning

Each chosen ML algorithm has its own set of hyper-parameters that control its learning behavior.
We tuned the hyper-parameters of these models empirically to achieve better performance. In addition,
we employ grid search or randomized search techniques to explore a predefined range of values for
each hyper-parameter. To mitigate overfitting and ensure the model generalizes well to unseen data,
we employ a cross-validation strategy.

3.4.2 Feature Selection with Recursive Feature Elimination

While we extract a comprehensive set of features, not all features may be equally important for
accurate fault diagnosis. The RFE helps identify the most relevant features. We utilize LR as the base
estimator for RFE. First, we train LR on the entire 29-feature set. Then the RFE iteratively removes the
feature with the least contribution to the model’s performance, as determined by the base estimator’s
feature importance scores. After that, we retrain the LR on the reduced feature set. Focusing on the
most informative features can potentially lead to better classification accuracy and reduce the risk of
over-fitting.

In addition, a smaller set of relevant features makes it easier to understand the model’s decision-
making process.

3.5 Evaluation Metrics

We use a set of standard performance metrics to evaluate the classification effectiveness of the
trained models. These metrics provide quantitative insights into the model’s ability to accurately
distinguish between normal and abnormal machine operations.
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Accuracy measures the overall proportion of correct predictions made by the model, including
both true positives and true negatives. The formula for accuracy is [24]:

Accuracy = TP + TN
TP + TN + FP + FN

(18)

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative.

Precision assesses the accuracy of the positive predictions made by the model. The formula for
precision is:

Precision = TP + TN
TP + FP

(19)

Recall measures the model’s ability to detect all actual positives. The formula for the recall is:

Recall = TP
TP + FN

(20)

The F1-score is the mean of precision and recall, providing a balance between the two. It is
particularly useful when the class distribution is uneven. The formula for the F1-score is:

F1-score = 2 × Precision × Recall
Precision + Recall

(21)

4 Experimental Results Analysis

In this section, we present the experimental results obtained from the machine fault diagnosis
study using two distinct approaches: the proposed approach and the traditional approach to classifying
instances of abnormal and normal machine operations based on extracted features.

4.1 Traditional Approach without XAI

The traditional approach employs a set of predefined ML classifiers, including SVC, XGBoost,
LR, and RF. Each classifier is trained on 29 features and evaluated independently, as shown in Table 3.
The SVC model achieved the highest recall at 100%, indicating its superior ability to identify all
relevant cases. However, the RF model outperformed the others in terms of F1-score, Precision, and
Accuracy, with scores of 89.65%, 81.88%, and 82.04%, respectively, suggesting its overall effectiveness
and balance in prediction accuracy and reliability among the evaluated models. The XGBoost and LR
models showed competitive but slightly lower performance metrics in comparison.

Table 3: Model performance with the traditional approaches

Model Recall F1-score Precision Accuracy

XGBoost 97.32 88.54 80.00 80.63
SVC 100.00 88.12 78.02 79.93
LR 99.02 87.32 78.87 79.57
RF 99.54 89.65 81.88 82.04
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4.2 Proposed Approach with XAI

As a base estimator, we use LR to determine the most important features contributing to the
model. We utilize SHAP to show the distribution of SHAP values for each feature in the model. The
features are listed on the y-axis, and the SHAP value distribution is shown on the x-axis. The color
of the distribution indicates the impact of the feature on the model’s output. Blue indicates a negative
impact, and red indicates a positive impact. The force of the color indicates the magnitude of the
impact shown in Fig. 2.

Figure 2: Visualization of the impact of the top nine features on a logistic regression model using SHAP

The features ‘mean’, ‘skewness’, ‘wave_duration’, and ‘std_dev’ all influence the model’s predic-
tions in different ways. The ‘mean’ has a positive effect, shown by its reddish color, but it’s not as
strong as the effect from ‘num_waves’. The ‘skewness’ also has a positive effect but it’s even weaker
than the ‘mean’. On the other hand, ‘wave_duration’ tends to lower the model’s predictions, which is
indicated by its blue color. The ‘std_dev’ also lowers predictions but not as much as ‘wave_duration’.
Some features do not impact the model’s predictions much at all. These features show colors close to
zero on the x-axis, meaning they do not change the predictions much either way. The spread of colors
for each feature tells us how consistently affected the model. The ‘num_waves’ has a narrow red spread,
meaning it usually similarly increases predictions across different data points. The ‘wave_duration’ has
a narrow blue spread, showing it consistently lowers predictions. However, ‘mean’ and ‘skewness’ have
wider color spreads, meaning their effects on the predictions can vary a lot depending on the specific
data point.

The proposed approach begins with feature selection using XAI in conjunction with LR. We
iteratively select a varying number of the top nine contributing features and train LR models to
evaluate their performance. The results of this experiment, summarized in Table 4, demonstrate the
accuracy of LR models trained with different numbers of selected features.

Table 4: Accuracy based on number of selected features

No. of features 3 4 5 6 7 8 9

Model accuracy 80.28 79.93 80.28 80.28 79.93 79.93 79.93
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Fig. 3 shows that adding more features usually improves an ML model’s accuracy, but only up to a
certain point. After this point, adding more features does not help and might even make the model less
accurate. For this specific model, the graph indicates that the best performance happens when using
six features. After adding more than six features, the accuracy drops. In addition, we utilize LIME
to explain the prediction for a single instance of the model and consider all features that contribute
to that prediction. Fig. 4 shows how the features together contribute to the model’s prediction for a
particular instance. The instance is the result of the classification between abnormal and normal audio
files. The model predicts with a 0.95 probability that the sound is abnormal. The feature influencing
this classification the most is ‘skewness_freq’, with a value of 3.75. Similarly, the model predicts with
a 0.05 probability that the sound is normal. The feature influencing this classification the most is
‘kurt_freq’, with a value of 4.17.

Figure 3: Accuracy curve of the model on a selected number of features

Figure 4: Visualization of the impact of the features on a single instance of the LR model using LIME
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Following feature selection, we evaluate the performance of various ML algorithms, including
XGBoost, SVC, GaussianNB, and RF. Table 5 shows the accuracy, F1-score, and confusion matrix
for each model.

Table 5: Model performance on selected features

Model Recall F1-score Precision Accuracy

XGBoost 81.33 79.24 81.72 81.33
SVC 71.47 59.94 79.64 71.47
GaussianNB 79.22 76.13 79.91 79.22
RF 82.04 79.37 84.35 82.04

The XGBoost model exhibited the highest accuracy of 81.33% among all the algorithms tested.
However, it is worth noting that the SVC model showed relatively lower accuracy compared to
the other algorithms, achieving 71.48%. Overall, the proposed approach demonstrated competitive
performance, particularly with the LR model and XGBoost classifier.

In the Receiver Operating Characteristic (ROC) curve, the x-axis represents the False Positive
Rate (FPR), which is the proportion of negative instances incorrectly classified as positive. The y-
axis represents the True Positive Rate (TPR), which is the proportion of positive instances correctly
classified. A perfect classifier would classify all positive instances correctly (TPR = 1) and have no
false positives (FPR = 0). This is represented by the top left corner of the graph. The diagonal line
(dashed line in the image) represents a classifier with no discriminative power–it essentially guesses
randomly. The area under the ROC curve (Area under the ROC Curve (AUC)) is a numerical measure
of a classifier’s performance. A larger AUC indicates better performance. In Fig. 5, the RF classifier
has the largest AUC (0.79) which means it has the best overall performance among the classifiers
displayed.

Figure 5: ROC curves of different classifiers
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Table 6 shows a summary of the performance metrics: precision, recall, and F1-score for different
machine learning models trained with three feature selection techniques: PCA, LDA, and RFE.

Table 6: Performance metrics of ML models trained with three feature selection techniques

Model Feature
selection

Precision
(Class 0)

Recall
(Class 0)

F1-score
(Class 0)

Precision
(Class 1)

Recall
(Class 1)

F1-score
(Class 1)

Accuracy

LR PCA 0.93 0.32 0.47 0.78 0.99 0.87 0.80
LR LDA 0.90 0.32 0.47 0.78 0.99 0.87 0.79
LR RFE 0.87 0.32 0.46 0.78 0.98 0.87 0.79
XGBoost PCA 0.66 0.38 0.48 0.78 0.92 0.85 0.76
XGBoost LDA 0.76 0.39 0.52 0.79 0.95 0.86 0.79
XGBoost RFE 0.64 0.44 0.52 0.80 0.90 0.85 0.77
SVC PCA 1.00 0.30 0.47 0.78 1.00 0.88 0.80
SVC LDA 1.00 0.32 0.47 0.78 1.00 0.88 0.80
SVC RFE 0.93 0.33 0.49 0.78 0.99 0.85 0.80
GaussianNB PCA 0.68 0.34 0.46 0.78 0.94 0.85 0.76
GaussianNB LDA 0.76 0.32 0.45 0.78 0.96 0.86 0.77
GaussianNB RFE 0.76 0.35 0.48 0.78 0.96 0.86 0.78
RF PCA 0.80 0.33 0.48 0.78 0.97 0.86 0.79
RF LDA 0.48 0.48 0.48 0.79 0.79 0.79 0.70
RF RFE 0.79 0.38 0.51 0.79 096 0.87 0.79

• LR: Across all feature selection methods, LR consistently shows high precision and recall for
Class 1 (positive class), indicating robust classification performance.

• XGBoost: Generally, performs well with PCA and LDA, achieving balanced precision and
recall metrics for both classes.

• SVC: Achieves perfect precision for Class 0 with PCA and LDA, suggesting potential overfitting
or high sensitivity to feature selection.

• GaussianNB: Shows balanced performance metrics across different feature selection methods,
indicating robustness to varying feature subsets.

• RF: Demonstrates competitive performance, especially with RFE, which consistently improves
recall for Class 0 while maintaining high metrics for Class 1.

While the current results highlight the impact of different feature selection techniques on model
performance, integrating SHAP and LIME techniques could enhance model interpretability further.
The SHAP and LIME provide insights into feature importance and local explanations, respectively,
aiding in understanding model decisions and improving trustworthiness in practical applications.

In conclusion, leveraging advanced feature selection methods alongside SHAP and LIME tech-
niques could lead to more interpretable and reliable ML models, facilitating informed decision-making
in various domains.
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4.3 Comparative Analysis

To provide a comprehensive comparison between the proposed and the traditional approaches,
we evaluated the performance of the LR and XGBoost classifiers, which were common to both
approaches. The LR model achieved an accuracy of 80.28% in the proposed approach, whereas
the XGBoost classifier attained an accuracy of 80.63% in the traditional approach. Although the
XGBoost classifier outperformed the LR model marginally, both approaches yielded comparable
results, demonstrating the effectiveness of the LR model in feature selection. The proposed approach
achieved an accuracy ranging from 71.47% to 82.04%, whereas the traditional approach achieved
an accuracy ranging from 79.57% to 82.04%. The proposed approach demonstrates that selecting
important features using XAI can achieve accuracy close to the traditional approach of selecting all
features, which yields a lightweight model approach.

Building on the comparative analysis between the traditional approach and the proposed method,
this section delves deeper into the performance metrics of the evaluated models. By analyzing the
confusion matrices for each model (as shown in Fig. 6), we can shed light on the reasons behind
variations in accuracy, F1-score, precision, and recall.

• LR: While achieving a decent accuracy (0.796), the model struggles with false positives (56).
This suggests the model might be overly sensitive and classify negative instances as positive.

• XGBoost: Similar to LR, XGBoost exhibits a high number of FP (49) despite acceptable
accuracy (0.806). This indicates potential overfitting to the training data.

• SVM: Like the previous models, SVM has a high FP rate (57) with moderate accuracy (0.799).
This suggests further optimization might be required to improve its ability to distinguish
between positive and negative classes.

• GNB: The GNB model shows a balance between TP (29) and FP (53). However, its lower accu-
racy (0.771) compared to other models suggests room for improvement in overall classification
performance.

• RF: The RF model demonstrates the best performance among the evaluated models with a
high number of TP (32) and low FP (50). This translates to good accuracy (0.809) and balanced
precision and recall.

The analysis of the metric variations is as follows:

• Accuracy: While all models achieved moderate accuracy, RF emerged as the most accurate
classifier. This suggests the effectiveness of the method (potentially used in RF) in achieving a
better balance between TP and negatives.

• F1-score: The F1-score variations reflect the trade-off between precision and recall. RF
again exhibits a superior F1-score (0.782), indicating a good balance between identifying true
positives and avoiding FP.

• Precision: The high FP rates in LR, XGBoost, and SVM lead to lower precision compared
to RF. This means these models classified many negative instances as positive, impacting the
precision of their positive classifications.

• Recall: All models achieved acceptable recall, with RF having the highest (0.809). This indicates
they were successful in identifying a good portion of the actual positive cases. However, models
with high false positives might achieve high recall due to overclassifying negative instances as
positive.

By analyzing the confusion matrices and performance metrics, we can see that the method,
potentially implemented in the RF, offers a significant improvement in terms of reducing FP while
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maintaining good overall accuracy and balanced precision and recall. Further investigation into the
specific techniques used in a method can be conducted to pinpoint the factors contributing to this
superior performance.

Figure 6: Confusion metric of (a) LR, (b) XGBoost, (c) SVC, (d) GaussianNB, and (e) RF
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4.4 t-SNE Visualization of Test Data

To gain deeper insights into the distribution and separability of the test data, we employed
t-distributed Stochastic Neighbor Embedding (t-SNE), a powerful technique for visualizing high-
dimensional data in a lower-dimensional space. The resultant t-SNE plot, as illustrated in Fig. 7,
demonstrates several noteworthy observations regarding the structure and class distribution of
the dataset.

Figure 7: 0 (blue) represents abnormal and 1 (green) represents normal

The t-SNE plot reveals the presence of distinct clusters within the data, indicating that t-SNE
has effectively preserved the local and global structures during the dimensionality reduction process.
These clusters suggest that the underlying features used in our model capture meaningful patterns
and inherent groupings within the data. Notably, while some clusters exhibit clear boundaries, others
display varying degrees of overlap, which may pose challenges for classification algorithms.

Data points in the t-SNE visualization are color-coded based on their respective classes, with class
0 represented in blue (abnormal) and class 1 in green (normal). This color-coding highlights several
key aspects:

• Certain regions of the plot are dominated by a single class, suggesting that in these regions, the
classifier can easily differentiate between the classes.

• Conversely, there are areas with significant overlap between the two classes, indicating regions
where the classifier may struggle to achieve high accuracy due to the similarity in feature space.

The t-SNE visualization serves as an intuitive tool for understanding the high-dimensional
test data’s structure and class separability. By reducing the dimensionality to two dimensions, t-
SNE facilitates an accessible interpretation of the complex relationships between data points, aiding
in diagnosing potential issues in both the data and the classification models. This visualization
underscores the importance of feature selection and the potential need for more sophisticated models
to address regions of class overlap.

The t-SNE plot provides valuable insights into the clustering tendencies and class distribution
within the test dataset. This analysis is instrumental in understanding the strengths and limitations of
the classification model, guiding further refinement of the feature selection and modeling strategies.
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5 Conclusion

The proposed study demonstrates the significant potential of integrating feature selection tech-
niques with traditional ML methods, enhanced by XAI techniques such as SHAP and LIME,
for machine fault diagnosis using audio sensor data. Our approach not only enhances diagnostic
accuracy but also provides valuable insights into the decision-making processes of the models,
thereby improving interpretability and trustworthiness. The utilization of audio sensor data for
fault diagnosis presents a novel and complementary approach to traditional methods based on
vibration or temperature data. However, the approach assumes high-quality input data with effective
preprocessing and sufficient representative datasets for accurate model training. Limitations include
potential challenges in environments with heavily contaminated audio data and the reliance on high-
quality labeled data. The methodology is particularly suitable for industrial environments requiring
continuous machinery monitoring and scenarios where understanding the model’s decision-making
process is critical. Moreover, the comparative analysis highlighted the trade-offs between different
ML algorithms and the importance of selecting appropriate algorithms based on the specific features
of the dataset.

In conclusion, the experimental results suggest that a systematic approach combining feature
selection with ML algorithms can improve the accuracy and efficiency of machine fault diagnosis
systems. Both the proposed and traditional approaches demonstrated effectiveness in machine fault
diagnosis. Overall, while the traditional approach may provide slightly higher accuracy, the proposed
approach provides a simpler and more interpretable solution, which could be advantageous in certain
scenarios.
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