
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.055244

ARTICLE

Q-Learning-Assisted Meta-Heuristics for Scheduling Distributed Hybrid Flow
Shop Problems

Qianyao Zhu1, Kaizhou Gao1,*, Wuze Huang1, Zhenfang Ma1 and Adam Slowik2

1Institute of Systems Engineering, Macau University of Science and Technology, Macau, 99078, China
2Department of Electronics and Computer Science, Koszalin University of Technology, Koszalin, 75-453, Poland

*Corresponding Author: Kaizhou Gao. Email: kzgao@must.edu.mo

Received: 21 June 2024 Accepted: 13 August 2024 Published: 12 September 2024

ABSTRACT

The flow shop scheduling problem is important for the manufacturing industry. Effective flow shop scheduling
can bring great benefits to the industry. However, there are few types of research on Distributed Hybrid Flow
Shop Problems (DHFSP) by learning assisted meta-heuristics. This work addresses a DHFSP with minimizing
the maximum completion time (Makespan). First, a mathematical model is developed for the concerned DHFSP.
Second, four Q-learning-assisted meta-heuristics, e.g., genetic algorithm (GA), artificial bee colony algorithm
(ABC), particle swarm optimization (PSO), and differential evolution (DE), are proposed. According to the
nature of DHFSP, six local search operations are designed for finding high-quality solutions in local space.
Instead of random selection, Q-learning assists meta-heuristics in choosing the appropriate local search operations
during iterations. Finally, based on 60 cases, comprehensive numerical experiments are conducted to assess the
effectiveness of the proposed algorithms. The experimental results and discussions prove that using Q-learning to
select appropriate local search operations is more effective than the random strategy. To verify the competitiveness
of the Q-learning assistedmeta-heuristics, they are compared with the improved iterated greedy algorithm (IIG),
which is also for solving DHFSP. The Friedman test is executed on the results by five algorithms. It is concluded
that the performance of four Q-learning-assisted meta-heuristics are better than IIG, and the Q-learning-assisted
PSO shows the best competitiveness.

KEYWORDS
Distributed scheduling; hybrid flow shop; meta-heuristics; local search; Q-learning

1 Introduction

Distributed production and manufacturing affect the efficiency and competitiveness of enterprises
and are important components of intelligent manufacturing systems [1]. Distributed flow shop
scheduling is an important problem in distributed production and manufacturing. The study of
distributed flow shop scheduling problems holds practical application value and significance [2].
Distributed flow shop scheduling refers to industries that have multiple workshops in different
geographical locations. These workshops need to be managed to process and manufacture products.
In the distributed flow shop scheduling problems, the workpieces are assigned to different workshops,

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.055244
https://www.techscience.com/doi/10.32604/cmc.2024.055244
mailto:kzgao@must.edu.mo


3574 CMC, 2024, vol.80, no.3

the resources are allocated for workpieces, and the workpieces are sequenced in each workshop, to
optimize one or more production targets. Reasonable and efficient distributed scheduling can reduce
cost, improve industrial competitiveness, and fully utilize resources [3].

The hybrid flow shop scheduling problem (HFSP) refers to a production facility that consists of
multiple stages, each of which includes one or more parallel machines. HFSP is extensively present in
many manufacturing industries, such as steel, textile, petrochemicals, and electronics and each factory
represents a HFSP environment [4,5]. HFSP can be considered a combination of flow shop scheduling
problem (FSP) and parallel machine scheduling [6]. To enhance the efficiency of the flow shop, in the
traditional HFSP, jobs are processed by a single factory that utilizes one or more parallel machines
for production at each stage. Therefore, numerous scholars have conducted extensive research on
HFSP and have proposed various methods to address the issue, including the exact methods [7],
heuristics [8], and meta-heuristics [9]. HFSP is a typical flow shop scheduling problem. It combines the
characteristics of both classic flow shop and parallel machine scheduling and is an non-deterministic
polynomial (NP-hard) problem [10].

The manufacturing problem with multiple hybrid flow plants is called DHFSP. DHFSP combines
distributed production and HFSP, which is more complex and presents greater optimization challenges
compared to HFSP. Compared to distributed production and HFSP, DHFSP has less studied.
However, DHFSP is a common issue in manufacturing, particularly in semiconductor manufacturing.
This issue holds significant research importance. Fig. 1 shows a semiconductor manufacturing process
with two distinct workshops. All semiconductors begin with wafers. The raw materials used to make
wafers are processed to produce finished wafers, followed by the application of oxidation protection.
After completing the aforementioned steps, photo etching, etching, and thin film deposition are carried
out on the wafer to create the circuit and micro-devices. Finally, the interconnection process is carried
out to connect the circuits on the wafer, and the preliminary manufacturing of the semiconductor is
completed.

Figure 1: The diagram of DHFSP in semiconductor manufacturing

In the recent development, DHFSP has garnered significant thinking and has yielded numerous
results [11–15]. Meta-heuristics are widely utilized to solve DHFSP. The artificial bee colony algorithm
(ABC) is widely used to resolve the discrete harmony search and firefly algorithm (DHFSP).



CMC, 2024, vol.80, no.3 3575

Li et al. [16] improved the ABC (IABC) minimization algorithm to solve DHFSP, the IABC uses a two-
stage encoding approach and a machine-selected decoding approach. The hybrid search strategy com-
bines the benefits of simulated annealing (SA) and retention mechanisms to enhance the performance
of ABC. In [17], a hybrid ABC method with mixed domain operation and a multiple critical plant
exchange strategy is proposed. The self-adaptive ABC (SABC) is introduced to address the DRCHFS,
the algorithm considers resource constraints and machine allocation in decoding and introduces a
new initialization strategy that considers the maximum completion time of the work piece [18]. There
are also numerous studies utilizing other meta-heuristic algorithms. Hao et al. found an improved
crossover operator based on Partial Mapping Crossover (PMX) to enhance the performance of the
brain storm optimization Algorithm (BSO) [19]. A hybrid multi-objective iterated greedy with a new
integration initialization strategy by incorporating four heuristic rules is introduced by Lu et al. [20]
to solve an energy-aware problem of DHFSP. Li et al. [21] classified groups to implement different
evolutionary strategies becomes a multi-group cooperative evolutionary mechanism, increasing the
diversity of solutions. In [22], Cai et al. introduced a novel shuffled frog-leaping algorithm (FLA)
with memeplex quality designed, selecting new memeplex by evaluating the quality of each memeplex.
Wu utilizes particle swarm optimization (PSO) in conjunction with the leapfrog algorithm to address
production management issues in manufacturing facilities [23]. It combines the variation and crossover
ideas of genetic algorithms.

With the wide application of reinforcement learning (RL), there is an increasing amount of
research to solve DHFSP using reinforcement learning. Using RL and an effective solution selection
strategy based on decomposition can help in selecting appropriate improved operators [24], which
is advantageous for both the convergence and diversity of solutions. Q-learning, as a kind of RL, is
often used to solve the distributed flow shop scheduling problem. Zhang et al. [25] proposed a meta-
reinforcement learning-based meta-heuristic (MRLM). The search operator is trained to construct the
initial learning model, and then Q-learning is utilized to learn and assimilate feedback for selecting the
search operator. In order to expedite the convergence of the algorithm, it is common to design multiple
domain structures. Currently, many studies combine Q-learning to select the domain structure more
effectively [26,27]. In literature [28], Luo et al. used Q-learning to select the most effective strategy
among the six domain structures designed to accelerate convergence. A training algorithm based
on genetic algorithms is proposed by Liu et al. [29]. Combined with a genetic algorithm, a target
evaluation strategy for each workshop state is proposed, and the Deep Q-Network (DQN) is enhanced
to ensure stability during training. Zhao et al. [30] proposed a knowledge-driven cooperative scatter
search algorithm. To enhance the exploration ability and search efficiency of the algorithm, Q-learning
is design to select disturbance strategies. The aforementioned research demonstrates that combining
Q-learning to enhance algorithm performance is feasible and effective. There is few existing research
on applying Q-learning to solve DHFSP. It is a challenge that design Q-learning to effectively enhance
the performance of algorithms to solve the DHFSP. This paper introduces meta-heuristics integrates
Q-learning to solve DHFSP.

The main contributions of this study are shown as follows:

(1) A mathematical model is developed for solving the DHFSP.

(2) Six local search schemes are designed based on the nature of DHFSP to improve the
performance of four meta-heuristics.

(3) A learning strategy is proposed to assist the algorithms find the best local search strategy
during iterations.



3576 CMC, 2024, vol.80, no.3

The rest of this study consists of the following. In Section 2, we introduce the DHFSP and
establish a mathematical model. In Section 3, the proposed algorithms and the improvement strategies
are presented. In Section 4, experiments are conducted to validate the effectiveness of the proposed
strategies. Finally, Section 5 summarizes this work, and future directions are given.

2 Problem Description and Model

In this section, the specific process of DHFSP is introduced. There is a set of jobs that need to be
processed in factories. Each factory has stages. Each job must include all processing steps. Each stage
has one or more machines. The denote the number of machines at stage in factory. When a machine
is available on the production stage, the next job can be processed on this machine. The optimization
objective is to minimize the maximum completion time among all factories (makespan). The makespan
is crucial for optimizing resource utilization and achieving high productivity.

Parameters:

F : Number of factories.
s: Number of stages in each factory.
n: Number of jobs.
f : Index for factories. f = {1, 2, . . . , F}.
g: Index for stages. g = {1, 2, . . . , s}.
j: Index for jobs. j = {1, 2, . . . , n}.
i: Index for machines.
mgf : The number of machines at stage g in factory f .
Bjg: The beginning time of job j in stage g.
Pjg: The processing time of job j in stage g.
Cjg: The completion time of job j in stage g.
Cmax: The makespan of a schedule.
xjf : 1 if job j is allocated to factory f and 0 otherwise.
yjigf : 1 if job j is processed on machine i at stage g in factory f and 0 otherwise.
zjj′gf : 1 if job j is precedes j′ at stage g in factory f and 0 otherwise.

The target of the problem is to minimize the makespan as follows:

min Cmax = max
j=1,...,n;g=1,...,s

{
Cjg

} = max
j=1,...,n;g=1,...,s

{Bjg + Pjg} (1)

On the basis of the notations described, the mathematical model of DHFSP is as follows:
F∑

f=1

xjf = 1 ∀j = 1, 2, . . . , n (2)

Cjg+1 − Pjg+1 ≥ Cjg∀j = 1, 2, . . . , n g = 1, 2, . . . , s − 1 (3)

mgf∑

i=1

yjigf = xjf∀f = 1, 2, . . . , F g = 1, 2, . . . , s j = 1, 2, . . . , n (4)

zjj′gf + zj′ jgf ≤ 1∀j, j′ = 1, 2, . . . , n g = 1, 2, . . . , s f =, 1, 2, . . . , F (5)



CMC, 2024, vol.80, no.3 3577

n∑

j=1

yjigf ≤ 1 ∀f = 1, 2, . . . , F g = 1, 2, . . . , s (6)

Bjg ≥ 0 ∀j = 1, 2, . . . , n g = 1, 2, . . . , s (7)

n∑

j=1

yjigf ≥
n∑

j=1

yji+1gf ∀f = 1, 2, . . . , F g = 1, 2, . . . , s (8)

Constraint (2) states that each job assigned to one factory cannot be assigned to another.
Constraint (3) indicates that the current operation can only be performed after its previous operation
is complete. Constraint (4) indicates that all jobs must go through all operations, and when a machine
starts an operation, the operation cannot be assigned to other machines. Constraints (5) and (6)
describe that a task can only be processed on one machine, and when a machine starts an operation,
it cannot perform other operations. Constraint (7) stipulates that the start time of each operation will
not be less than 0. Constraint (8) means that when multiple parallel machines are idle, the previous
machine is given priority.

3 The Proposed Algorithms

In this section, we present the encoding and decoding methods, four meta-heuristics, local search
operations, and Q-learning. Then, we propose a method for selecting local search operations using
Q-learning during iterations and introduce the framework of the proposed algorithms.

3.1 Encoding and Decoding

DHFSP can be divided into the following steps: (1) assign jobs to several factories, (2) assign
jobs to multiple machines within each factory, and (3) sort jobs on machines. There are widely used
encoding methods for HFSP in [31]. In this study, the solution of DHFSP is encoded and decoded
by the method in [32]. Set a solution π = [π1, π2, . . . , πf ], where πi, i = 1, 2, . . . , f is the sequence of
tasks in factory i. During the decoding process for factory i, the processing order of jobs in the first
stage is the same as the order in πi. In the later stages, the jobs are processed in sequence according to
the completion order in the previous stage. When jobs enter the next stage at the same time, they are
processed according to their processing order in πi. For example, 4 jobs are processed in 2 factories.
Factory 1 has two stages, Stage 1 with 1 machine, and Stage 2 with 2 machines. In Factory 2, Stage 1
has two machines, and another has 1 machine. The processing time for each task is shown in Table 1.
Suppose π = [[3, 2], [1, 4]] as a feasible solution. Assign Job 2 and Job 3 to Factory 1, while Job 1 and
Job 4 to Factory 2 according to π . In the first stage of Factory 1, Job 3 is processed first, followed by
Job 2. In the later stage, priority is given to Job 3 with the least completion time from the previous
stage. The same principle applies to Factory 2. Therefore, the completion times of two factories are
C1 = 6 + 4 + 6 = 16, C2 = 3 + 5 + 4 = 12, Cmax = 16. The Gantt chart for decoding is shown in Fig. 2.

Table 1: Processing times

Factory 1 Job 2 Job 3 Factory 2 Job 1 Job 4

Stage 1 4 6 Stage 1 5 3
Stage 2 6 5 Stage 2 4 5



3578 CMC, 2024, vol.80, no.3

Figure 2: The Gantt chart of one solution for the example is in Table 1

3.2 Meta-Heuristics

Many meta-heuristics are utilized to solve production scheduling problems. In this study, we select
four algorithms: ABC, differential evolution (DE), PSO, and genetic algorithm (GA). These four
algorithms are most commonly used to solve DHFSP problems, and most studies have confirmed
that they have better performance in solving DHFSP. Fig. 3 illustrates the four algorithms’ framework.
First, the initial population is randomly generated, and the mass of the initial population is calculated,
which represents the current optimal solution by default. Then enter the iteration, and update the
optimal solution by comparing the fitness values according to meta-heuristics respective population
updating strategies. The fitness value is used to assess the quality of the current solutions generated by
the four meta-heuristics. In the DHFSP, the fitness value is makespan.

3.2.1 GA

The GA is a computational model that simulates the biological evolution process by mimicking
natural selection and the genetic mechanisms of Darwinian evolution. GA is now commonly used
in optimizing problems across various engineering fields. In GA, each solution is considered a
chromosome. In each generation, new chromosomes are created through three operations crossover,
mutation, and selection, using the parent chromosome from the previous generation.

3.2.2 PSO

The PSO simulates the process of hunting birds and fish in nature. Its principle of seeking
the global optimal solution to a problem through group collaboration is now widely applied in
optimization problems across various engineering fields.

3.2.3 DE

The DE is based on population evolution. The fundamental operations of DE include mutation,
crossover, and selection. The DE generates new individuals through the mutation operation based
on the difference. Compared with the GA, DE retains the global search strategy based on population,
utilizes real number coding, employs simple variation operations based on differences, and implements
a one-to-one competitive survival strategy to simplify genetic operations.



CMC, 2024, vol.80, no.3 3579

Figure 3: Algorithm flow framework

3.2.4 ABC

The ABC simulates the behavior of bees searching for honey sources in nature and seeks the
optimal solution through the division of labor and information sharing. A nectar source stands for
a feasible solution, and the quantity of nectar in each source reflects the fitness of that solution.
ABC exhibits strong global search ability and local optimization capability, making it well-suited
for function optimization problems. Compared with other heuristic algorithms, it has fewer control
parameters and higher robustness.

3.3 Local Search

The meta-heuristics are easy to implement and converge quickly. However, the algorithms may
easily fall into a situation where they reach a local optimum during the iteration process. To enable
the algorithm to escape from a local optimal solution, this paper develops six local search methods
based on the nature of the concerned problems. In DHFSP, set the factory with the maximum Cmax as



3580 CMC, 2024, vol.80, no.3

critical factory f ∗, and randomly select a non-critical factory as fother. Figs. 4–9 show the six types of
local search.

Figure 4: Critical factory insertion

Figure 5: Critical factory swap

Figure 6: Critical factory and other factory insertion

Figure 7: Critical factory and other factory swap

Figure 8: Critical factory and other factory sequence exchange

Figure 9: Critical factory opposite sequence



CMC, 2024, vol.80, no.3 3581

Critical Factory Insertion (Fig. 4): Select a job in the f ∗ and insert it into random location
in the f ∗.

Critical Factory Swap (Fig. 5): Select two jobs randomly in the f ∗ and swap their locations.

Critical Factory and Other Factory Insertion (Fig. 6): Select a job at random in both the f ∗ and
fother, then insert the task in the f ∗ in front of the job in f other.

Critical Factory and Other Factory Swap (Fig. 7): Select a job at random in both the f ∗ and fother,
then swap their locations.

Critical Factory and Other Factory Sequence Exchange (Fig. 8): Exchange job sequences for f ∗

and fother.

Critical Factory Opposite Sequence (Fig. 9): Reverse the sequence of jobs in f ∗.

The f ∗ is the factory with the maximum Cmax. It indicates that adjusting the jobs in the f ∗ can
effectively reduce the maximum Cmax, and optimize the optimal solution.

3.4 Q-Learning

RL is a field of machine learning. In RL, agents acquire tactics to optimize rewards or accomplish
particular objectives through their engagements with the environment. RL focuses on how agents
make decisions in an environment to maximize cumulative rewards. Learners will take actions in the
environment and receive rewards based on their actions. Through feedback, the agent will eventually
obtain the optimal policy. The policy aims to maximize his reward for actions and interactions with
the environment. The framework of RL is depicted in Fig. 10.

Figure 10: The framework of reinforcement learning

Q-learning is a form of RL. In Q-learning, positive behavior is rewarded, while negative behavior
is punished. Q-learning introduces new components within the framework of reinforcement learning.
Q-values represent the value of acting in its current state. Q-learning uses Q-values to determine the
optimal action. The updated formula for Q-values is as follows:

Q (s, a) = Q (s, a) + α ∗ (r + γ ∗ max (Q (s′, a′)) − Q (s, a)) (9)

where Q(s, a) is the Q-values of taking the action a in the state s. The α is the learning rate while the
γ is the discount factor. The r is the actual reward received for the action a. The max(Q(s′, a′)) is the
highest expected reward for all possible actions in state s′.

Q-table is used to store Q-values. The Q-table contains a list of rewards for the optimal behavior in
each state within a specific environment. It can aid in understanding the outcomes of various behaviors
in different scenarios. Once an agent makes in deciding the environment, the corresponding Q-value
in the Q-table will be updated. Through continuous iteration and receiving more feedback, the Q-table
will become more accurate, allowing the agent to make better decisions toward achieving the optimal
solution. The Q-table for local search selection during iterations is shown in Table 2, where both rows



3582 CMC, 2024, vol.80, no.3

and columns are set to local search operators. At the beginning, the Q-value of each local search in
the Q-table is the same. With each iteration, the Q-value of each local search is updated. Compare the
Q-values and choose the local search that receives the best feedback in the current state.

Table 2: Q-table

Local
search1

Local
search2

Local
search3

Local
search4

Local
search5

Local
search6

S1 Q(1,1) Q(1,2) Q(1,3) Q(1,4) Q(1,5) Q(1,6)
S2 Q(2,1) Q(2,2) Q(2,3) Q(2,4) Q(2,5) Q(2,6)
S3 Q(3,1) Q(3,2) Q(3,3) Q(3,4) Q(3,5) Q(3,6)
S4 Q(4,1) Q(4,2) Q(4,3) Q(4,4) Q(4,5) Q(4,6)
S5 Q(5,1) Q(5,2) Q(5,3) Q(5,4) Q(5,5) Q(5,6)
S6 Q(6,1) Q(6,2) Q(6,3) Q(6,4) Q(6,5) Q(6,6)

4 Computational Results and Discussions

In this section, we compare the performance of Q-learning-assisted meta-heuristics and the
classical meta-heuristics on a standard data set. To further verify the performance of the proposed
algorithms, we also execute the Friedman test to compare the Q-learning-assisted meta-heuristics and
one existing high-performance algorithm.

4.1 Experiment Setup

In this study, we take 60 instances with different scales, n = {40, 60, 80, 100}, F = {2, 3, 4, 5, 6},
and s = {2, 5, 8} for our experiments [17]. Set the number of machines in each stage of each factory
within 1 to 5. The running time of each algorithm is set according to the case scales with n ∗ F ∗ s ∗ t
milliseconds, where t is a constant and is set to 20. Each instance is solved 10 times independently, and
the average value is recorded. All algorithms are carried through the same experiment environment,
i.e., a PC with an AMD Ryzen 5 processor (model 5600H) with Radeon Graphics. The CPU frequency
is 3.30 GHz, and the memory size is 16 GB.

4.2 Results and Comparisons

To assess the performance of the proposed enhancement strategies, four basic meta-heuristics,
four meta-heuristics with random local search operation selection, and four meta-heuristics with Q-
learning-based local search operation selection are compared in respective groups. The results of four
fundamental meta-heuristics, with random selection local search, and with Q-learning-based local
search are shown in Tables 3–6. The experimental results consist of the average values in ten runs by
four meta-heuristics and their variants across 60 examples. The best minimum values are highlighted
in bold. From Tables 3–6, it can be seen that the results of the local search based on Q-learning have
the most optimal solutions for each algorithm. It means that using Q-learning to enhance the meta-
heuristics for solving DHFSP is effective.



CMC, 2024, vol.80, no.3 3583

Table 3: The results of GA and its variants

Instance GA GA_LS GA_QL Instance GA GA_LS GA_QL Instance GA GA_LS GA_QL

2-40-2 1075 1035.2 1001.7 3-80-8 1899.8 1871.8 1844.5 5-60-5 823.7 820.9 777.5
2-40-5 1276.2 1288.6 1232.7 3-100-2 1819.9 1786.4 1755.3 5-60-8 1086.3 1093.9 1061.8
2-40-8 1535.8 1541.8 1522.7 3-100-5 2117.6 2093.4 2063.4 5-80-2 857.2 851.2 800.7
2-60-2 1565.1 1589.1 1522.4 3-100-8 2329.3 2305.5 2282.8 5-80-5 1170.5 1168.8 1146.7
2-60-5 1819.6 1800.1 1788.7 4-40-2 526 502.7 462.7 5-80-8 1345 1342.8 1306.2
2-60-8 2171.3 2141.6 2134.2 4-40-5 795 812.2 758.5 5-100-2 1121.7 1121.1 1053.6
2-80-2 2017.2 1995.6 1988.2 4-40-8 945.9 961.6 909.6 5-100-5 1351.8 1368.3 1330.6
2-80-5 2356.2 2354.3 2323.4 4-60-2 805.9 783.2 714.4 5-100-8 1666.2 1648.3 1646.1
2-80-8 2696.8 2708.7 2668.9 4-60-5 1014.9 992.2 974.2 6-40-2 426.9 425.3 335.1
2-100-2 2697 2640.8 2630.3 4-60-8 1052.6 1045.2 1021 6-40-5 538.7 549.1 502.6
2-100-5 2951.3 2952.9 2937.2 4-80-2 1165.1 1194.2 1109.1 6-40-8 792.2 754.6 743.7
2-100-8 3373.4 3381.8 3360.7 4-80-5 1313.4 1311 1279.1 6-60-2 564.5 520.5 507
3-40-2 549.2 545.3 519.9 4-80-8 1492.7 1480.9 1452.1 6-60-5 854.4 835.8 806
3-40-5 918.9 904.4 887 4-100-2 1169.8 1164 1145.1 6-60-8 996.5 988.9 939.3
3-40-8 1173.2 1168.1 1141.8 4-100-5 1547.8 1531.5 1497.6 6-80-2 752.8 779.8 726.9
3-60-2 1003.9 1005.2 921.2 4-100-8 1880.6 1900.3 1867.5 6-80-5 1056.5 1080.9 1057.2
3-60-5 1322.7 1307.4 1270.6 5-40-2 492.2 482.2 422.4 6-80-8 1209.1 1203.5 1193.9
3-60-8 1570.6 1546.8 1526 5-40-5 701.6 651.8 663.3 6-100-2 921.8 890.3 878.1
3-80-2 1338.3 1307.4 1231.2 5-40-8 788.4 799.2 781.8 6-100-5 1180.5 1193.7 1162.3
3-80-5 1587.9 1585.5 1552.6 5-60-2 689.7 700.6 635.1 6-100-8 1418.3 1407.3 1403.1

Table 4: The results of PSO and its variants

Instance PSO PSO_LS PSO_QL Instance PSO PSO_LS PSO_QL Instance PSO PSO_LS PSO_QL

2-40-2 1094.8 1039.1 1002.4 3-80-8 1869.4 1900.7 1834.8 5-60-5 838.2 834.9 810.5
2-40-5 1278.1 1271.7 1251.4 3-100-2 1831.1 1828.3 1749.4 5-60-8 1091.3 1096.6 1062.1
2-40-8 1532.3 1526.2 1500.1 3-100-5 2099.3 2100.7 2070.5 5-80-2 840.7 842.8 801.4
2-60-2 1567.2 1543.3 1520.4 3-100-8 2316.7 2301.1 2282.1 5-80-5 1159.6 1155.2 1127.2
2-60-5 1814.2 1806.7 1758.8 4-40-2 506 474.9 451 5-80-8 1340 1356.2 1319.6
2-60-8 2155.9 2146.6 2118.1 4-40-5 793.8 807.2 776.5 5-100-2 1122.9 1115.2 1065.1
2-80-2 2012.4 2011.3 1953.2 4-40-8 941 975.1 908.3 5-100-5 1357 1344.3 1319
2-80-5 2366.1 2362.8 2320.5 4-60-2 793 802.2 726.7 5-100-8 1672.2 1653.9 1632.2
2-80-8 2711.6 2700.7 2672.1 4-60-5 985.5 984.1 966.6 6-40-2 398.6 400 343.9
2-100-2 2658.4 2648.9 2601.5 4-60-8 1053.5 1033.3 1025.9 6-40-5 545.1 529.4 512.9
2-100-5 2948.2 2947.7 2902.7 4-80-2 1171.4 1147.2 1105.7 6-40-8 802.6 794.8 751.2
2-100-8 3362.7 3368.7 3360.7 4-80-5 1302 1318.5 1269.8 6-60-2 587.5 557.3 495.9
3-40-2 551.3 536.8 478.3 4-80-8 1484 1480 1453.6 6-60-5 828.9 833.7 805.1
3-40-5 905.2 903.3 865.8 4-100-2 1172.9 1215 1140.4 6-60-8 977.2 987.8 951
3-40-8 1196.9 1165.8 1140.1 4-100-5 1532.2 1521.2 1485.1 6-80-2 751.2 758.5 711.1
3-60-2 986 1005.2 914.6 4-100-8 1867.4 1897.9 1860.2 6-80-5 1061.5 1069 1037.6
3-60-5 1317.8 1322.7 1253.9 5-40-2 487.5 490.4 436.6 6-80-8 1223.7 1214.3 1188.7
3-60-8 1535.5 1537.3 1541.1 5-40-5 683.3 613.4 640.8 6-100-2 898.4 901 863.9

(Continued)



3584 CMC, 2024, vol.80, no.3

Table 4 (continued)
Instance PSO PSO_LS PSO_QL Instance PSO PSO_LS PSO_QL Instance PSO PSO_LS PSO_QL

3-80-2 1316 1289.3 1263.6 5-40-8 789.4 793.1 770.7 6-100-5 1183.3 1195 1153.9
3-80-5 1616.7 1592.9 1551.3 5-60-2 669.6 682.3 637 6-100-8 1413.3 1422.3 1394.9

Table 5: The results of DE and its variants

Instance DE DE_LS DE_QL Instance DE DE_LS DE_QL Instance DE DE_LS DE_QL

2-40-2 1060.2 1044.2 1004.7 3-80-8 1887.8 1886.3 1854.5 5-60-5 842.7 834.4 821
2-40-5 1295.8 1269.3 1264.8 3-100-2 1829.5 1820.2 1754.2 5-60-8 1084.9 1099.5 1093.5
2-40-8 1529.2 1536.7 1489.5 3-100-5 2103.9 2083.2 2066.1 5-80-2 866.7 859.5 818.8
2-60-2 1551.6 1561.3 1510.6 3-100-8 2332.3 2324.6 2247.5 5-80-5 1149.7 1162.1 1129.7
2-60-5 1814.1 1794.9 1775 4-40-2 501.2 531.4 460.9 5-80-8 1363.8 1340.9 1350.7
2-60-8 2153 2154.8 2125.6 4-40-5 830.8 810.5 759.8 5-100-2 1117 1127.1 1075.7
2-80-2 1997.3 2015.7 1956.3 4-40-8 965.4 973.9 941.9 5-100-5 1363.2 1358.5 1346.7
2-80-5 2372.3 2347.6 2313.4 4-60-2 803.8 794.6 707.5 5-100-8 1648.3 1664.4 1636.5
2-80-8 2700 2703.2 2664.8 4-60-5 1002.8 979.9 996.4 6-40-2 398.5 411.6 340.5
2-100-2 2651.9 2668.1 2602 4-60-8 1054.1 1037.5 1029.9 6-40-5 538.1 524 506
2-100-5 2945.7 2952.1 2911.9 4-80-2 1174.1 1150.1 1112.5 6-40-8 795 792.1 734.6
2-100-8 3359.6 3370.4 3312 4-80-5 1316 1310.1 1282.4 6-60-2 548.5 572 499.2
3-40-2 562.9 564.2 479.5 4-80-8 1496 1494.5 1474.4 6-60-5 847.3 841.6 814.3
3-40-5 886.8 902.8 875.1 4-100-2 1180.4 1198.7 1117.7 6-60-8 980.4 997.7 951.8
3-40-8 1192.1 1180.2 1140.2 4-100-5 1520.2 1533.8 1498.4 6-80-2 764.3 763.5 730
3-60-2 980.2 978.3 937.3 4-100-8 1904.7 1884.9 1852.4 6-80-5 1082.6 1068.7 1040.5
3-60-5 1316.1 1303.9 1278.8 5-40-2 486.6 504.2 443.2 6-80-8 1222.7 1221.4 1195.8
3-60-8 1554.5 1552.4 1532.6 5-40-5 684.8 656.6 643.6 6-100-2 920 904.6 882.1
3-80-2 1307.2 1307.4 1242.3 5-40-8 797.1 790.4 771.5 6-100-5 1190.4 1185.9 1156.4
3-80-5 1595.7 1581.2 1555.9 5-60-2 677.5 688 625.5 6-100-8 1418.7 1420.9 1379.7

Table 6: The results of ABC and its variants

Instance ABC ABC_LS ABC_QL Instance ABC ABC_LS ABC_QL Instance ABC ABC_LS ABC_QL

2-40-2 1040.4 1050.8 997.6 3-80-8 1869.7 1895.9 1858.9 5-60-5 841.7 827.1 811.7
2-40-5 1274.9 1281.8 1265.8 3-100-2 1823.5 1816.2 1743.4 5-60-8 1075.9 1092.1 1063.6
2-40-8 1538.2 1532.9 1478.7 3-100-5 2153.6 2148.8 2102.8 5-80-2 855.1 825.9 785.1
2-60-2 1532.9 1546.1 1508 3-100-8 2330.6 2336.2 2273.3 5-80-5 1150.5 1144.3 1129.2
2-60-5 1820.3 1792.1 1771.5 4-40-2 499.4 506.2 424.4 5-80-8 1363.5 1348.3 1324.3
2-60-8 2157.1 2148.3 2125.1 4-40-5 832.9 793.9 760.8 5-100-2 1125.8 1125.7 1071.9
2-80-2 2016.8 2016 1979.3 4-40-8 956.6 971 911.6 5-100-5 1361 1354.6 1324.8
2-80-5 2367.8 2365.4 2335.1 4-60-2 810.6 782.8 710.8 5-100-8 1664.6 1675 1622.5
2-80-8 2707 2711.1 2674.3 4-60-5 992.6 983.2 968.9 6-40-2 399.8 392.7 339.6
2-100-2 2661.6 2679.3 2615.8 4-60-8 1051.1 1022.6 1012.3 6-40-5 532.5 528.8 501.7
2-100-5 2960.3 2948.5 2915.3 4-80-2 1161.2 1173.2 1105.8 6-40-8 781.4 769.7 719.1

(Continued)



CMC, 2024, vol.80, no.3 3585

Table 6 (continued)
Instance ABC ABC_LS ABC_QL Instance ABC ABC_LS ABC_QL Instance ABC ABC_LS ABC_QL

2-100-8 3343.6 3362.7 3339.5 4-80-5 1293.5 1302.3 1272.1 6-60-2 550.6 542.7 484.7
3-40-2 570.7 559.2 504.2 4-80-8 1517.1 1476.3 1455.1 6-60-5 832.9 836.8 792
3-40-5 924.5 895.3 854.3 4-100-2 1152.3 1160.9 1126.5 6-60-8 978.4 981.8 1038.5
3-40-8 1184.9 1184.8 1139.2 4-100-5 1520 1515.2 1476 6-80-2 722.4 730 712.5
3-60-2 978.2 1004.1 934.6 4-100-8 1905.2 1899 1854.1 6-80-5 1068 1047 1050.9
3-60-5 1326.2 1306.7 1287.4 5-40-2 495.4 479.2 446 6-80-8 1220.3 1210.3 1163.2
3-60-8 1551.7 1562.8 1533.7 5-40-5 701.1 646.1 636.2 6-100-2 898.9 919.1 855.7
3-80-2 1326.2 1273.9 1237.5 5-40-8 808.8 798.8 777.6 6-100-5 1181.8 1182.3 1159.2
3-80-5 1632.6 1582.1 1575.2 5-60-2 691.7 659.8 631.3 6-100-8 1423.8 1423 1369.7

Coefficient of Variation (CV) is the coefficient of variation, which is used to measure the degree
of variation in experimental results. It is particularly useful when comparing data sets with different
units or scales, as it standardizes the standard deviation relative to the mean.

CV = SD
Avg

(11)

where Avg is the average of the results in 10 runs for one instance and SD is the standard deviation. The
CV values of four meta-heuristics and their variants are shown in Table 7. All of four meta-heuristics
the best CV are GA_QL, PSO_QL, DE_QL and ABC_QL.

Table 7: CV values by four algorithms and their variants

Instance CV CV CV CV

GA 0.032 PSO 0.035 DE 0.031 ABC 0.029
GA_LS 0.030 PSO_LS 0.031 DE_LS 0.030 ABC_LS 0.029
GA_QL 0.017 PSO_QL 0.016 DE_QL 0.013 ABC_QL 0.012

4.3 Statistical Test

In this section, we conduct the Friedman test on four meta-heuristics combined with Q-learning
and improved iterated greedy algorithm (IIG) [33] to compare their performance. The reason for
choosing IIG is that the comparison of the IIG algorithm with IG_VND [34], GA, IG [35], and iterated
local search (ILS) [36] shows that the IIG algorithm has the best performance. The results of the
Friedman test are reported in Table 8. The asymptotic significance (Asymp. Sig.) is 0.000, which is less
than the specified significance level of 0.05. It means that there are significant differences among the
five algorithms. The ranks of the five algorithms are shown in Fig. 11. The algorithm with a smaller
rank value has better performance. From Fig. 11, we can see that PSO_QL has the smallest rank
value (2.175), indicating the most competitiveness of the PSO_QL. The distribution by ranks of five
algorithms is depicted in Fig. 12. Through the rank value and rank distribution of the Friedman test,
it can be obtained that the PSO_QL is the most competitive one among the five algorithms.



3586 CMC, 2024, vol.80, no.3

Table 8: The statistical results of the Friedman test

Test statistics

N 60
Chi-square 103.376
df 4
Asymp. Sig. 0.000

Figure 11: The rank value of algorithms

Figure 12: The distribution by ranks of algorithms

5 Conclusions and Future Directions

This paper introduces the integration of Q-learning and meta-heuristics to address DHFSP. Four
meta-heuristics (GA, PSO, DE, ABC) are utilized, and six local search strategies are developed to avoid



CMC, 2024, vol.80, no.3 3587

algorithms falling into local optimality based on the feature of DHFSP. The meta-heuristics combine
Q-learning to select six types of local searches to choose the appropriate local search strategy more
efficiently. In the experiments, 60 different examples are used to analyze algorithms’ performances.
The experimental results show that the PSO_QL exhibits the highest competitiveness among all the
compared algorithms.

Based on this work, the following issues are planned to be addressed in the future. (1) In
DHFSP, multiple optimization goals are considered, including energy efficiency and cost. (2) Consider
comparing Q-learning with other reinforcement learning methods, such as Sarsa. (3) There are many
complex situations in the actual shop, such as job setup time. We will consider adding more constraints
to the concerned DHFSP problems.

Acknowledgement: None.

Funding Statement: This study is partially supported by the Guangdong Basic and Applied
Basic Research Foundation (2023A1515011531), the National Natural Science Foundation of China
under Grant 62173356, the Science and Technology Development Fund (FDCT), Macau SAR, under
Grant 0019/2021/A, Zhuhai Industry-University-Research Project with Hongkong and Macao under
Grant ZH22017002210014PWC, the Key Technologies for Scheduling and Optimization of Complex
Distributed Manufacturing Systems (22JR10KA007).

Author Contributions: Study conception and design: Qianyao Zhu and Kaizhou Gao; data collection:
Qianyao Zhu; analysis and interpretation of results: Qianyao Zhu; draft manuscript preparation:
Qianyao Zhu; review and editing: Kaizhou Gao and Adam Slowik. All authors reviewed the results
and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] B. T. Wang, Q. -K. Pan, L. Gao, Z. -H. Miao, and H. -Y. Sang, “Modeling and scheduling a constrained

flowshop in distributed manufacturing environments,” J. Manuf. Syst., vol. 72, pp. 519–535, 2024.
[2] S. Wang, X. Li, L. Gao, and J. Li, “A multi-disjunctive-graph model-based memetic algorithm for

the distributed job shop scheduling problem,” Adv. Eng. Inform., vol. 60, 2024, Art. no. 102401. doi:
10.1016/j.aei.2024.102401.

[3] A. M. Fathollahi-Fard, L. Woodward, and O. Akhrif, “A distributed permutation flow-shop considering
sustainability criteria and real-time scheduling,” J. Ind. Inf. Integr., vol. 39, 2024, Art. no. 100598. doi:
10.1016/j.jii.2024.100598.

[4] D. Lei, J. Zhang, and H. Liu, “An adaptive two-class teaching-learning-based optimization for energy-
efficient hybrid flow shop scheduling problems with additional resources,” Symmetry, vol. 16, no. 2, 2024,
Art. no. 203. doi: 10.3390/sym16020203.

[5] M. Geetha, R. Chandra Guru Sekar, M. K. Marichelvam, and Ö. Tosun, “A sequential hybrid optimization
algorithm (SHOA) to solve the hybrid flow shop scheduling problems to minimize carbon footprint,”
Processes, vol. 12, no. 1, 2024, Art. no. 143. doi: 10.3390/pr12010143.

https://doi.org/10.1016/j.aei.2024.102401
https://doi.org/10.1016/j.jii.2024.100598
https://doi.org/10.3390/sym16020203
https://doi.org/10.3390/pr12010143


3588 CMC, 2024, vol.80, no.3

[6] C. -C. Lin, Y. -C. Peng, Y. -S. Chang, and C. -H. Chang, “Reentrant hybrid flow shop scheduling with
stockers in automated material handling systems using deep reinforcement learning,” Comput. Indus. Eng.,
vol. 189, no. 3, 2024, Art. no. 109995. doi: 10.1016/j.cie.2024.109995.

[7] O. Moursli and Y. Pochet, “A branch-and-bound algorithm for the hybrid flowshop,” Int. J. Prod. Econ.,
vol. 64, pp. 113–125, 2000. doi: 10.1016/S0925-5273(99)00051-1.

[8] L. Hidri and A. Gharbi, “New efficient lower bound for the hybrid flow shop scheduling problem with
multiprocessor tasks,” IEEE Access, vol. 5, pp. 6121–6133, 2017. doi: 10.1109/ACCESS.2017.2696118.

[9] B. Khurshid, S. Maqsood, Y. Khurshid, K. Naeem, and Q. S. Khalid, “A hybridization of evolution
strategies with iterated greedy algorithm for no-wait flow shop scheduling problems,” Sci. Rep., vol. 14,
no. 1, 2024, Art. no. 2376. doi: 10.1038/s41598-023-47729-x.

[10] M. Y. Wang, S. P. Sethi, and S. L. van de Velde, “Minimizing makespan in a class of reentrant shops,” Oper.
Res., vol. 45, no. 5, pp. 702–712, 1997. doi: 10.1287/opre.45.5.702.

[11] Y. Zhu, Q. Tang, L. Cheng, L. Zhao, G. Jiang and Y. Lu, “Solving multi-objective hybrid flowshop lot-
streaming scheduling with consistent and limited sub-lots via a knowledge-based memetic algorithm,” J.
Manuf. Syst., vol. 73, no. 5, pp. 106–125, 2024. doi: 10.1016/j.jmsy.2024.01.006.

[12] Z. Shao, W. Shao, J. Chen, and D. Pi, “A feedback learning-based selection hyper-heuristic for distributed
heterogeneous hybrid blocking flow-shop scheduling problem with flexible assembly and setup time,” Eng.
Appl. Artif. Intell., vol. 131, no. 4, 2024, Art. no. 107818. doi: 10.1016/j.engappai.2023.107818.

[13] G. Ziadlou, S. Emami, and E. Asadi-Gangraj, “Network configuration distributed production scheduling
problem: A constraint programming approach,” Comput. Indus. Eng., vol. 188, no. 10, 2024, Art. no.
109916. doi: 10.1016/j.cie.2024.109916.

[14] B. Khurshid and S. Maqsood, “A hybrid evolution strategies-simulated annealing algorithm for
job shop scheduling problems,” Eng. Appl. Artif. Intell., vol. 133, 2024, Art. no. 108016. doi:
10.1016/j.engappai.2024.108016.

[15] J. Wang, H. Tang, and D. Lei, “A feedback-based artificial bee colony algorithm for energy-efficient flexible
flow shop scheduling problem with batch processing machines,” Appl. Soft Comput., vol. 153, no. 1, 2024,
Art. no. 111254. doi: 10.1016/j.asoc.2024.111254.

[16] Y. Li, X. Li, L. Gao, and L. Meng, “An improved artificial bee colony algorithm for distributed
heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times,” Comput. Indus.
Eng., vol. 147, no. 2, 2020, Art. no. 106638. doi: 10.1016/j.cie.2020.106638.

[17] Y. Li et al., “A discrete artificial bee colony algorithm for distributed hybrid flowshop scheduling problem
with sequence-dependent setup times,” Int. J. Prod. Res., vol. 59, no. 13, pp. 3880–3899, 2020. doi:
10.1080/00207543.2020.1753897.

[18] X. -R. Tao, Q. -K. Pan, and L. Gao, “An efficient self-adaptive artificial bee colony algorithm for the
distributed resource-constrained hybrid flowshop problem,” Comput. Indus. Eng., vol. 169, no. 18, 2022,
Art. no. 108200. doi: 10.1016/j.cie.2022.108200.

[19] J. -H. Hao, J. -Q. Li, Y. Du, M. -X. Song, P. Duan and Y. -Y. Zhang, “Solving distributed hybrid flowshop
scheduling problems by a hybrid brain storm optimization algorithm,” IEEE Access, vol. 7, pp. 66879–
66894, 2019. doi: 10.1109/ACCESS.2019.2917273.

[20] C. Lu, J. Zhou, L. Gao, X. Li, and J. Wang, “Modeling and multi-objective optimization for energy-aware
scheduling of distributed hybrid flow-shop,” Appl. Soft Comput., vol. 156, no. 1, 2024, Art. no. 111508. doi:
10.1016/j.asoc.2024.111508.

[21] X. Li, Q. Zhao, H. Tang, S. Yang, D. Lei and X. Wang, “Joint scheduling optimisation method for the
machining and heat-treatment of hydraulic cylinders based on improved multi-objective migrating birds
optimisation,” Manuf. Syst., vol. 73, pp. 170–191, 2024.

[22] J. Cai, D. Lei, and M. Li, “A shuffled frog-leaping algorithm with memeplex quality for bi-objective
distributed scheduling in hybrid flow shop,” Int. J. Prod. Res., vol. 59, no. 18, pp. 5404–5421, 2021. doi:
10.1080/00207543.2020.1780333.

https://doi.org/10.1016/j.cie.2024.109995
https://doi.org/10.1016/S0925-5273(99)00051-1
https://doi.org/10.1109/ACCESS.2017.2696118
https://doi.org/10.1038/s41598-023-47729-x
https://doi.org/10.1287/opre.45.5.702
https://doi.org/10.1016/j.jmsy.2024.01.006
https://doi.org/10.1016/j.engappai.2023.107818
https://doi.org/10.1016/j.cie.2024.109916
https://doi.org/10.1016/j.engappai.2024.108016
https://doi.org/10.1016/j.asoc.2024.111254
https://doi.org/10.1016/j.cie.2020.106638
https://doi.org/10.1080/00207543.2020.1753897
https://doi.org/10.1016/j.cie.2022.108200
https://doi.org/10.1109/ACCESS.2019.2917273
https://doi.org/10.1016/j.asoc.2024.111508
https://doi.org/10.1080/00207543.2020.1780333


CMC, 2024, vol.80, no.3 3589

[23] M. Wu, “Application of particle swarm optimisation algorithm incorporating frog-leaping algorithm in
optimal scheduling for production management in manufacturing plant,” Int. J. Interact. Des. Manuf., vol.
286, no. 1, 2024, Art. no. 32. doi: 10.1007/s12008-024-01767-5.

[24] J. -J. Wang and L. Wang, “A cooperative memetic algorithm with learning-based agent for energy-aware
distributed hybrid flow-shop scheduling,” IEEE Trans. Evol. Comput., vol. 26, no. 3, pp. 461–475, Jun.
2022. doi: 10.1109/TEVC.2021.3106168.

[25] Z. Zhang, Z. Shao, W. Shao, J. Chen, and D. Pi, “MRLM: A meta reinforcement learning-based
metaheuristic for hybrid flow-shop scheduling problem with learning and forgetting effects,” Swarm Evol.
Comput., vol. 85, no. 1, 2024, Art. no. 101479. doi: 10.1016/j.swevo.2024.101479.

[26] H. Yu, K. Gao, N. Wu, M. Zhou, P. N. Suganthan and S. Wang, “Scheduling multiobjective dynamic
surgery problems via Q-learning-based meta-heuristics,” IEEE Trans. Syst. Man, Cyber.: Syst., vol. 54, no.
6, pp. 3321–3333, Jun. 2024.

[27] F. Q. Wang, Y. P. Fu, K. Z. Gao, Y. X. Wu, and S. Gao, “A Q-learning-based hybrid meta-heuristic for inte-
grated scheduling of disassembly and reprocessing processes considering product structures and stochas-
ticity,” Complex Syst. Model. Simul., vol. 4, no. 4, pp. 184–209, 2024. doi: 10.23919/CSMS.2024.0007.

[28] C. Luo, W. Gong, F. Ming, and C. Lu, “A Q-learning memetic algorithm for energy-efficient heterogeneous
distributed assembly permutation flowshop scheduling considering priorities,” Swarm Evol. Comput., vol.
85, 2024, Art. no. 101497. doi: 10.1016/j.swevo.2024.101497.

[29] Y. Liu, F. Zhang, Y. Sun, and M. Zhang, “Evolutionary trainer-based deep Q-network
for dynamic flexible job shop scheduling,” IEEE T. Evolut. Comput., doi: 10.1109/
TEVC.2024.3367181.

[30] F. Zhao, G. Zhou, T. Xu, N. Zhu, and Jonrinaldi, “A knowledge-driven cooperative scatter search algorithm
with reinforcement learning for the distributed blocking flow shop scheduling problem,” Expert Syst. App.,
vol. 230, 2023, Art. no. 120571. doi: 10.1016/j.eswa.2023.120571.

[31] Q. -K. Pan, L. Gao, X. -Y. Li, and K. -Z. Gao, “Effective metaheuristics for scheduling a hybrid
flowshop with sequence-dependent setup times,” Appl. Math. Comput., vol. 303, pp. 89–112, 2017. doi:
10.1016/j.amc.2017.01.004.

[32] K. -C. Ying and S. -W. Lin, “Minimizing makespan for the distributed hybrid flowshop schedul-
ing problem with multiprocessor tasks,” Expert Syst. Appl., vol. 92, no. 2, pp. 132–141, 2018. doi:
10.1016/j.eswa.2017.09.032.

[33] C. Lu, J. Zheng, L. Yin, and R. Wang, “An improved iterated greedy algorithm for the dis-
tributed hybrid flowshop scheduling problem,” Eng. Optim., vol. 56, no. 5, pp. 792–810, 2023. doi:
10.1080/0305215X.2023.2198768.

[34] B. Naderi and R. Ruiz, “The distributed permutation flowshop scheduling problem,” Comput. Oper. Res.,
vol. 37, pp. 754–768, 2010. doi: 10.1016/j.cor.2009.06.019.

[35] H. Oztop, M. F. Tasgetiren, D. T. Eliiyi, and Q. K. Pan, “Metaheuristic algorithms for the hybrid flowshop
scheduling problem,” Comput. Oper. Res., vol. 111, no. 1, pp. 177–196, 2019. doi: 10.1016/j.cor.2019.06.009.

[36] W. S. Shao, D. C. Pi, and Z. S. Shao, “Local search methods for a distributed assembly no-idle flow shop
scheduling problem,” IEEE Syst. J., vol. 13, no. 2, pp. 1945–1956, 2019. doi: 10.1109/JSYST.2018.2825337.

https://doi.org/10.1007/s12008-024-01767-5
https://doi.org/10.1109/TEVC.2021.3106168
https://doi.org/10.1016/j.swevo.2024.101479
https://doi.org/10.23919/CSMS.2024.0007
https://doi.org/10.1016/j.swevo.2024.101497
https://doi.org/10.1109/TEVC.2024.3367181
https://doi.org/10.1016/j.eswa.2023.120571
https://doi.org/10.1016/j.amc.2017.01.004
https://doi.org/10.1016/j.eswa.2017.09.032
https://doi.org/10.1080/0305215X.2023.2198768
https://doi.org/10.1016/j.cor.2009.06.019
https://doi.org/10.1016/j.cor.2019.06.009
https://doi.org/10.1109/JSYST.2018.2825337

	Q-Learning-Assisted Meta-Heuristics for Scheduling Distributed Hybrid Flow Shop Problems
	1 Introduction
	2 Problem Description and Model
	3 The Proposed Algorithms
	4 Computational Results and Discussions
	5 Conclusions and Future Directions
	References


