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ABSTRACT

Confusing object detection (COD), such as glass, mirrors, and camouflaged objects, represents a burgeoning
visual detection task centered on pinpointing and distinguishing concealed targets within intricate backgrounds,
leveraging deep learning methodologies. Despite garnering increasing attention in computer vision, the focus of
most existing works leans toward formulating task-specific solutions rather than delving into in-depth analyses of
methodological structures. As of now, there is a notable absence of a comprehensive systematic review that focuses
on recently proposed deep learning-based models for these specific tasks. To fill this gap, our study presents a
pioneering review that covers both the models and the publicly available benchmark datasets, while also identifying
potential directions for future research in this field. The current dataset primarily focuses on single confusing object
detection at the image level, with some studies extending to video-level data. We conduct an in-depth analysis
of deep learning architectures, revealing that the current state-of-the-art (SOTA) COD methods demonstrate
promising performance in single object detection. We also compile and provide detailed descriptions of widely used
datasets relevant to these detection tasks. Our endeavor extends to discussing the limitations observed in current
methodologies, alongside proposed solutions aimed at enhancing detection accuracy. Additionally, we deliberate
on relevant applications and outline future research trajectories, aiming to catalyze advancements in the field of
glass, mirror, and camouflaged object detection.

KEYWORDS
Confusing object detection; mirror detection; glass detection; camouflaged object detection; deep learning

1 Introduction

Object detection is the task that aims to detect and locate the object in the images or videos, which
has attracted considerable research attention in recent years. The methods for object detection have
achieved significant advancements since the introduction of deep convolutional neural networks, e.g.,
AlexNet [1]. While general object detection methods [2,3] perform well on most regular objects, there
exist many tricky objects that it cannot detect reliably.
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Easily confused objects such as glass, mirrors, and camouflaged objects pose a significant
challenge to commonly used general object detection methods. The left three columns of Fig. 1
show some examples of confusing objects. For instance, the inherent optical properties of mirrors
pose considerable difficulties for reliable object detection. This challenge arises from the striking
resemblance between the content within the mirror and the surrounding environment. Moreover,
the variability in both the size and shape of mirrors, coupled with the potential presence of any
object within their reflections, poses a substantial hurdle for conventional object detection systems.
Similar complexities are observed in the task of detecting glass. Unlike mirrors that reflect real-
world objects, glass transmits light, allowing for the visualization of objects positioned behind it.
This unique characteristic of glass introduces inherent complexities distinct from those associated
with mirror detection. Compared to glass and mirrors, which we humans can easily recognize, we
cannot realize the existence of camouflaged objects without paying enough attention to the objects
and their surroundings. Therefore, it is difficult to detect confusing objects using general or salient
object detection methods.

Figure 1: Representative samples of confusing objects sourced from popular datasets are as follows:
Image (a) depicts a glass surface sourced from the glass detection dataset (GDD). Reprinted with
permission from Reference [4]. Copyright 2020, Copyright Haiyang Mei. Image (e) depicts a glass
surface sourced from the glass surface dataset (GSD). Reprinted with permission from Reference
[5]. Copyright 2021, Copyright Jiaying Lin. Image (b) represents a mirror sourced from the Mir-
ror Segmentation Dataset (MSD). Reprinted with permission from Reference [6]. Copyright 2019,
Copyright Xin Yang. Image (f) represents a mirror sourced from the Progressive Mirror Detection
(PMD) dataset. Reprinted with permission from Reference [7]. Copyright 2020, Copyright Jiaying
Lin. Image (c) illustrates a camouflaged object sourced from the camouflaged object images (CAMO)
dataset. Reprinted with permission from Reference [8]. Copyright 2020, Copyright Elsevier. Image (g)
illustrates a camouflaged object sourced from the COD10K dataset. Reprinted with permission from
Reference [9]. Copyright 2020, Copyright Dengping Fan. Image (d, h) is non-confusing object images
in the public domain that were downloaded from the Internet
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In various applications integrating object detection technology, the inability to detect confusing
objects such as glasses, mirrors and camouflaged objects presents a significant concern. Given the
widespread prevalence of these objects in both indoor settings, like vanity mirrors, and outdoor
environments, including glass doors in public spaces, accurate detection holds paramount importance
in averting undesirable incidents. The ability to detect these objects correctly is crucial in preventing
potential mishaps. For instance, a failure to recognize the presence of glass doors by a robot may result
in collisions, leading to property damage and posing safety hazards to pedestrians. While camouflaged
object detection, a task aimed at accurately detecting a target object from an environment that
blends perfectly with the target, has long been a research hotspot [10–14] in biology and the medical
aspect. Mainstream protruding object detection methods make extensive use of discriminative features,
while confusing targets have relatively few discriminative features. Accordingly, due to the opposed
properties of protruding and camouflaged objects, it is not a good idea to impose related methods on
protruding object detection tasks. Hence, establishing an object detection system resilient enough to
reliably detect the existence of confusing objects stands as a matter of substantial significance.

Historically, research in object detection predominantly emphasized discerning prominent entities
or salient objects like humans [15], animals [16], and vehicles [17]. These studies showcased cutting-
edge performance by harnessing extensive datasets and leveraging deep neural networks. Instead, for
confusing objects like glasses, mirrors, and camouflaged objects, it lacks both datasets and efficient
methods to work on them. In recent years, this situation has begun to change with the prevalence
of deep learning. Numerous deep learning-based models have been proposed for the challenging
task of COD. This progress is accompanied by the availability of large-scale datasets for COD with
professionally annotated tags. The research on confusing object has a long and rich history since the
early days [18]. However, early approaches to confusing object segmentation predominantly centered
on low-level features encompassing color [12], texture [19], shape [11], and edge [18]. However, these
methodologies exhibited limitations, being primarily suited for simple scenes and proving inadequate
when confronted with intricate environmental contexts.

Indeed, detecting confusing objects like mirrors, glass, and camouflaged targets is a challenging
task. Nonetheless, these areas not only have research value but also have broad application prospects.
For example, these specialized object detection accuracy improvements can address edge cases in
general object detection methods, thereby avoiding unnecessary failure conditions. The following
section covers the literature on deep learning-based glass, mirror, and camouflaged object detection.
Since object detection for these specialized subjects is relatively new, the number of papers is smaller
than in the general area of object detection and semantic segmentation. We organize the subsequent
section as follows: Section 2 provides a brief review comparing our work with previous surveys in the
related field. Section 3 briefly introduces the general object detection method. Section 4 dives into the
popular methods for confusing object detection, focusing on mirror, glass, and camouflaged objects.
Section 5 provides an overview of the mainstream datasets used for our task, with a primary focus
on open-source ones. Section 6 overviews the performance of various models under the same settings.
Section 7 summarizes the recent work and the future direction of COD.

2 Comparison with Previous Review

To the best of our knowledge, this study is the first to systematically address the detection and
segmentation of confusing objects, encompassing glass/transparent objects, mirrors, and camouflaged
objects at the same time. There is no prior survey literature on glass and mirror detection. Therefore,
our work represents a novel and comprehensive review of this subject area. While camouflaged object
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has a longer history and is supported by a few existing studies, the research on glass and mirror
detection is relatively limited.

Previous studies, such as [20], have primarily focused on non-deep learning approaches to
camouflage detection. This is a very limiting scope, considering the pervasive influence of deep
learning in recent years. Another study [21,22] summarizes image-level models for camouflaged object
detection, although it includes only a small amount of literature. In addition, literature [23] provides a
comprehensive review on model structure and paradigm classification, public benchmark datasets,
evaluation metrics, model performance benchmarks, and potential future development directions.
Specifically, a number of existing deep learning algorithms are reviewed, offering researchers an
extensive overview of the latest methods in this field.

Meanwhile, the published literature [24] reviews relevant work in the broader field of concealed
scene understanding. This comprehensive review summarizes a total of 48 existing models for the
image-level task. Unlike previous surveys, this study systematically and comprehensively examines the
integration of deep learning into the image-level camouflaged scene understanding. It provides an
in-depth analysis and discussion on various aspects, including model structure, learning paradigms,
datasets, evaluation metrics, and performance comparisons.

In particular, we have summarized and cataloged a substantial number of existing deep learning-
based methods for COD. We compare the performance of relevant mainstream models using core
metrics to enhance understanding of these approaches. Furthermore, we provide insights into the
challenges, key open issues, and future directions of image-level COD.

3 Overview of General Object Detection

Object detection or segmentation has a long history since the early days of computer vision,
and image segmentation plays a vital role in different real-world applications. Before the era of deep
learning, image segmentation methods used techniques such as k-mean clustering, normalized cuts,
region growing, and threshold, which usually yield bad performance. As deep learning comes onto
the scene, models based on convolutional neural networks (CNNs) [25] have achieved outstanding
performance never achieved by earlier methods. Previous work [26] already has a comprehensive
depiction of this topic. The most common deep learning-based method in object detection is the
CNN-based model, CNN is one of the most successful and widely used architectures in the field of
computer vision. As the transformer model prevails in natural language processing, researchers in
computer vision find it also achieves promising results when it is incorporated into computer vision
tasks. Different from CNN-based approaches, transformers rely on the attention mechanism at its
heart, which enhances their performance in various vision tasks. Simply put it, this mechanism allows
transformers to capture long-range dependencies and contextual information more effectively. Besides
object detection, transformers have demonstrated their effectiveness in a wide range of vision applica-
tions, including image classification, segmentation, and even generative tasks. Generative Adversarial
Networks (GANs) [27] is a newly proposed model, using GANs to solve the segmentation task has been
a research interest in recent times. The dilated convolution is a slightly modified version of convolution
with an additional parameter called dilation rate. The working mechanism of dilation convolution
expands the receptive field, therefore capturing more information with less computation cost. Dilation
convolution is a widespread technique in the segmentation model. Besides, the probabilistic graphic
model is helpful to exploit scene-level semantic information. While challenges exist, probabilistic
graphical model Conditional Random fields and Markov Random Fields still achieve promising
outcomes in recent works. Encoder-decoder architecture is applied in most object detection models
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explicitly or implicitly nowadays. It has gained popularity since Badrinarrayann et al. [3] proposed
SegNet. These general object techniques are also common components of the model for COD.

However, given the special nature of confusing objects, a different approach from general object
detection is required. Fig. 2 provides an overview summary of the overall architecture present in the
literature. The following section aims to give a comprehensive review of popular methods in recent
years.

Figure 2: Overview of network architectures for confusing object detection. Three common frame-
works are presented in a sequential arrangement from left to right

4 Confusing Object Detection

Confusing objects are intrinsically different from general or salient object detection. Confusing
object reference to objects like shadow, water, glass, mirrors, and camouflaged objects. Confusing
object has internal and optical characteristics that are completely different from ordinary or prominent
objects. Using generic object parts directly will certainly not yield good performance, so it is necessary
to design a model specifically for obfuscated objects. In recent years, many researchers have published
a large amount of work using deep learning-based models on this topic, and it is time to summarize
their outstanding work. Fig. 3 demonstrates the amount of work published within each category. With
the missing of some topics, here we focus on glass, mirrors, and camouflaged objects.

4.1 CNN-Based Models

For an overall understanding of CNN-based architecture, refer to subfigure (a) in Fig. 4.
For the differences between Transformer-based models and multi-task learning frameworks, see
subfigure (b,c). Yang et al. [6] propose the first deep learning-based model MirrorNet to apply
to the mirror detection task. It is inspired by human biology and detects entire mirrored areas by
identifying content discontinuities. Notably, MirrorNet employs ResNeXt101 as the backbone feature
extraction network. Lin et al. [7] propose the PMDNet, which uses not only discontinuities but also
the relational content inside and outside the mirror, and then leverages the extracted features to
construct mirror edges. The methods that exploit discontinuities and the correspondence between
mirror contents will fail in certain scenarios. Tan et al. [28] realize the mirror image exhibits visual
chirality property and propose the model called VCNet makes use of visual chirality cues to detect
mirror region. Guan et al. observe that there is a semantic connection in the position mirror (i.e.,
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people usually place mirrors in several fixed positions), and propose the SANet to leverage the
semantic association for mirror detection. Aiming at the shortcomings of previous methods that
consume a lot of computing resources, He et al. [29] introduce the HetNet which applies heterogeneous
modules in different levels of features, which outperforms the previous work in accuracy and efficiency.
The key difference with the previous method lies in that it treats the backbone feature differently
with different specially design modules to utilize the characteristics of varying level features fully.
The model proposed by Gonzales et al. [30] incorporates parallel convolutional layers alongside a
lightweight convolutional block attention module to capture both low-level and high-level features for
edge extraction. Mei et al. [31] propose a novel network MirrorNet+ which models both contextual
contrasts and semantic associations. While Mei et al. [4] propose the glass detection net (GDNet) for
glass object detection. By employing ResNeXt101 as the feature extractor, GDNet utilizes both low-
level cues and high-level semantic information for high-accuracy glass detection. The GDNet employs
a cascade strategy by embedding multiple modules in the last four layers of the backbone network and
dealing with low-level and high-level features separately. The GDNet outperforms existing semantic
segmentation and object detection methods. GDNet-B [32] is the successor to GDNet, with the
additional boundary feature enhancement module incorporated into the original design to boost
performance.

Figure 3: Timeline of the deep learning-based COD methods from 2019 to 2023
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Figure 4: Simplified architectures of CNN-based models, Transformer-based models, and multi-task
learning frameworks, where (a) refers to the CNN-based architecture, the lower part refers to the pre-
trained CNN backbone, and the upper part refers to the specialized decoder architecture. (b) has a
similar architecture, but the backbone is replaced by the Transformer backbone. (c) uses two decoder
architectures, and the final result is a fusion of its own decoder and the auxiliary task

Xie et al. [33] propose TransLab, named after “Looking at the Boundary”, focusing on transparent
object detection. As the name suggests, TransLab takes the inspiration that transparent object
often has a clear boundary, it adopts a dual path scheme with backbone features sending into two
different modules for calculating boundary loss and segment loss separately. Besides, Xie et al. [34]
present Trans2Seg as a reformed version of TransLab. Although Trans2Seg adopts a Transformer-
based encoder-decoder architecture, it uses a CNN-based network as the feature extractor. Due
to the hybrid CNN-Transformer architecture, Trans2Seg obtains a wider receptive field, thereby
showing more advantages than previous CNN-based models. Like TransLab, EBLNet introduced by
He et al. [35] also extensively uses boundary information. EBLNet adopts a powerful module called
the fine differential module, which works in a coarse-to-fine manner to reduce the impact of complex
internal components and obtain accurate boundary predictions. Besides, they use a point-based graph
convolution network module to leverage accurate edge prediction to enhance global feature learning
around edges, thereby improving the final prediction. Another model based on CNN is GSDNet [5],
GSDNet uses glass reflections and boundaries as the two main cues for locating and segmenting
glass objects. GSDNet reliably extracts boundary features and detects glass reflections from inputs
to segment mirrors in images. Han et al. [36] propose a structure similar to EBLNet, but in their work,
they differentiated the boundary regions into internal and external boundaries, based on which they
optimized the internal and external features of transparent surfaces.

Yu et al. [37] introduce IRGNet, a lightweight RGB-Infrared fusion glass detection network
specifically designed to satisfy low power consumption requirements and ensure high real-time perfor-
mance for mobile robots. This network incorporates an information fusion module that amalgamates
complementary feature information from RGB and infrared images at multiple scales. Zhang et al. [38]
propose a novel detail-guided and cross-level fusion network, termed DCNet, to utilize label decou-
pling to obtain detail labels explore finer detail cues. This approach leverages discontinuities and
correlations to refine the glass boundary, thereby effectively extracting local pixel and global semantic
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cues from glass-like object regions and fusing features from all stages. Xiao et al. [39] propose BCNet, a
network for efficient and accurate glass segmentation. It features a multi-branch boundary extraction
module for precise boundary cues and a boundary cue guidance module that integrates these cues
into representation learning. This approach captures contextual information across different receptive
fields to detect glass objects of varying sizes and shapes. Zheng et al. [40] propose a novel glass
segmentation network, termed GlassSegNet, for detecting transparent glass. This two-stage network
comprises an identification stage and a correction stage. The former stage simulates human recognition
by utilizing global context and edge information to identify transparent glass. While the correction
stage refines the coarse predictions by correcting erroneous regions based on the information gathered
in the identification stage. The transparent object segmentation network, ShuffleTrans [41], is designed
with a Patch-wise Weight Shuffle operation combined with dynamic convolution to incorporate global
context cues.

Le et al. [8] present ANet, the first deep learning-based network for detecting camouflaged objects.
The idea of ANet is straightforward, using a salient object segmentation method to accomplish the
task and an additional classification stream to determine if the image contained camouflaged objects.
As a result, it does not design a deep learning-based method to specifically address the problem of
camouflaged object segmentation, which is a clear departure from later work. The SINet [9] propose
by Fan et al. uses a partial decoder structure that is roughly divided into two sub-modules (i.e., search
module and recognition module). SINet also is the most common baseline for the camouflaged object
detection task. The subsequent iteration of SINet, known as SINet v2 [42] in journal publications,
advances visual outcomes by enhancing adaptability to various lighting conditions, alterations in
appearance, and addressing ambiguous or undefined boundaries more effectively. The PFNet [43]
employs a positioning and focusing strategy, using a positioning module to locate the position and
the cascading focusing modules to refine the segmentation map using features obtained at different
stages of ResNet-50. Zhang et al. [44] endeavor to unravel the intricacies of accurate detection and
propose PreyNet, a model that emulates two fundamental facets of predation: initial detection and
predator learning, akin to cognitive mechanisms. To harness the sensory process effectively, PreyNet
integrates a bidirectional bridging interaction module, specifically crafted to discern and consolidate
initial features through attentive selection and aggregation. The process of predator learning is
delineated through a policy and calibration paradigm, aimed at identifying uncertain regions and
fostering targeted feature refinement. Taking inspiration from biological search and recognition
mechanisms, Yue et al. [45] introduce a novel framework named DCNet, which leverages two specific
constraints—object area and boundary—to explore candidate objects and additional object-related
edges. Employing a coarse-to-fine approach, it detects camouflaged objects by progressively refining
the identification process. Utilizing a deep supervision strategy, DCNet achieves precise localization
of camouflaged objects, thereby enhancing its accuracy in COD tasks.

Sun et al. [46] propose the C2FNet represents a novel approach that capitalizes on contextual
information leveraging an attention mechanism. Central to its design is an attention-induced cross-
level fusion module, strategically engineered to amalgamate multiscale features effectively. C2FNet
cascades these two modules into the network to get the final prediction map. D2CNet [47] bears a
striking resemblance to that of SINet, albeit with notable distinctions. D2CNet delineates itself through
the adoption of a U-shaped network structure, where the first stage of the network operation does
not incorporate the underlying information. Moreover, D2CNet introduces supplementary modules,
notably the self-refining attention unit and the cross-refining unit, augmenting its functionality
and enabling enhanced information refinement and integration throughout the network’s processing
stages. Zhai et al. [48] devise a novel model of Mutual Graph Learning (MGL) that extends the
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idea of mutual learning from the regular grid to the graph domain. MGL is equipped with typed
functions to handle different complementary relationships, thus maximizing information interactions
and obtaining superior performance gains. The updated iteration of MGL, named R-MGLv2 [49],
brings forth multiple enhancements. These improvements encompass the integration of a new multi-
source attention block explicitly engineered for conducting attention within the realm of COD.
Moreover, Zhai et al. incorporate side-output features intended to collaboratively guide the learning
process. This innovation effectively alleviates the burdens associated with recurrent learning overhead
and mitigates the accuracy reduction during inference at lower resolutions.

POCINet [50] propose by Liu et al. has a similar procedure to SINet, which can also be divided
into search and recognition phases. The difference is that POCINet adopts a novel scheme to decode
camouflaged objects using contrast information and part-object relationship knowledge. TANet [51]
exploits the subtleties inherent in the texture distinction between camouflaged objects and their
backgrounds. This strategic approach enables the model to cultivate texture-aware features, delve
into intricate object structural details, and amplify texture differences. As a result, TANet enhances
the ability to recognize texture differences, thereby improving the overall efficacy and performance.
Inspired by the complementary relationship between texture labels and camouflaged object labels,
Zhu et al. [52] design TINet as an interactive guidance framework that focuses on finding uncertain
boundaries and texture differences through progressive interactive guidance. It maximizes the useful-
ness of fine-grained multilevel texture cues for guiding segmentation. The work of Chen et al. [53] is an
improved version of the work of Sun et al. [46] with similar design ideas and follows the name C2FNet.
The advancements made in this work significantly enhance the previous model by implementing a
multi-step refinement process that involves the iterative refining of low-level features through the
utilization of preliminary maps. This iterative refinement strategy culminates in the prediction of the
final outcome. The improvements introduced in this updated version showcase notable enhancements
in performance compared to the preceding model. Li et al. [54] introduce the Progressive Enhancement
Network (PENet), a novel system that mirrors the human visual detection system. PENet adopts
a three-stage detection process, comprising object localization, texture refinement, and boundary
restoration.

Ji et al. [55] introduce a novel network architecture named ERRNet, which stands out for its
innovative edge-based reversible re-calibration mechanism. Compared to prevailing methods, ERR-
Net demonstrates substantial performance enhancements coupled with notably higher processing
speeds. Its ability to achieve superior performance while maintaining efficiency positions ERRNet as a
promising solution with broad applicability. Chen et al. [56] propose a novel boundary-guided network
(BgNet), to tackle the challenging task in a systematic coarse-to-fine fashion. The architecture of
BgNet is characterized by the localization module and the boundary-guided fusion module. The dual-
module strategy empowers BgNet to achieve accurate and expeditious segmentation of camouflaged
regions, thereby establishing its efficacy in addressing this intricate problem. The BGNet [57] shares
a parallel motivation akin to BgNet, aiming to strategically incorporates essential object-related edge
semantics into the representation learning process, compelling the model to prioritize the generation
of features that accentuate the object’s structural elements. By explicitly integrating edge semantics and
extensively leveraging boundary features, BGNet enables the model to discern and emphasize critical
structural components of camouflaged objects, thereby elevating its capability for accurately localizing
boundaries, a crucial aspect within this domain.

Obviously, COD methods heavily rely on boundary information, and BSA-Net [58] introduces a
novel boundary-guided separation of attention mechanism. The network design is based on procedural
steps observed in the human way to detect camouflaged objects, where object boundaries are
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delineated by recognizing subtle differences between foreground and background. Distinguishing
itself from existing networks, BSA-Net adopts a dual-stream separated attention module specifically
crafted to emphasize the separation between the image background and foreground. This unique
design incorporates a reverse attention stream, facilitating the exclusion of the interior of camouflaged
objects to prioritize the background. Conversely, the normal attention stream works to restore the
interior details, emphasizing foreground elements. Both attention streams are steered by a boundary-
guiding module, collaboratively combining their outputs to augment the model’s understanding and
refinement of object boundaries. FAPNet [59] adopts a multifaceted approach. FAPNet capitalizes
on cross-level correlations, enhancing the overall contextual understanding. One notable advantage
of FAPNet lies in its adaptability and scalability to the polyp segmentation task, demonstrating its
versatility and robustness beyond the realm of COD. Li et al. [60] propose another boundary-guided
network (FindNet) with the utilization of texture cues from a single image. The capability of FindNet
to perform accurate detection across diverse visual conditions characterized by varying textures
and boundaries underscores its versatility and robustness. Sun et al. [61] introduce the Edge-aware
Mirror Network (EAMNet), which implements a two-branch architecture facilitating mutual guidance
between the segmentation and edge detection branches, establishing a cross-guidance mechanism to
amplify the extraction of structural details from low-level features.

In the realm of COD, accurate annotations prove challenging due to the resemblance between cam-
ouflaged foreground and background elements, particularly around object boundaries. Liu et al. [62]
highlight concerns regarding direct training with noisy camouflage maps, positing that this approach
may result in models lacking robust generalization capabilities. To address this, they introduce an
explicitly designed aleatoric uncertainty estimation technique to account for predictive uncertainty
arising from imperfect labeling. Their proposed framework, OCENet, positions itself as a confidence-
aware solution. This framework leverages dynamic supervision to generate both precise camouflage
maps and dependable aleatoric uncertainty estimations. Once OCENet is trained, the embedded
confidence estimation network is capable of assessing pixel-wise prediction accuracy autonomously,
reducing reliance on ground truth camouflage maps for evaluation purposes.

HeelNet [63] employing cascading decamouflage modules to iteratively refine the prediction
graph. These modules are composed of distinct components: a region enhancement module and
a reverse attention mining module, strategically designed for precise detection and the thorough
extraction of target objects. Additionally, HeelNet introduces a novel technique called classification-
based label reweighting. This method generates a gated label graph, serving as supervisory guidance for
the network. Its purpose is to aid in identifying and capturing the most salient regions of camouflaged
objects, thereby facilitating the complete acquisition of the target object. The objective of CubeNet
[64] revolves around harnessing hierarchical features extracted from various layers and diverse input
supervisions. Specifically, CubeNet employs X-connections to facilitate multi-level feature fusion,
utilizes different supervised learning methods, and employs a refinement strategy to elaborate on
the complex details of camouflaged objects. To this end, it makes full use of edge information and
considers it as an important cue for capturing object boundaries. By incorporating these methodolo-
gies, CubeNet endeavors to enhance the detection and delineation of camouflaged objects, effectively
leveraging hierarchical features, diverse supervisory signals, and edge information for comprehensive
object understanding and boundary delineation. Zhai et al. [65] present a novel approach in their
paper, introducing the Deep Texton-Coherence Network (DTC-Net). The primary focus of DTC-Net
revolves around extracting discriminative features through the comprehensive understanding of spatial
coherence within local textures. This understanding facilitates the effective detection of camouflaged
objects within scenes. DTC-Net implements a deep supervision mechanism across multiple layers.
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This mechanism involves applying supervision at various stages of the network, facilitating the
iterative refinement of network parameters through continuous feedback from these supervisory
signals. This approach serves to promote the effective updating and optimization of the network’s
parameters, enhancing the model’s performance in camouflage object detection. Zhai et al. [66]
advocate for leveraging the intricate process of figure-ground assignment to enhance the capabilities
of CNNs in achieving robust perceptual organization, even in the presence of visual ambiguity. By
integrating the figure-ground assignment mechanism into CNN architectures, the model’s success
in various challenging applications, notably in COD tasks, underscores the potential efficacy of
integrating cognitive-inspired mechanisms into CNN architectures. DGNet [67], a newly introduced
deep framework, revolutionizes COD by leveraging object gradient supervision. The linchpin of this
architecture lies in the gradient-induced transition, symbolizing a fluid connection between context
and texture features. This mechanism essentially establishes a soft grouping between the two feature
sets. The application of DGNet in various scenarios, including polyp segmentation, defect detection,
and transparent object segmentation, has demonstrated remarkable efficacy and robustness, further
validating its superiority and versatility in diverse visual detection tasks. Hu et al. [68] aim to address
the challenges by prioritizing the extraction of high-resolution texture details, thereby mitigating the
problem of detail degradation that leads to blurred edges and boundaries. Their approach includes
the introduction of HitNet, a novel framework designed to enhance low-resolution representations by
incorporating high-resolution features into iterative feedback loops. In addition, the authors propose
an iterative feedback loss that adds an extra layer of constraints to each feedback connection. This
iterative feedback loss approach aims to further refine the iterative connections, thereby enhancing
the model’s ability to capture the fine-grained details that are critical. Wang et al. [69] propose a new
framework named FLCNet, which includes an underlying feature mining module, a texture-enhanced
module, and a neighborhood feature fusion module. Deng et al. [70] propose a new ternary symmetric
fusion network for detecting camouflaged objects by fully fusing features from different levels and
scales. To effectively enhance detection performance, Shi et al. [71] propose a novel model featuring
context-aware detection and boundary refinement.

Motivated by the complementary relationship between boundaries and camouflaged object
regions, Yu et al. [72] propose an alternate guidance network named AGNet for enhanced interaction.
They introduce a feature selective module to choose highly discriminative features while filtering out
noisy background features. Liu et al. [73] propose MFNet, a novel network for multi-level feature
integration. Xiang et al. [74] propose a double-branch fusion network with a parallel attention
selection mechanism. Yan et al. [75] propose a matching-recognition-refinement network (MRR-Net)
to break visual wholeness and see through camouflage by matching the appropriate field of view.
Zhang et al. [76] design a novel cross-layer feature aggregation network (CFANet). CFANet effectively
aggregates multi-level and multi-scale features from the backbone network by exploring the similarities
and differences of features at various levels.

To sum up, CNN-based methods can offer high accuracy and robust performance due to their
ability to automatically learn and extract complex features from images, making them effective
in diverse and challenging COD settings. Fig. 5 indicates the number of publications on CNN-
based literature from 2019 to 2023. On the other hand, CNN-based architecture facilitates end-to-
end learning and adaptability, particularly through transfer learning, which allows the use of pre-
trained models to enhance efficiency and accuracy. Yet, these methods are computational resources-
consuming, which could be an obstacle for real-time applications. Besides, CNNs are less effective
on unseen data and vulnerable to adversarial attacks. Despite these challenges, CNN-based methods
remain a reliable tool for COD in complex scenarios with sufficient data.
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Figure 5: Number of CNN-based image-level COD methods published annually from 2019 to 2023

4.2 Transformer-Based Models

Huang et al. [77] present the SATNet which applies a transformer as the backbone network.
Observing the content in the mirror is not strictly symmetry with the real-world object, i.e., loose
symmetry, they proposed a network that takes as input an input image and its flipped image to provide
data augmentation techniques and further fully exploits symmetry features and proposed a network
with takes input images and its flipped images as input to fully exploit symmetry features as well
as serves a data augmentation technique. Liu et al. [78] focus on the phenomenon of reflections on
mirror surfaces, introducing a frequency domain feature extraction module. This module maps multi-
scale features of the mirror to the frequency domain, extracts mirror-specific features, and suppresses
interference caused by reflections of external objects. Additionally, they propose a cross-level fusion
module based on reverse attention, which integrates features from different levels to enhance overall
performance. To identify mirror features in more diverse scenes, Xie et al. [79] introduce a cross-space-
frequency window transformer, which is designed to extract both spatial and frequency characteristics
for comprehensive texture analysis.

Furthermore, some transparent object detection methods employ transformer architecture to
detect glass-like objects. Zhang et al. [80] contribute Trans4Trans, which means Transformer for
Transparent, an encoder-decoder model based entirely on the Transformer architecture. With a
carefully designed Transformer pairing module and dual-path structure, Trans4Trans outperforms the
then-SOTA transparent object segmentation method, namely Trans2Seg. Xin et al. [81] observe glass-
induced image distortion and introduced a visual distortion-aware module to mitigate this problem.
This module captures multi-scale visual distortion information and integrates it effectively, allowing
the Swin-B backbone network to focus on regions affected by glass-induced distortion, thereby
accurately identifying these surfaces. In addition, the inclusion of glass surface centroid information
through a classification sub-task improves the accuracy of glass mask predictions. To differentiate
between glass and non-glass regions, the transformer architecture leverages two crucial visual cues:
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boundary and reflection feature learning. Vu et al. [82] propose TransCues, a pyramidal transformer
encoder-decoder architecture designed for the segmentation of transparent objects from color images.

The study [83] constructs a contextual attention module to extract backbone features using a
self-attention approach and proposes a new enhanced feature fusion algorithm for detecting glass
regions in a single RGB image. Additionally, it introduces a VIT-based deep semantic segmentation
architecture that associates multilevel receptive field features and retains the feature information
captured at each level. Hu et al. [84] introduce a novel convolutional attention glass segmentation
network, designed to minimize the number of training cycles and iterations, thereby enhancing
performance and efficiency. The network employs a custom edge-weighting scheme to optimize glass
detection within images, further improving segmentation precision. Inspired by the scale integration
strategy and refinement method, Xu et al. [85] propose MGNet, featuring a fine-rescaling and merging
module to enhance spatial relationship extraction and a primary prediction guiding module to mine
residual semantics from fused features. An uncertainty-aware loss supervises the model to produce
high-confidence segmentation maps. Observing glass naturally results in blurs. Building on this
intrinsic visual blurriness cue, Qi et al. [86] propose a novel visual blurriness aggregation module that
models blurriness as a learnable residual. This approach extracts and aggregates valuable multiscale
blurriness features, which guide the backbone features to detect glass with high precision. The
Progressive Glass Segmentation Network (PGSNet) [87] is constructed using multiple discriminability
enhancement modules and a focus-and-exploration-based fusion strategy. This design progressively
aggregates features from high-level to low-level, enabling a coarse-to-fine glass segmentation approach.

Yang et al. [88] introduce an innovative method named Uncertainty-Guided Transformer Rea-
soning (UGTR), utilizing probabilistic representational models in conjunction with a transformer
architecture to facilitate explicit reasoning under uncertainty. The foundational concept involves the
initial acquisition of an estimate and its associated uncertainty by learning the conditional distribution
of the backbone output. Subsequently, the attention mechanism is employed to deliberate over
these uncertain regions, culminating in a refined and definitive prediction. This method strategically
amalgamates the strengths of Bayesian learning and transformer-based inference, leveraging both
deterministic and probabilistic information. The synergistic integration of these elements enhances the
model’s capability to discern camouflaged objects effectively. Inherent uncertainty poses a significant
challenge which is compounded by two primary biases observed in the training data. The “center bias”
prevalent in the dataset causes models to exhibit poor generalization, as they tend to focus on detecting
camouflaged objects primarily around the image center, termed as “model bias.” Additionally,
accurately labeling the boundaries of camouflaged objects is challenging due to the resemblance
between the object and its surroundings, leading to inaccuracies in defining the object’s scope, known
as “data bias.” To effectively address these biases, Zhang et al. [89] propose leveraging uncertainty
estimation techniques. They introduce a predictive uncertainty estimation approach, combining model
uncertainty and data uncertainty. Their proposed solution, PUENet, comprises a Bayesian conditional
VAE to achieve predictive uncertainty estimation. PUENet aims to mitigate the impact of model
and data biases by estimating predictive uncertainty. Liu et al. [90] challenge the conventional bio-
inspired framework used in object detection methodologies, highlighting the inherent limitations
in the recurrent search for objects and boundaries, which can be taxing and limiting for human
perception. Their proposed solution involves a transformer-based model that enables the simultaneous
detection of the object’s accurate position and its intricate boundary by extracting features related to
the foreground object and its surrounding background, enabling the acquisition of initial object and
boundary features. Pei et al. [91] introduce OSFormer, a one-stage transformer framework which is
founded on two fundamental architectural components. OSFormer adeptly combines local feature
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extraction with the assimilation of extensive contextual dependencies. This integration enhances its
capability to accurately predict camouflaged instances by efficiently leveraging both local and long-
range contextual information. Yin et al. [92] decompose the multi-head self-attention mechanism
into three distinct segments. Each segment is tasked with discerning camouflaged objects from the
background by employing diverse mask strategies. Additionally, they introduce CamoFormer, a
novel framework designed to progressively capture high-resolution semantic representations. This is
achieved through a straightforward top-down decoder augmented by the proposed masked separable
attention mechanism, enabling the attainment of precise segmentation outcomes.

Existing methods often replicate the predator’s sequential approach of positioning before focus-
ing, but they struggle to locate camouflaged objects within cluttered scenes or accurately outline their
boundaries. This limitation arises from their lack of holistic scene comprehension while concentrating
on these objects. Mei et al. [93] contend that an ideal model for COD should concurrently process
both local and global information, achieving a comprehensive perception of the scene throughout
the segmentation process. Their proposed Omni-Perception Network (OPNet) aims to amalgamate
local features and global representations, facilitating accurate positioning of camouflaged objects
and precise focus on their boundaries, respectively. Huang et al. [94] introduce the FSPNet, a
transformer-based framework which employs a hierarchical decoding strategy aimed at enhancing
the local characteristics of neighboring transformer features by progressively reducing their scale. The
objective is to accumulate subtle yet significant cues progressively, aiming to decode critical object-
related information that might otherwise remain imperceptible. Drawing inspiration from query-
based transformers, Dong et al. [95] present a unified query-based multi-task learning framework,
UQFormer, specifically designed for camouflaged instance segmentation. UQFormer approaches
instance segmentation as a query-based direct set prediction task, eliminating the need for additional
post-processing techniques like non-maximal suppression. Jiang et al. [96] introduce a novel joint
comparative network (JCNet), leveraging joint salient objects for contrastive learning. The key
innovation within JCNet lies in the design of the contrastive network, which generates a distinct feature
representation specifically for the camouflaged object, setting it apart from others. The methodology
involves the establishment of positive and negative samples, alongside the integration of loss functions
tailored to different sample types, contributing to the overall efficacy of the approach.

Liu et al. [97] present the MSCAF-Net, a comprehensive COD framework. This framework con-
centrates on acquiring multi-scale context-aware characteristics by employing the enhanced Pyramid
Vision Transformer (PVTv2) model as the primary extractor for global contextual data across various
scales. An improved module for expanding the receptive field is developed to fine-tune characteristics
at each scale. Additionally, they introduce a cross-scale feature fusion module to effectively blend
multi-scale information, enhancing the variety of features extracted. Moreover, a dense interactive
decoder module is formulated to generate a preliminary localization map, utilized for fine-tuning the
fused features, leading to more precise detection outcomes. Drawing inspiration from human behavior,
which involves approaching and magnifying ambiguous objects for clearer recognition, Xing et al. [98]
introduce a novel three-stage architecture termed the SARNet which alternate their focus between
foreground and background, employing attention mechanisms to effectively differentiate highly
similar foreground and background elements, thereby achieving precise separation. Song et al. [99]
present an innovative approach centered on focus areas, which signify regions within an image that
exhibit distinct colors or textures. They introduce a two-stage focus scanning network named FSNet.
This process aims to enhance the model’s ability to discern camouflaged objects by capturing detailed
information within these distinctive regions. Yang et al. [100] introduce an innovative occlusion-
aware transformer network (OAFormer) aimed at precise identification of occluded camouflaged
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objects. Within OAFormer, a hierarchical location guidance module is developed to pinpoint potential
positions of camouflaged objects. This approach enables OAFormer to cleverly capture the full
picture of camouflaged objects and integrates an assisted supervision strategy to enhance the learning
capability of the model. Bi et al. [101] propose a novel architecture which comprising an in-layer
information enhancement module and a cross-layer information aggregation module. By combining
shallow texture information with deep semantic information, this architecture accurately locates target
objects while minimizing noise and interference. Liu et al. [102] present Bi-level Recurrent Refinement
Network (Bi-RRNet. It includes a Lower-level RRNet (L-RRN) that refines high-level features with
low-level features in a top-down manner, and an Up-level RRNet (U-RRN) that polishes these features
recurrently, producing high-resolution semantic features for accurate detection.

The Transformer architecture excels in handling long-range dependencies and can easily extract
contextual information, which makes it an ideal choice for our COD task. Transformer-based models
have considerable ability to capture global dependencies in images, so they can help reliably detect
confusing objects without being affected by complex conditions and environments. The complexity of
such models may add obstacles to the tuning part. Despite these shortcomings, the Transformer-based
models in the environment can surpass CNN-based models in terms of accuracy in detecting confusing
objects. Fig. 6 presents the number of publications on Transformer-based methods from 2021 to 2023.

Figure 6: Number of Transformer-based image-level COD methods published annually from 2021 to
2023

4.3 Multi-Task Learning Framework

GlassNet [103] utilizes the label decoupling framework in the glass detection task, which has
the advantage of better predicting the labels of pixels near the actual boundaries. Specifically, they
use the label decoupling procedure on the Ground Truth (GT) map to obtain internal diffusion
maps and boundary diffusion maps, which in turn serve as the GT maps of additional supervision
streams in a multi-task learning manner. The RFENet designed by Fan et al. [104] also utilizes the
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boundary as an additional supervisory stream to work in an independent but consistent manner. It
introduces semantic and boundary-supervised losses at different feature stages in a cascading manner
to achieve synergistic feature enhancement. Zhang et al. [105] propose an algorithm for staged feature
extraction that employs a multitype backbone network, integrating features from both CNNs and
transformers. Additionally, a multiview collector is used to extract cross-modal fusion features from
diverse perspectives. Wan et al. [106] propose a novel bidirectional cross-modal fusion framework
incorporating shift-window cross-attention for glass segmentation which includes a feature exchange
module and a shifted-window cross-attention feature fusion module within each transformer block
stage to calibrate, exchange, and fuse cross-modal features. Chang et al. [107] propose PanoGlassNet
for panoramic images which uses a novel module with four branches of varying kernel sizes and
deformable convolutions to capture the wide field of view and irregular boundaries. Given that
most existing structures are complex and heavy, while lightweight structures often lack accuracy,
Zhou et al. [108] propose a novel Asymmetric Depth Registration Network student model. This model,
trained with distilled knowledge, is designed to address these limitations effectively. Zhou et al. [109]
propose a novel uncertainty-aware transformer localization network for RGB-D mirror segmentation.
This approach is inspired by biomimicry, particularly the observational behavior patterns of humans.
It aims to explore features from various perspectives and concentrate on complex features that are
challenging to discern during the coding stage.

Lv et al. [110] devise a multi-task learning framework termed RankNet, aimed at concurrent
localization, segmentation, and ranking of camouflaged objects. The motivation is that explicitly
capturing the unique properties of camouflaged objects in their surroundings not only enriches the
understanding of camouflage and animal evolutionary strategies but also provides valuable insights
for the development of more sophisticated camouflage techniques. Notably, specific components or
features of camouflaged objects play a key role in predator discrimination of camouflaged objects
in their surroundings. The proposed network consists of three interrelated models, a localization
model designed to identify discriminatory regions that make camouflaged objects conspicuous, a
segmentation model responsible for delineating the complete range of camouflaged objects, and a
novel ranking model designed to assess the ability to detect differences between different camouflaged
entities. The collaborative operation of these three modules within RankNet yields promising results
when tested on widely used datasets.

He et al. [111] introduce the FEDER model, specifically addressing the inherent similarity
between foreground and background elements. FEDER employs learnable wavelets to decompose
features into distinct frequency bands, mitigating this similarity. To tackle the issue of ambiguous
boundaries, FEDER adopts an auxiliary edge reconstruction task concurrent with the primary
objective. The FEDER model achieves enhanced precision in generating prediction maps with precise
object boundaries through simultaneous learning of both tasks. Lv et al. [112] introduce a triple-task
learning framework capable of concurrently localizing, segmenting, and ranking camouflaged objects,
thus quantifying the level of conspicuousness in camouflage. Due to the absence of datasets for the
localization and ranking models, the authors employ an eye tracker to generate localization maps.
These maps are subsequently aligned with instance-level labels to create their ranking-based training
and testing dataset, providing a pioneering approach to comprehensively evaluating and ranking.

Yang et al. [113] propose a novel perspective, emphasizing its potential to deepen the understand-
ing of camouflage and revolutionize the approach to detecting camouflaged objects. Subsequently,
acknowledging the intrinsic connections between salient object detection (SOD) and COD, intro-
ducing a multi-task learning framework. This framework captures the inherent relationships between
the two tasks from diverse angles. The task-consistent attribute, established through an adversarial
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learning scheme, seeks to accentuate the boundary disparities between camouflaged objects and back-
grounds, thereby achieving comprehensive segmentation of the camouflaged objects. Xing et al. [114]
introduce a groundbreaking paradigm termed the “pre-train, adapt, and detect” approach. This
method leverages a significantly pre-trained model, allowing the direct transfer of extensive knowledge
obtained from vast multi-modal datasets. To tailor the features for the downstream task, a lightweight
parallel adapter is integrated, facilitating necessary adjustments. Furthermore, a multi-task learning
scheme is implemented to fine-tune the adapter, enabling the utilization of shared knowledge across
various semantic classes for enhanced performance. Lyu et al. [115] introduce the UEDG architecture,
adept at amalgamating probabilistic-derived uncertainty and deterministic-derived edge information
to achieve precise detection of concealed objects. UEDG harnesses the advantages of both Bayesian
learning and convolution-based learning, culminating in a robust multitask-guided approach.

The multi-task learning framework allows models to be trained on related tasks, which can
bring multiple benefits. By training models on related tasks simultaneously, such as depth estimation
and edge detection, our model can exploit complementary information in shared features, thereby
improving overall performance. This framework can be easily extended from existing methods,
achieving stronger generalization capabilities across different scenarios and reducing the risk of
overfitting. However, it also presents challenges, such as the need for carefully balanced loss functions
to ensure that all tasks are learned effectively without one dominating the others. They require more
complex architectures and hyperparameter optimization, and often require the help of additional data
or pseudo-labels.

4.4 Models Using Multimodal Inputs

Mei et al. [116] present the first mirror segmentation model called PDNet that leverages the
information from the depth map. PDNet subdivides the mirror segmentation task into two separate
stages (i.e., positioning and delineating). The previous stage is performed by exploiting semantic and
depth discontinuities from RGB and depth maps respectively. The delineating stage utilizes lower-level
features to refine the mirrored area progressively to obtain the final map. Kalra et al. [117] introduce
polarization cues to the task of transparent object segmentation, naming the model Polarized Mask
R-CNN. Specifically, polarized CNNs use three separated CNN backbones (RGB images) and two
polarization cues to extract features separately and fuse the features with a self-designed attention
module to better utilize features from different sources. GlassSemNet [118] introduces an additional
semantic ground truth mask that serves as additional input. GlassSemNet uses two independent
backbone networks (i.e., SegFormer and ResNet50) on different inputs to extract spatial and semantic
features, and then uses an attention mechanism to segment glass objects from the enhanced features.
PGSNet [119] is another network that takes Angle of Linear Polarization (AoLP) and Degree of Linear
Polarization (DoLP) information as additional input. Unlike the Polarized Mask R-CNN, PGSNet is
a more complex structure that makes full use of multimodal cues with the Conformer as its backbone.
Noting the subtle physical differences in the response of glass-like objects to thermal radiation and
visible light, Huo et al. [120] introduce another modal input (i.e., thermal images.) RGBTSeg builds
the network in an encoder-decoder fashion and implements an efficient fusion strategy with a novel
multimodal fusion module.

Yan et al. [121] present MirrorNet, a bio-inspired network tailored for camouflage body mea-
surements, in which the bio-inspired representation uses flipped images to reveal more information,
uniquely exploiting synergies between instance segmentation and bio-inspired attack streams. Unlike
traditional models that rely on a single input stream, this innovative model integrates two segmentation
streams. Pang et al. [122] introduce ZoomNet, a mixed-scale triplet network designed to emulate
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the human behavior of zooming in and out when observing ambiguous images. The central strategy
employed by ZoomNet involves utilizing zooming techniques to acquire discriminative mixed-scale
semantics. ZoomNet aims to capture nuanced visual details across multiple scales, thereby enhancing
its ability to discern and accurately predict objects in the presence of ambiguous or vague visual
information. Jia et al. [123] align with ZoomNet’s approach by employing human attention principles
alongside a coarse-to-fine detection strategy. Their proposed framework, named SegMaR, operates
through an iterative refinement process involving Segmentation, Magnification, and Reiteration across
multiple stages for detection. Specifically, SegMaR introduces a novel discriminative mask that
directs the model’s focus toward fixation and edge regions. Notably, the model utilizes an attention-
based sampler to progressively amplify object regions without requiring image size enlargement.
Comprehensive experimentation demonstrates SegMaR’s remarkable and consistent enhancements
in performance.

Unlike existing approaches utilizing contextual aggregation techniques developed primarily for
SOD, Lin et al. [124] approach introduces a new method, FBNet, which aims to address a key
challenge, i.e., the prevalent contextual aggregation strategy tends to prioritize distinctive objects while
potentially attenuating the features of less discriminative objects. The FBNet approach incorporates
frequency learning to effectively suppress high-frequency texture information. In addition, the pro-
posed FBNet integrates a gradient-weighted loss function that strategically directs the method to
emphasize the contour details, thus refining the learning process. Luo et al. [125] introduce a De-
camouflaging Network (DCNet) comprising a pixel-level camouflage decoupling module and an
instance-level camouflage suppression module, marking a novel approach in the field. The authors
introduce reliable reference points to establish a more robust similarity measurement, aiming to
diminish the impact of background noise during segmentation. By integrating these two modules,
the DCNet models de-camouflaging, enabling precise segmentation of camouflaged instances.

Zhong et al. [126] assert that the objective of the task surpasses replicating human visual
perception within a singular RGB domain; rather, it aims to transcend human biological vision. They
present FDCOD, a robust network integrating two specialized components to effectively incorporate
frequency clues into CNN models. The frequency enhancement module encompasses an offline
discrete cosine transform enabling the extraction and refinement of significant information embedded
within the frequency domain. Subsequently, a feature alignment step is employed to fuse the features
derived from both the RGB and frequency domains. Furthermore, to maximize the utilization of
frequency information, Zhong et al. propose the high-order relation module which is designed to
handle the intricate fusion of features, leveraging the rich information obtained from the fused
RGB and frequency domains. This module thereby facilitates the comprehensive integration and
exploitation of frequency clues, augmenting the network’s capacity for accurate and nuanced detection.
Cong et al. [127] introduce FPNet, integrating a learnable and separable frequency perception
mechanism driven by semantic hierarchy within the frequency domain.

PopNet [128] integrates depth cues into the task. Rather than directly deriving depth maps
from RGB images, Wu et al. employ modern learning-based techniques to infer reliable depth maps
in real-world scenarios. This approach utilizes pre-trained depth inference models to establish the
“pop-out” prior for objects in a 3D context. The “pop-out” prior assumes object placement on the
background surface, enabling reasoning about objects in 3D space. Xiang et al. [129] investigate
the role of depth information, utilizing depth maps generated through established monocular depth
estimation methodologies. However, due to inherent discrepancies between the MDE dataset and the
camouflaged obejct dataset, the resulting depth maps lack the necessary accuracy for direct utilization.
Zheng et al. [130] introduce a behavior-inspired framework termed the MFFN, drawing inspiration
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from human approaches to identifying ambiguous objects in images. This framework mirrors human
behavior by employing multiple perspectives, angles, and distances to observe such objects. MFFN
leverages the interplay between views and channels to explore channel-specific contextual information
across diverse feature maps through iterative processes.

4.5 Detection in Videos

Lin et al. [131] propose the first video mirror detection model VCNet which takes video as input.
To make use of the properties of video data, VCNet applies a novel Dual Correspondence (DC) module
to leverage both spatial and temporal correspondence inside videos. Qiao et al. [132] introduce the first
polarization-guided video glass segmentation propagation solution, capable of robustly propagating
glass segmentation in RGB-P video sequences. This method leverages spatiotemporal polarization and
color information, combining multi-view polarization cues to reduce the view dependence of single-
input intensity variations on glass objects.

Lamdouar et al. [133] introduce a novel approach to camouflaged animal detection in video
sequences leveraging optical flow between consecutive frames. The model is divided into two key
modules, the first of which consists of a differentiable registration module responsible for the alignment
of consecutive frames, and the second of which consists of a motion segmentation module charac-
terized by a modified U-shaped network structure with an additional memory component aimed
at segmenting camouflaged animals. Yang et al. [134] introduce a self-supervised model specifically
designed to address the intricate task of segmenting camouflaged objects within video sequences. Their
approach hinges upon the strategic exploitation of motion grouping mechanisms. The methodology
commences by employing a modified Transformer framework, serving as the initial stage in segmenting
optical flow frames into distinct primary objects and background components within the video
context. SIMO [135] is another work on RGB camouflaged object segmentation in video sequences. In
this work, Lamdouar et al. designed a two-path architecture consisting of ConvNets and Transformer
that accepts optical flow input sequences and is designed to learn to segment moving objects in difficult
scenarios such as partial occlusion or stationary states.

The research conducted by Meunier et al. [136] operates under the assumption that the input
optical flow can be effectively represented as a set of parametric motion models, commonly char-
acterized by affine or quadratic forms. Notably, this approach eliminates the need for ground truth
or manual annotation during the training phase. The research introduces an efficient data augmen-
tation technique tailored for optical flow fields which is applicable to any network utilizing optical
flow as input and is inherently designed to segment multiple motions. The resulting Expectation-
Maximization (EM)-driven motion segmentation network was evaluated on both camouflaged object
and salient object video datasets, demonstrating high performance while maintaining efficiency during
test time.

Since current video camouflaged object detection methods usually utilize isomorphic or optical
flow to represent motion, the detection error may be accumulated by motion estimation error
and segmentation error. Cheng et al. [137] propose a new video detection framework that can
detect camouflaged objects from video frames using short-term dynamics and long-term temporal
coherence. Lamdouar et al. [138] utilize a transformer-based architecture trained on synthetic datasets,
showcasing its efficacy in identifying concealed objects within real video content, such as in the case
of MoCA. Their proposed model amalgamates elements from two pre-existing architectures—motion
segmentation and SINet. This combined framework facilitates the production of high-resolution
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segmentation masks derived from the motion stream, enhancing the model’s ability to reveal concealed
objects within the visual content.

Video COD research is making significant progress, but challenges remain for a number of
reasons. Contemporary approaches use deep learning-based models to combine object detection and
optical flow analysis to exploit information between different frames. Such approaches typically do
not handle challenges such as static objects, rapid scene changes, changing lighting conditions, and
reflections well. In addition, real-time detection still requires a lot of computation, especially on edge
devices, and the price of high-quality data annotation is quite expensive and difficult to deploy in real
scenarios. To address the above issues, future research on video COD should develop more advanced
and efficient architectures. Another promising area is to combine unsupervised and semi-supervised
learning techniques to exploit the large amount of unlabeled video data and reduce the dependence
on large annotated datasets.

4.6 Other Methods

Costanzino et al. [139] present a simple pipeline for neural networks to estimate depth accurately
for reflective surfaces without ground-truth annotations. They generate reliable pseudo labels by
in-painting mirror objects and using a monocular depth estimation model. Li et al. [140] develop
UJSC, a combined SOD and COD segmentation model which leverages the connection between
them. The authors constructed a similarity measurement module to refine the feature encoder since
the saliency and camouflage streams’ predictions should not intersect. In addition, they introduce
adversarial learning to train the predictive encoder for generating the final result and the confidence
estimation module for modeling uncertainty in certain regions of the image. The performance achieved
a satisfactory result despite using only optical flow as input. To delve into cross-task relevance through
a “contrast” approach, Li et al. [141] incorporate contrast learning into their dual-task learning
framework. By injecting a structure based on adversarial training, they explored multiple training
strategies specialized for discriminators, thus improving the stability of training. Zhao et al. [142]
propose to utilize existing successful SOD models for camouflage object detection to reduce the
development costs associated with COD models. Their central premise lies in the fact that SOD
and COD share two aspects of information, namely the semantic representation of objects used
to differentiate between objects and context, and the contextual attributes that play a key role in
determining the class of an object.

Observing mirror reflections is crucial to how people perceive the presence of mirrors, and such
mid-level features can be effectively transferred from self-supervised pre-trained models. Lin et al. [143]
aim to enhance mirror detection methods by proposing a novel self-supervised learning pre-training
framework. This framework progressively models the representation of mirror reflections during the
pre-training process. Le et al. [144] propose a simple yet efficient CFL framework that undergoes
a dual-stage training process to achieve its optimized performance. This scene-driven framework
capitalized on the diverse advantages offered by different methods, adaptive selecting the most suitable
models for each image. Song et al. [145] propose FDNet, strategically combines Convolutional
Neural Networks and Transformer architectures to encode multi-scale images simultaneously. To
synergistically exploit the advantages of both encoders, the authors designed a feature grafting module
based on a cross-attention mechanism.

The primary aim of camouflaged object detection techniques is the identification of objects
seamlessly blending into their environments visually. While prevailing COD methodologies concen-
trate solely on recognizing camouflaged objects within familiar categories in the training dataset,
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they confront challenges in accurately identifying objects from unfamiliar categories, resulting in
diminished performance. Real-world implementation proves arduous due to the complexities in
amassing adequate data for recognized categories, compounded by the demanding expertise needed
for accurate labeling, rendering these established approaches unfeasible. Li et al. [146] introduce a
novel zero-shot framework tailored to proficiently detect previously unseen categories of camouflaged
objects. The incorporation of Li’s graph reasoning, underpinned by a dynamic searching strategy,
prioritizes object boundaries, effectively mitigating the influence of background elements.

Chen et al. [147] observe that despite the remarkable success of the Segment Anything Model
(SAM) large model in various image segmentation tasks, it encountered limitations in tasks like
shadow detection and camouflaged object detection. Rather than opting for fine-tuning SAM
directly, they introduced SAM-Adapter, a novel approach aiming to enhance SAM’s performance in
these challenging tasks. SAM-Adapter integrates domain-specific information into the segmentation
network through simple yet effective adapters. He et al. [148] address the constraints of prevalent
techniques relying on extensive datasets with pixel-wise annotations, a process inherently laborious
due to the intricate and ambiguous object boundaries. Their introduced CRNet framework via scribble
learning underscores the importance of structural insights and semantic relationships to augment the
model’s comprehension and detection capabilities in scenarios with limited annotation information.
Primarily, they propose a new consistency loss function, leveraging scribble annotations outlining
object structures without detailing pixel-level information. This function aims to guide the network
in accurately localizing camouflaged object boundaries. Additionally, CRNet incorporates a feature-
guided loss, using both directly extracted visual features from images and semantically significant
model-captured features.

Zhang et al. [149] introduce the concept of referring camouflaged object detection, a novel task
focused on segmenting specified camouflaged objects. This segmentation is achieved using a small set
of referring images containing salient target objects for reference. Ma et al. [150] propose a cross-level
interaction network with scale-aware augmentation. The scale-aware augmentation module calculates
the optimal receptive field to perceive object scales, while the cross-level interaction module enhances
feature map context by integrating scale information across levels.

Le et al. [151] aim to automatically learn transformations that reveal the underlying structure
of camouflaged objects, enabling the model to better identify and segment them. They propose a
learnable augmentation method in the frequency domain via a Fourier transform approach, dubbed
CamoFourier. Chen et al. [152] propose a new paradigm that treats camouflaged object detection as a
conditional mask-generation task by leveraging diffusion models. They employ a denoising process
to progressively refine predictions while incorporating image conditions. The stochastic sampling
process of diffusion allows the model to generate multiple possible predictions, thus avoiding the
issue of overconfident point estimation. Chen et al. [153] propose a diffusion-based framework.
This novel framework treats the camouflaged object segmentation task as a denoising diffusion
process, transforming noisy masks into precise object masks. Zhang et al. [154] formulate unsupervised
camouflaged object segmentation as a source-free unsupervised domain adaptation task, where both
source and target labels are absent during the entire model training process. They define a source
model comprising self-supervised vision transformers pre-trained on ImageNet. In contrast, the target
domain consists of a simple linear layer and unlabeled camouflaged objects. Liu et al. [155] present the
first systematic work on military high-level camouflage object detection, targeting objects embedded
in chaotic backgrounds. Inspired by biological vision, which first perceives objects through global
search and then strives to recover the complete object, they propose a novel detection network called
MHNet. Li et al. [156] recognize the ambiguous semantic biases in camouflaged object datasets that
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affect detection results. To address this challenge, they design a counterfactual intervention network
(CINet) to mitigate these biases and achieve accurate results.

This section introduces some novel methods in COD, most of which cannot be directly bench-
marked with previous methods. Yet it presents the probable direction for future research, such as the
zero-shot framework for COD, the novel sam-adaptor to fine-tune the segment anything model, and
more recently the diffusion model-based COD framework. We summarize notable characteristics of
the reviewed models in Tables 1 and 2.

Table 1: Characteristics of reviewed image-based methods for glass-like and mirror object detection

Categories Number Model Pub. Code Backbone

Glass G1 EBLNet ICCV’21 Yes ResNeXt101
Glass G2 GDNetB TPAMI’22 No ResNeXt101
Glass G3 GDNet CVPR’20’ – ResNeXt101
Glass G4 GlassNet CGF’22 No ResNet50
Glass G5 GSDNet CVPR’21 – ResNeXt101
Glass G6 RFENet IJCAI’23 Yes ResNet50
Glass G7 Trans2Seg IJCAI’21 Yes ResNet50
Glass G8 Trans4Trans ICCV’21 Yes PVT
Glass G9 TransLab ECCV’19 Yes ResNeXt101
Glass G10 RGBTSeg TIP’23 Yes ResNeXt101
Glass G11 PGSNet CVPR’22 – Conformer
Glass G12 GlassSemNet NeurIPS’22 – SegFormer & ResNet50
Glass G13 RGBDSeg ArXiv’22 No ResNeXt101
Glass G14 VDNet CAD&CG’23 – Swin Transformer
Glass G15 IRGNet CAC’23 – ResNet50
Glass G16 DCNet ICIC’23 – ResNeXt101
Glass G17 BCNet ICASSP’23 – PVTv2
Glass G18 PanoGlassNet TIM’23 Yes –
Mirror M1 MirrorNet ICCV’19 – ResNeXt101
Mirror M2 PMDNet CVPR’20 – ResNeXt101
Mirror M3 SANet CVPR’22 – ResNeXt101
Mirror M4 VCNet TPAMI’22 Yes ResNeXt101
Mirror M5 SATNet AAAI’23 Yes Swin Transformer
Mirror M6 HetNet AAAI’23 Yes ResNeXt101
Mirror M7 VMDNet CVPR’23 Yes ResNeXt101
Mirror M8 PDNet CVPR’21 – ResNet50
Mirror M9 EGNet WSCG’23 Yes EfficientNetV2-Medium
Mirror M10 SEMCNet SPL’24 No SegFormer & ResNet50
Mirror M11 CSFwinformer TIP’23 Yes Swin Transformer
Mirror M12 ADRNet-S∗ IF’23 – SegFormer
Mirror M13 WSMD AAAI’23 Yes PVT
Mirror M14 UTLNet MM’23 Yes ConvNeXt
Mirror M15 IEBAFNet arXiv’23 No DeeplabV3+
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Table 2: Characteristics of reviewed image-based methods for camouflaged object detection

Number Model Pub. Code Backbone

CO1 BASNet arXiv’21 No –
CO2 BGNet IJCAI’22 Yes Res2Net-50
CO3 BGNet KBS’22 Yes ResNet-50
CO4 BSANet AAAI’22 Yes Res2Net-50
CO5 C2FNet IJCAI’21 Yes Res2Net-50
CO6 C2FNet TCSVT’22 Yes Res2Net-50
CO7 CamoFormer-S arXiv’23 – Swin-B
CO8 CRNet AAAI’23 Yes ResNet-50
CO9 CubeNet PR’22 No ResNet-50
CO10 D2CNet TIE’21 No Res2Net-50
CO11 DCNet CVPR’23 Yes ResNet-50
CO12 DCE arXiv’21 No ResNet-50
CO13 DGNet MIR’23 Yes EffNet-B4
CO14 DQNet arXiv’22 Yes ResNet-50 & ViT
CO15 DTCNet TMM’22 No ResNet-50
CO16 DTIT ICPR’22 Yes SegFormer
CO17 EAMNet ICME’23 Yes Res2Net-50
CO18 ERRNet PR’22 – ResNet-50
CO19 EVP CVPR’23 Yes SegFormer
CO20 FBNet TMCCA’23 No ResNet-50
CO21 FDNet ICME’23 Yes Res2Net-50 & PVT
CO22 FEDER CVPR’23 Yes ResNet-50
CO23 FindNet TIP’22 No Res2Net-50
CO24 FPNet MM’23 Yes Res2Net-50
CO25 FDCOD CVPR’22 No Res2Net-50
CO26 FSNet TIP’23 Yes Swin
CO27 FSPNet CVPR’23 Yes ViT
CO28 PINet ICME’22 Yes ResNet-50
CO29 HitNet AAAI’23 Yes PVT
CO30 JCNet TIM’23 No Swin-S
CO31 R-MGL CVPR’21 Yes ResNet-50
CO32 MGL TIP’23 No ResNet-50
CO33 MSCAFNet TCSVT’23 Yes PVTv2
CO34 OAFormer ICME’23 No PVTv2
CO35 OCENet WACV’22 Yes ResNet-50
CO36 OSFormer ECCV’22 Yes ResNet-50
CO37 PADNet arXiv’23 No ViT
CO38 PENet IJCAI’23 No Res2Net-50
CO39 PFNet CVPR’21 Yes Res2Net-50
CO40 PopNet ICCV’23 Yes –
CO41 PreyNet MM’22 Yes Res2Net-50
CO42 RankNet CVPR’21 Yes ResNet-50

(Continued)
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Table 2 (continued)

Number Model Pub. Code Backbone

CO43 SAMadaptor arXiv’23 Yes SAM
CO44 SARNet TCSVT’23 Yes PVT
CO45 SegMaR CVPR’22 Yes Res2Net-50
CO46 SINetV2 TPAMI’22 Yes Res2Net-50
CO47 SINet CVPR’20 Yes ResNet-50
CO48 TANet TCSVT’23 No Res2Net50
CO49 TINet AAAI’21 No ResNet-50
CO50 UEDG MM’23 Yes PVT
CO51 UGTR ICCV’21 Yes ResNet-50
CO52 UJSC CVPR’21 Yes ResNet-50
CO53 ZoomNet CVPR’22 Yes ResNet-50
CO54 Bi-RRNet PR’23 Yes VAN-small
CO55 LRSNet TCSVT’23 Yes ResNet-50
CO56 CINet TETCI’23 Yes EfficientNet
CO57 CamoDiff AAAI’24 Yes –
CO58 CMNet TCSVT’23 Yes Res2Net-50
CO59 CFANet ICME’23 Yes Res2Net-50
CO60 MRRNet TNNLS’23 Yes ResNet-50
CO61 OPNet IJCV’23 Yes Conformer-B
CO62 MFNet Sensors’23 Yes Res2Net-50
CO63 ASBI CVIU’23 Yes ResNet-50

5 Dataset
5.1 Glass Dataset

Table 3 lists the characteristics of the related COD dataset. Mei et al. [4] construct the first large
benchmark dataset called the GDD for glass detection. GDD contains a total of 3916 images, of which
2980 are used for training and 936 for testing. To overcome the limitations of GDD, Lin et al. [5]
contribute a more challenging dataset called GSD, composed of 4012 images collected from existing
datasets and the Internet with manually annotated masks. Similarly, Xie et al. [33] contribute to the
first dataset Trans10K specifically for transparent object segmentation in the same year. Trans10K is
composed of 10,428 transparent object images collected from the real world, with different categories
including glass objects and other transparent objects like plastic bottles. Furthermore, Xie et al. [34]
extend the Trans10K dataset with a new dataset, Trans10K-v2, designed to overcome the previous
version’s lack of detailed transparent object categories.

Table 3: Characteristics of the related dataset

Obj. type Dataset Accessibility Train Test Tasks

Glass GDD – 2980 936 Image
Glass GSD Yes 3202 810 Image

(Continued)



CMC, 2024, vol.80, no.3 3445

Table 3 (continued)

Obj. type Dataset Accessibility Train Test Tasks

Glass GSD-S Yes 3911 608 Image
Glass Trans10k Yes 5000 4428 Image
Glass RGBP-Glass Yes 3207 1304 Image
Glass RGBT-Glass Yes 4427 1124 Image
Mirror MSD Yes 3063 955 Image
Mirror PMD Yes 5096 571 Image
Mirror RGBD-Mirror – 2000 1049 Image
Mirror VMD-D Yes 7835 7152 Video
CO CHAMELEON Yes 0 76 Image
CO CAMO Yes 2000 500 Image
CO CAMO++ Yes 3500 2000 Image
CO COD10K Yes 6000 4000 Image
CO NC4K Yes 0 4121 Image
CO ACOD2K Yes – – Image
CO MoCA Yes 6000 6000 Video
CO MoCA-Mask Yes 19,313 3626 Video

Lin et al. [118] present a dataset with semantic annotations that contains 4519 images directly
collected from existing datasets that are larger than previously popular datasets such as GDD and
GSD. Similarly, Mei et al. [119] propose a polarised glass dataset containing both AoLP and DoLP
information. Their main observation is that glass reacts differently to light than normal objects, so
AoLP and DoLP often provide useful cues about mirrors. It is verified that thermal images also
reveal unique information concerned with the mirror, Huo et al. [120] present the RGB thermal image
dataset called RGB-T, which is the first large-scale RGB thermal image dataset for transparent object
detection. The RGB-T dataset consists of 5551 images acquired by RGB thermal cameras from a
variety of scenes, manually labeled with truth maps.

5.2 Mirror Dataset

Yang et al. [6] construct the first large-scale mirror datasets named MSD with a total of 4018
manually annotated images. To overcome the shortcomings of MSD objects being too monotonous
and containing only simple scenes, Lin et al. [7] propose a more challenging dataset PMD, which
contains various images collected from existing datasets. As PDNet takes depth maps as additional
inputs, the normal RGB dataset does not satisfy the requirement.

Mei et al. [116] construct the first RGBD dataset specifically for the mirror called RGBD-
Mirror which contains 3049 RGB images with corresponding depth maps and annotated tags. As
Lin et al. [157] propose the video mirror detection model, the first obstacle that needs to be overcome
is the lack of the mirror dataset in video form. For this reason, they constructed the first large-scale
video mirror dataset VMD-D.
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5.3 Camouflaged Object Dataset

Le et al. [8] develop the CAMO dataset specifically tailored for the segmentation of camouflaged
objects. Comprising 1250 images sourced from diverse online repositories, CAMO features meticulous
manual annotations of semantic maps. The dataset spans a wide spectrum of categories, encompassing
not only natural camouflage scenes but also diverse artificial contexts. The COD10K [9] presently
stands as the most common benchmark dataset designed for camouflaged object detection. It
comprises a total of 10,000 images, delineated into 5066 instances of camouflaged objects, 3000
background images, and 1934 occurrences of non-camouflaged objects. In practice, the COD10K
dataset undergoes a random division where 6000 images are allocated for training purposes, while
the remaining 4000 images are reserved for testing. Lv et al. [110] curate the NC4K dataset,
presently recognized as the largest and most comprehensive test dataset tailored specifically for
camouflaged object segmentation. This extensive dataset encompasses a total of 4121 meticulously
collected images sourced from various online resources. Its vast and diverse collection serves as a
popular benchmark of camouflaged object segmentation algorithms. The CAMO++ [144] represents
a significant advancement in the realm of camouflaged instance segmentation datasets, surpassing its
predecessor, the CAMO dataset, in both scale and scope. This new iteration encompasses 5500 images
featuring individuals alongside over 90 distinct animal species, meticulously annotated at a pixel level
hierarchically. CAMO++ serves as a versatile benchmark not only for camouflaged instance seg-
mentation but also for conventional camouflaged object segmentation tasks. Its expansive coverage,
balanced representation of camouflage scenarios, and meticulously detailed annotations establish it
as a valuable resource for benchmarking and advancing research in the fields of camouflaged instance
segmentation.

The inaugural video dataset for camouflaged objects is the Moving Camouflaged Animals
(MoCA) [133] dataset, which comprises 37K image frames from 141 video sequences found on
YouTube. The dataset comprises 67 animals that move in natural surroundings. The use of a bounding
box in the original dataset instead of a dense segmentation mask poses a challenge when evaluating
video camouflaged obejct segmentation performance. Cheng et al. [137] revamp the dataset into
MoCA-Mask and develop a comprehensive benchmark with more inclusive evaluation criteria.
MoCA-Mask annotates the dataset using fragment masks supported by humans and generates
pseudo-ground truth masks via a bidirectional optical flow-based approach.

Artificial camouflage, a deliberate design approach employing methods like painting and camou-
flage uniforms, aims to exploit human visual perception traits for enhanced deception of the human
visual system. Its practical utility extends notably to tasks such as aiding disaster-assisted search and
rescue operations. In light of this advantage, Song et al. [145] curate ACOD2K, recognized as the
most extensive artificial camouflage dataset available. Notably, camouflaged object detection methods
are exclusively trained on natural camouflage images due to the predominant presence of natural
camouflaged animals in existing datasets. This limitation hinders the training of models proficient in
accurately detecting artificial camouflage. ACOD2K comprises 2000 images, including 1500 featuring
camouflaged objects, 400 displaying non-camouflaged objects, and 100 background images. Each
image underwent meticulous pixel-level matting annotations of high quality and precision. To ensure
the annotation accuracy, an additional researcher performed thorough verification of all annotations.



CMC, 2024, vol.80, no.3 3447

6 Performance Measurement

This study establishes a performance investigation focusing on confusing object detection tasks,
chosen due to their established nature and the availability of diverse competing methodologies.
Subsequent sections will elaborate on the evaluation metrics employed in this analysis.

6.1 Metrics

To provide a comprehensive assessment of each model’s accuracy and generalization capability,
this survey employs a range of metrics. These metrics include widely recognized benchmarks in
segmentation tasks like Intersection over Union (IoU) and pixel accuracy, complemented by less
common metrics such as S measure and E measure. These metrics aim to offer a holistic evaluation of
model performance across various facets.

a) IoU

The Intersection over Union (IoU) metric stands as a prevalent evaluation measure in object
detection and image segmentation endeavors, serving to assess the precision of algorithmic predictions
by analyzing the intersection between the segmentation mask and the ground truth. The provided IoU
equation is shown in Eq. (1):

IoU = J(A, B) = P ∩ T
P ∪ T

, (1)

where P represents the prediction mask, while T denotes the ground truth. IoU assumes critical
significance in appraising algorithmic accuracy in tasks necessitating spatial agreement between
predicted and ground truth regions.

b) Pixel Accuracy

Pixel Accuracy (Acc) serves as a semantic segmentation metric, indicating the proportion of
correctly classified pixels within an image. This metric quantifies the ratio between the number of
accurately classified pixels and the total pixel count within the image.

Acc =
∑K

k=1 nkk

N
. (2)

where the variable nkk represents the total number of pixels classified and correctly labeled as class k.
Put differently, it signifies the count of true positives for class k. On the other hand, N denotes the
total number of pixels.

c) MAE

The Mean Absolute Error (MAE) stands as a metric employed to gauge the average magnitude of
discrepancies between predicted and actual values. It offers a direct means to comprehend the typical
deviation of predictions from true values.

MAE’s interpretability arises from its representation of the average absolute variance between
predicted and actual values. This attribute proves particularly valuable when evaluating models,
especially in scenarios where outliers or substantial errors might exert a pronounced influence on the
assessment of model performance.

MAE = 1
W × H

∑W

i=1

∑H

j=1
|P (i, j) − T (i, j)| , (3)

where W and H are the width and height of T , respectively, and i, j are pixel coordinates in T .
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d) BER

The Balanced Error Rate (BER) serves as a widely adopted performance metric in binary classi-
fication tasks, particularly beneficial for evaluating models in the presence of imbalanced datasets.

BER considers both the false positive rate (FPR) and the false negative rate (FNR) to derive
a more comprehensive assessment of a model’s accuracy. This metric offers a balanced evaluation
by simultaneously accounting for errors in positive and negative classifications, providing a nuanced
understanding of the model’s overall performance.

BER = 1
2

(FPR + FNR) = 1
2

(
FP

FP + TP
+ FN

FN + TP

)
. (4)

e) F-Measure

The F-measure, or F1 score offers an evaluation of a classification model’s accuracy. It consol-
idates precision and recall metrics into a singular value, rendering a more equitable assessment of a
model’s performance, particularly in scenarios involving imbalanced datasets.

In elucidating the F-measure, it’s pivotal to introduce the concepts of precision and recall.
Precision quantifies the accuracy of positive predictions made by a model, while recall assesses the
model’s ability to correctly identify all positive instances.

Precision = TP
TP + FP

; Recall = TP
TP + FN

, (5)

The Fβ score represents a broader variant of the F1 score, offering control over the balance between
precision and recall by incorporating a parameter, β. It is formulated as a weighted harmonic mean
of precision and recall, with the beta parameter governing the emphasis on recall in comparison to
precision. Adjusting the beta value enables a nuanced adjustment of the Fβ score, allowing practitioners
to tailor the evaluation based on the specific importance accorded to precision and recall in a given
context.

Fβ =
(
1 + β2

)
Precision × Recall

β2 Precision + Recall
. (6)

f) S-Measure

The Structure measure Sα [158] is a metric employed to quantify the structural similarity existing
between a non-binary prediction map and a corresponding ground-truth mask.

Sα = (1 − α) S0 (P, T) + αSr (P, T) . (7)

where the parameter α serves as a weighting factor, governing the balance between object-aware
similarity S0 and region-aware similarity Sα within the Structure measure Sα calculation. The default
setting for α, as per the original paper, is 0.5.

g) E-Measure

The Enhanced-alignment measure [159] stands as a novel evaluation metric specifically designed
for assessing binary foregrounds. It incorporates considerations of both local and global similarity
between two binary maps. The formulation of this metric is defined as follows:

Eφ = 1
W × H

∑W

i=1

∑H

j=1
φ (P (i, j) − T (i, j)) , (8)

where the symbol φ represents the enhanced alignment matrix defined in the literature.
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6.2 Evaluation

We conducted distinct experiments for COD tasks. The outcomes of these experiments are
elaborated upon in the subsequent subsections.

6.2.1 Glass

Table 4 showcases the assessment of several deep learning-based methodologies within the GDD
[4] datasets, utilizing five widely adopted metrics elaborated upon in the previous section. To ensure
fairness and comparability, all models underwent training on the respective training set and were
subsequently evaluated on the testing set. The findings suggest that GlassNet [103] and EBLNet [35]
demonstrate closely aligned performance concerning Acc metric. In contrast, for the IoU, Fβ, MAE
score, VDNet [91] emerges as a formidable competitor to EBLNet. Notably, these distinctions in
performance are partially influenced by the constraints inherent in the GDD dataset. Table 5 illustrates
the assessment of available model within the multi-modal datasets.

Table 4: Quantitative comparison on GDD [4] test set for glass detection task

Number Methods IoU Acc Fβ MAE BER

G1 EBLNet 0.887 0.944 0.94 0.055 5.36
G2 GDNetB 0.878 0.941 0.939 0.061 5.52
G3 GDNet 0.876 0.939 0.937 0.063 5.62
G4 GlassNet 0.887 0.946 0.937 0.054 5.42
G8 Trans4Trans 0.844 0.922 0.905 0.078 7.36
G9 TransLab 0.816 0.903 0.892 0.097 9.7
G14 VDNet 0.918 – 0.951 0.039 3.9
G16 DCNet 0.884 – 0.905 0.058 5.81
G17 BCNet 0.892 – 0.947 0.055 5.00

Table 5: Quantitative comparison on RGBP-Glass [129] test set for glass detection task

Number Model mIOU Fβ mAE mBER

G3 GDNet 77.64 0.807 0.119 11.79
G5 GSDNet 78.11 0.806 0.122 12.61
G7 Trans2Seg 75.21 0.799 0.122 13.23
G9 TransLab 73.59 0.772 0.148 15.73
G11 PGSNet 81.08 0.842 0.091 9.63

6.2.2 Mirror

Table 6 presents the evaluation of several deep learning-based methodologies across three distinct
testing datasets, utilizing three widely adopted metrics. The outcomes indicate that CSFwinformer [89]
showcases superior performance compared to alternative methodologies. This advantage is attributed
to the utilization of a transformer as the backbone network. Given that the content observed in the



3450 CMC, 2024, vol.80, no.3

mirror does not strictly align with the real-world object, displaying a loose symmetry, their approach
involves a network that leverages both an input image and its mirrored counterpart. This methodology
is proposed as a means of data augmentation, effectively harnessing symmetry features to their fullest
extent. The network architecture is designed to accept input images and their corresponding flipped
versions, enabling comprehensive exploration and utilization of symmetry features while serving as a
data augmentation technique.

Table 6: Quantitative comparison on MSD [6], PMD [7], and RGBD-Mirror [126] test set for mirror
detection

Number Methods MSD PMD RGBD-Mirror

MAE IoU Fβ MAE IoU Fβ MAE IoU Fβ

M1 MirrorNet 0.065 0.79 0.857 0.043 0.585 0.741 0.062 0.684 0.723
M2 PMDNet 0.047 0.815 0.892 0.032 0.66 0.794 0.054 0.723 0.775
M3 SANet 0.054 0.798 0.877 0.032 0.668 0.795 0.048 0.75 0.873
M4 VCNet 0.044 0.801 0.898 0.028 0.64 0.815 0.052 0.73 0.849
M5 SATNet 0.033 0.854 0.922 0.025 0.694 0.847 0.031 0.784 0.906
M6 HetNet 0.043 0.828 0.906 0.029 0.69 0.814 0.048 0.739 0.853
M9 EGNet 0.081 – 0.850 0.036 – 0.790 – – –
M11 CSFwinformer 0.045 0.821 0.896 0.024 0.701 0.838 0.031 0.787 0.900
M14 UTLNet 0.040 0.830 0.892 – – – 0.032 0.805 0.858

6.2.3 Camouflaged Object

Camouflaged object stands out as a more pervasive topic compared to the previously discussed
glass and mirror detection. The field witnesses a notably substantial influx of proposed work annually.
Notably, among these methodologies as illustrated in Table 7, the CamoDiff [152] demonstrates a
significant performance advantage across various datasets, outperforming other models across four
key metrics.

Table 7: Quantitative comparison on CAMO, COD10K test set for camouflaged object detection

Number Methods CAMO-Test COD10K-Test
Sα Eφ wFβ M Sα Eφ wFβ M

CO1 BASNet 0.749 0.796 0.646 0.096 0.802 0.855 0.677 0.038
CO2 BGNet 0.812 0.87 0.749 0.073 0.831 0.901 0.722 0.033
CO3 BGNet 0.804 0.859 0.719 0.075 0.804 0.881 0.663 0.039
CO4 BSANet 0.796 0.851 0.717 0.079 0.818 0.891 0.699 0.034
CO5 C2FNet 0.796 0.854 0.719 0.08 0.813 0.89 0.686 0.036
CO6 C2FNet 0.8 0.869 0.73 0.077 0.811 0.891 0.691 0.036
CO7 CamoFormer-S 0.876 0.935 0.832 0.043 0.862 0.932 0.772 0.024
CO8 CRNet 0.818 0.897 0.744 0.046 0.733 0.832 0.576 0.049
CO9 CubeNet 0.788 0.838 0.682 0.085 0.795 0.864 0.644 0.041

(Continued)
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Table 7 (continued)

Number Methods CAMO-Test COD10K-Test
Sα Eφ wFβ M Sα Eφ wFβ M

CO10 D2CNet 0.774 0.818 0.735 0.087 0.807 0.876 0.72 0.037
CO11 DCNet 0.87 0.922 0.831 0.05 0.873 0.934 0.81 0.022
CO12 DCE 0.819 0.881 0.798 0.069 0.829 0.903 0.751 0.032
CO13 DGNet 0.839 0.901 0.769 0.057 0.822 0.896 0.693 0.033
CO14 DQNet 0.898 0.944 0.898 0.034 0.882 0.93 0.801 0.021
CO15 DTCNet 0.778 0.804 0.667 0.084 0.79 0.821 0.616 0.041
CO16 DTIT 0.857 0.916 0.796 0.05 0.824 0.896 0.695 0.034
CO17 EAMNet 0.831 0.89 0.763 0.064 0.839 0.907 0.733 0.029
CO18 ERRNet 0.761 0.817 0.66 0.088 0.78 0.867 0.629 0.044
CO19 EVP 0.846 0.895 0.777 0.059 0.843 0.907 0.742 0.029
CO20 FBNet 0.783 0.839 0.702 0.081 0.809 0.889 0.684 0.035
CO21 FDNet 0.836 0.886 0.777 0.066 0.857 0.918 0.763 0.028
CO22 FEDER 0.807 0.873 0.785 0.069 0.823 0.9 0.74 0.032
CO23 FindNet 0.895 0.944 0.839 0.027 0.811 0.883 0.688 0.036
CO24 FPNet 0.852 0.905 0.806 0.056 0.85 0.913 0.748 0.029
CO25 FDCOD 0.844 0.898 0.778 0.062 0.837 0.918 0.731 0.03
CO26 FSNet 0.88 0.933 0.861 0.041 0.87 0.938 0.81 0.023
CO27 FSPNet 0.856 0.899 0.799 0.05 0.851 0.895 0.735 0.026
CO28 PINet 0.814 0.868 0.737 0.073 0.825 0.891 0.704 0.035
CO29 HitNet 0.844 0.904 0.806 0.056 0.869 0.936 0.804 0.023
CO30 JCNet 0.85 0.8 0.913 0.054 0.852 0.763 0.927 0.054
CO31 R-MGL 0.775 0.847 0.673 0.088 0.814 0.865 0.666 0.035
CO32 MGL 0.775 0.847 0.673 0.088 0.814 0.865 0.666 0.035
CO33 MSCAFNet 0.873 0.929 0.828 0.046 0.865 0.927 0.775 0.024
CO34 OAFormer 0.866 0.924 0.826 0.048 0.86 0.927 0.773 0.025
CO35 OCENet 0.807 0.866 0.767 0.075 0.832 0.89 0.745 0.033
CO36 OSFormer 0.799 0.858 0.767 0.073 0.811 0.881 0.701 0.034
CO37 PADNet 0.836 0.886 0.777 0.066 0.857 0.918 0.763 0.028
CO38 PENet 0.828 0.89 0.771 0.063 0.831 0.908 0.723 0.031
CO39 PFNet 0.782 0.852 0.695 0.085 0.8 0.868 0.66 0.04
CO40 PopNet 0.806 0.869 0.821 0.073 0.827 0.897 0.789 0.031
CO41 PreyNet 0.79 0.842 0.708 0.077 0.813 0.881 0.697 0.034
CO42 RankNet 0.787 0.854 0.696 0.08 0.804 0.892 0.673 0.037
CO43 SAMadaptor 0.847 0.873 0.765 0.07 0.883 0.918 0.801 0.025
CO44 SARNet 0.815 0.872 0.742 0.071 0.831 0.901 0.722 0.033
CO45 SegMaR 0.815 0.874 0.753 0.071 0.833 0.899 0.724 0.034
CO46 SINetV2 0.82 0.882 0.743 0.07 0.815 0.887 0.68 0.037
CO47 SINet 0.751 0.771 0.606 0.1 0.771 0.806 0.551 0.051
CO48 TANet 0.823 0.882 0.763 0.066 0.829 0.902 0.725 0.03
CO49 TINet 0.781 0.848 0.678 0.087 0.793 0.861 0.635 0.042

(Continued)
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Table 7 (continued)

Number Methods CAMO-Test COD10K-Test
Sα Eφ wFβ M Sα Eφ wFβ M

CO50 UEDG 0.868 0.922 0.819 0.048 0.858 0.924 0.766 0.025
CO51 UGTR 0.784 0.851 0.684 0.086 0.817 0.89 0.666 0.036
CO52 UJSC 0.803 0.853 0.728 0.076 0.817 0.892 0.684 0.035
CO53 ZoomNet 0.82 0.892 0.752 0.066 0.838 0.911 0.729 0.029
CO54 Bi-RRNet 0.843 0.909 0.802 0.054 0.84 0.912 0.746 0.026
CO55 LSRNet 0.789 0.840 0.751 0.079 0.805 0.880 0.711 0.037
CO56 CINet 0.847 0.899 0.794 0.055 0.841 0.914 0.744 0.028
CO57 CamoDiff 0.879 0.940 0.854 0.042 0.880 0.943 0.815 0.020
CO58 CMNet 0.835 0.902 0.828 0.063 0.906 0.966 0.888 0.024
CO59 CFANet 0.815 0.876 0.761 0.073 0.898 0.944 0.846 0.025
CO60 MRRNet 0.826 0.880 0.797 0.070 0.835 0.901 0.753 0.032
CO61 OPNet 0.858 0.915 0.817 0.050 0.857 0.919 0.767 0.026
CO62 MFNet 0.824 0.883 0.763 0.067 0.834 0.901 0.726 0.032
CO63 ASBI 0.871 0.931 0.845 0.050 0.868 0.938 0.802 0.024

Our findings reveal that the testing set for COD10K exhibits the highest overall resolution
compared to the CAMO dataset. This observation suggests that models incorporating higher resolu-
tions or employing multi-scale modeling techniques would derive advantages from this characteristic.
Numerous models demonstrate sensitivity to the resolution of input images, implying the potential
utilization of specific models tailored for distinct resolutions in real-world applications.

7 Summary

This paper endeavors to offer an extensive overview of deep learning methodologies tailored
for the detection of confusing objects. To comprehensively survey this field’s global landscape, we
contribute in four significant ways. Initially, we present an in-depth survey encompassing these specific
tasks, delineating their background, taxonomy, task-specific challenges, and advancements achieved in
the era of deep learning. Notably, this survey represents the most comprehensive compilation available
to date. Additionally, we establish the most current benchmark for glass, mirror and camouflaged
object detection, a pivotal and thriving area at deep learning community. We thoroughly evaluate the
latest deep learning methods to facilitate future advancement. This benchmark facilitates quantitative
comparisons among state-of-the-art techniques.

Finally, to deliberate on potential avenues for this research field and stimulate further research
and development in this domain, we have noticed that diffusion models and large language models
(LLMs) have gained significant research interest in the deep learning community. Not only in their
specific domains, such as generation tasks and natural language processing, but the capabilities of
these models have also drawn substantial attention to various tasks.

The integration of diffusion models and LLMs with previous COD methods presents a promising
perspective for enhancing the detection of challenging and confusing objects. To sum up, diffusion
models excel in generating diverse, high-quality images and identifying anomalies, while LLMs provide
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contextual understanding and reasoning. Combining these capabilities can lead to robust multimodal
systems that improve capability and adaptability in complex environments. Future advancements
may focus on leveraging these models for enhanced dataset augmentation, contextual labeling, and
adaptive learning, leading to more accurate and context-aware object detection solutions.
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