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ABSTRACT

Electrolysis tanks are used to smelt metals based on electrochemical principles, and the short-circuiting of the pole
plates in the tanks in the production process will lead to high temperatures, thus affecting normal production.
Aiming at the problems of time-consuming and poor accuracy of existing infrared methods for high-temperature
detection of dense pole plates in electrolysis tanks, an infrared dense pole plate anomalous target detection network
YOLOv5-RMF based on You Only Look Once version 5 (YOLOv5) is proposed. Firstly, we modified the Real-
Time Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) by changing the U-shaped
network (U-Net) to Attention U-Net, to preprocess the images; secondly, we propose a new Focus module that
introduces the Marr operator, which can provide more boundary information for the network; again, because
Complete Intersection over Union (CIOU) cannot accommodate target borders that are increasing and decreasing,
replace CIOU with Extended Intersection over Union (EIOU), while the loss function is changed to Focal and
Efficient IOU (Focal-EIOU) due to the different difficulty of sample detection. On the homemade dataset, the
precision of our method is 94%, the recall is 70.8%, and the map@.5 is 83.6%, which is an improvement of 1.3%
in precision, 9.7% in recall, and 7% in map@.5 over the original network. The algorithm can meet the needs of
electrolysis tank pole plate abnormal temperature detection, which can lay a technical foundation for improving
production efficiency and reducing production waste.

KEYWORDS
Infrared polar plate fault detection; YOLOv5; Real-ESRGAN; Marr boundary detection operator; Focal-EIoU loss

1 Introduction

Electrolytic cells are widely used in metal smelting and consist of a tank body, an anode, a cathode,
and typically a diaphragm that separates the anode and cathode chambers. The operational principle
involves applying direct current to induce oxidation reactions at the anode-solution interface and
reduction reactions at the cathode-solution interface, thereby producing the desired products. Current
efficiency in electrolysis directly influences both product yield and processing costs. The factors that
affect current efficiency include losses caused by short circuits, open circuits, and leaks, with short
circuits being the main factor. The site environment is shown in Fig. 1.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.055403
https://www.techscience.com/doi/10.32604/cmc.2024.055403
mailto:yzzhang@cczu.edu.cn


4860 CMC, 2024, vol.80, no.3

  

(a) a site plan of the electrolyzer (b) a brief diagram of the electrolyzer structure

Figure 1: The site environment. (a) A site plan of the electrolyzer; (b) A brief diagram of the electrolyzer
structure, which shows only one diaphragm

For a long time, most of the temperature measurement methods used in the workshop were
measured by sprinkling water or a handheld thermometer, which requires manual individual checking
of each pole plate one by one, so the short-circuit troubleshooting time is longer and the temperature
change of the pole plate is not obvious in the early stage, which may lead to missing the best time for
troubleshooting. When the next round of troubleshooting is carried out, multi-point short-circuits will
occur. If the short-circuit time is more than 4 h, the precipitated crystals are thicker, and a single person
cannot lift the plate to deal with them, and the deep short-circuits cannot be effectively dealt with,
which will lead to an increase in short-circuits in the late stage of electrolysis. Therefore, developing a
rapid and accurate high-temperature target detection algorithm for electrolysis tanks holds significant
importance. Such advancements aim to reduce production costs, enhance production efficiency, and
facilitate intelligent production processes.

Based on the properties of the pole plate, a short circuit results in unusually high temperatures,
necessitating the use of infrared cameras for data acquisition. Currently infrared detection technology
is widely used in many industries: aerial surveillance [1], vehicle identification [2], fire monitoring [3],
etc. It can be mainly divided into the following two types of algorithms: infrared target detection
algorithms based on traditional methods [4] and depth detection algorithms based on deep learning
[5]. Due to the differences between the task and the data, the traditional methods will rely more on
manual labor, which requires human observation of the data, calculation and experimentation, manual
adjustment of the parameters, and the applicability [6] and extrapolation of the model method are
relatively poor. The infrared target detection method based on deep learning fills this gap.

Neural networks employed for infrared target detection using deep learning can be broadly
classified into two categories: one-stage and two-stage networks. The two-stage algorithm is rep-
resented by Faster R-CNN, Sparse R-CNN [7], etc., however, most of these algorithms exhibit
a high number of parameters. In contrast, one-stage networks better align with actual industrial
production requirements, with the You Only Look Once (YOLO) network being a representative
example. Redmon et al. [8] proposed the YOLOv1 network, which directly obtains the specific
location information and category classification information of target detection through regression.
This approach significantly improves the detection speed. However, it is difficult to predict aspect
ratio objects that have not been seen in training data. YOLOv2 [9] improves YOLOv1 from three
perspectives: more accurate, faster, and more recognition, adds a regularization method of batch
normalization, replaces the classification network with DarkNet19, and the overall convolution
operation is more efficient than YOLOv1 few. Compared with YOLOv2, YOLOv3 [10] introduces
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the residual module, deepens the network depth, and proposes DarkNet53. At the same time, it
draws on the feature pyramid idea to perform predictions at three different scales. Wang et al. [11]
proposed YOLOv4, which integrates numerous optimization strategies within its architecture. This
includes Mosaic data augmentation for input data, the backbone integration Cross Stage Partial
(CSP) [12] structure into DarkNet53, and the introduction of the Mish activation function to enhance
detection accuracy. YOLOv5 boasts reduced size, lower deployment costs, greater flexibility, and faster
detection speeds compared to earlier iterations (YOLOv1 to YOLOv4). It employs Spatial Pyramid
Pooling with Feature Pyramid (SPPF) instead of Spatial Pyramid Pooling (SPP) [13] and utilizes an
adaptive approach to anchor box generation during training. While YOLOv6 [14] and YOLOv7 [15]
algorithms offer increased accuracy, they also exhibit significantly higher parameter counts compared
to YOLOv5, sometimes by several orders of magnitude. Therefore, YOLOv5 is chosen as the base
network for this experiment.

For infrared target detection, the long-term problems include small targets, unclear grayscale
changes, and low image resolution. In the collected dataset, the arrangement of targets is very dense,
which exacerbates the problem of unclear grayscale changes at the boundaries of infrared images, and
the target aspect ratio is large, making it difficult for the YOLO network to directly adapt. Based on
the above issues, the summary of the work in this article is as follows:

(1) Aiming at the problem of slow grey scale change of target edges in infrared pictures and
relatively dense arrangement of targets, which makes it difficult to distinguish the target boundaries,
the experiment combines Focus and Marr operators and replaces the first Convolutional Block
Separable (CBS) in the net with this new module.

(2) Aiming at the problem that the size of the electrolytic tank bezel in the lens increases and
decreases at the same time, and the CIOU is unable to adapt to it, and, the difficulty of detecting
different temperature segments is different, but CIOU cannot distinguish difficult to detect targets,
the experiment uses the Focal-EIOU loss to replace the CIOU.

(3) Aiming at the problem that the infrared camera is higher from the ground and captures smaller
pictures with lower pixels, the infrared pictures are preprocessed after modifying the U-Net in Real-
ESRGAN to Attention U-Net.

2 Related Work
2.1 Infrared Target Detection

In the complex environment of electrolysis tanks, where the design of the plates tends to be com-
pact and less spaced from each other, this dense arrangement creates a smoother grey scale transition
[16] of the infrared radiation in the edge region of the plates when using infrared thermography for fault
detection. The ambiguity of this edge grey scale change poses a significant problem for computer vision
algorithms that rely on image edge information to identify object boundaries. The above problems,
combined with the inherently low-resolution nature of infrared images, further exacerbate the risk of
missed detections. Infrared images, due to the limitations of their imaging principle, tend to have a
low pixel density, i.e., each pixel represents a relatively large actual spatial dimension, which results
in a relatively small size of the target (e.g., polar plate boundary) presented in the image. With this
dual challenge, subtle variations in polar plate boundaries may be almost submerged in background
noise or similar grey values of neighboring pixels in infrared images, making the already difficult-to-
capture edge information even more difficult to identify. Jiao et al. [17] proposed an effective weld
bevel edge recognition technique tailored to industrial scenarios. This technique incorporates median
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filtering, Sobel operator edge detection, and a defined narrow region edge search, aimed at reducing
guidance errors and ensuring system accuracy. Li et al. [18] introduced a boundary enhancement
operator to adaptively extract boundary features from the limit points of the boundary to enhance
existing features. Based on the characteristics of the target instance and the improved network model,
the complete intersection-union ratio function was introduced to deal with the YOLOv3 loss. Notably,
although the proposed method yields pronounced enhancement outcomes on low-resolution and high-
noise remote sensing images, however, the images processed by the boundary operator are black and
white. If the network has tasks other than positioning, it also needs to combine color information
to determine abnormalities. To address this, the experiment suggests utilizing a boundary detection
operator to extract boundary features. Subsequently, these features are superimposed onto the color
feature maps and transmitted to the back layer of the network for comprehensive analysis.

Given the problem that the electrolytic cell is rectangular and has a very large aspect ratio, and the
currently used loss function CIoU cannot adapt, Hamid et al. [19] proposed Generalized IoU (GIoU).
This proposition adds an item after IoU to calculate the minimum circumscribed rectangle of two
boxes, which is used to characterize the distance between the two boxes, thereby solving the problem
of zero gradients when the two objectives do not intersect. However, when the prediction box lies within
the ground truth box and their areas are equal, GIoU fails to discern the relative positional relationship
between them. To overcome this limitation, Zheng et al. [20] introduced Distance-IoU (DIoU), which
incorporates center distance within the GIoU framework. In scenarios where the prediction box is
contained within the ground truth box, both frames possess equal area and center distance, and the
DIoU metric struggles to discern the aspect ratio relationship between them. To address this limitation,
Zheng et al. [21] introduced CIoU, which incorporates an aspect ratio factor, however, the definition of
the aspect ratio in CIoU can be ambiguous. In response to the problem of varying degrees of difficulty
in testing samples, Lin et al. [22] proposed Focal loss to solve the category imbalance loss function,
which is used in the image field to solve the problem of positive and negative sample imbalance and
difficult classification sample learning in one-stage target detection. However, Focal loss uses basic
IoU and is applied to actual problems, there will be situations where the value is 0 when the predicted
box and the real box do not intersect.

2.2 Super-Resolution Preprocessing

In target detection using deep learning, especially Convolutional Neural Networks (CNNs), image
information is passed through the convolutional layers layer by layer for feature extraction. However,
as the number of network layers deepens, while higher-level abstract features can be captured, it
inevitably leads to the loss of a large amount of shallow detail information. This shallow information
often contains key features such as the edges and textures of the target, which are crucial for accurate
positioning and identification of small targets. Therefore, the loss of shallow information can seriously
affect the performance of target detection and increase the risk of missed detection and false alarms.
To alleviate this problem, super-resolution pre-processing techniques have been introduced into the
target detection process. Zhao et al. [23] first added the Convlutional Block Attention (CBAM)
to Super-Resolution Generative Adversarial Networks (SRGAN) and then cascades the improved
SRGAN with YOLOv5 for final detection. Xiao et al. [24] proposed a novel adaptive squeezing
excitation module that adds a Reception Field Block (RFB) [25] module to the YOLO network. The
module uses a super-resolution model to increase the expressive power of receptive fields and feature
images. Most of the above methods focus on pre-processing using SRGAN, however, the enlarged
details processed by SRGAN [26] are usually accompanied by artifacts, Enhanced Super Resolution
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Generative Adversarial Networks (ESRGAN) [27] makes improvements on this basis, and the oper-
ations include removing the BN layer, and the basic structure is replaced with RDDB. For example,
Wang et al. [28] proposed a network combining YOLOv5 and ESRGAN for the problem of too small
labels in digital recognition by replacing the backbone network of YOLOv5 with MobileNetv3 [29]
to improve the image quality and achieve digital recognition. However, in the real world, the problem
of recovering degraded low-resolution images is still unsolved. Wang et al. proposed Real-ESRGAN
[30], which replaces Visual Geometry Group (VGG) [31] with U-Net [32] to enhance the adversarial
learning on the details of the pictures and introduces spectral normalization to stabilize the complex
dataset and reduce the instability caused by the training, the above operations enable the network to
produce more realistic and clear images. Yang et al. [33] utilized Real-ESRGAN technology to enhance
image resolution, effectively addressing the challenge of identifying minor defects in the dataset.
Furthermore, Deformable Convolutions (DCN) [34] was seamlessly integrated into YOLO, alongside
the design of a module based on CBAM and Concurrent Spatial and Channel Squeeze and Excitation
(SCSE) [35] attention mechanisms, which improved feature map representation. Zheng et al. [36]
proposed a two-stage recognition method that integrates the YOLO algorithm with Real-ESRGAN.
Firstly, YOLO utilizes GhostNet [37] as its backbone to reduce computational load. The head
integrates the attention-guided module to enhance attention capabilities on small targets. Secondly,
the flame region identified by YOLO undergoes cropping, stitching, and enhancement using Real-
ESRGAN for improved clarity.

In summary, the article chooses YOLOv5 as the base network, preprocesses the image after
modifying Real-ESRGAN, then modifies the loss function of YOLOv5, and finally replaces the first
CBS with Focus and adds the Marr boundary detection operator to it. The network obtained by the
above modification can be well adapted to the characteristics of the electrolysis tank and efficiently
detect abnormal targets.

3 Methods
3.1 Model Introduction

YOLOv5 can achieve a good balance of accuracy and number of parameters, while YOLOv5s is
the smallest in the series and is suitable for edge devices, so the experiments use YOLOv5s as the base
network. To further improve the detection performance of YOLOv5s, the loss function and the first
CBS of the network are modified, and the image is preprocessed with super-resolution. Its structure is
shown in Fig. 2.

The backbone in the above figure is the backbone of YOLOv5s itself, the difference is that Real-
ESRGAN is used to super-resolve the image, the loss function is replaced with Focus-EIOU Loss, and
the first CBS is replaced with the Focus module, and the Marr operator is added to the Focus module.
The above processing can help the network to obtain clearer shallow information, which helps to solve
the problems of low pixels in infrared images, slow change of target edges, large target aspect ratio,
and samples varying in difficulty of detection.

3.2 Focus Combined with Marr Boundary Detection Operator

In the context of convolutional neural networks for target feature extraction, as the network
depth increases, shallow information diminishes progressively while abstract features become more
pronounced. In tasks like target detection, especially in scenarios such as infrared imagery character-
ized by smooth grayscale transitions and subtle edges, retaining shallow details such as object edges
and textures is critical for accurate localization and identification. However, deep convolutional layers
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often struggle to preserve such crucial shallow information, potentially leading to missed detections
and reduced recall rates. To address this issue and enhance the network’s capacity to retain shallow
details, we replace the initial CBS module with a Focus module. The Focus module utilizes a slicing
approach, dividing the input image into four complementary sub-images. This operation reduces the
image dimensions for subsequent processing while mitigating the loss of shallow information typical
in standard convolution operations. Introducing the Focus module enriches the network’s reservoir
of shallow details, significantly improving the precision and recall of target detection, especially in
challenging contexts like infrared imagery. This transformation is illustrated in Fig. 3.

Figure 2: YOLOv5s-RMF structural flowchart, with modifications made to sections “a. Modified
Focus,” “b. Focus-EIOU-Loss,” and “c. Real-ESRGAN Image Preprocessing.”

Figure 3: Focus schematic

However, the introduction of Focus was not enough, as it only retained the information and did
not highlight important information; CBS picked out information from the images that were worth
learning, but Focus did not focus on it, and the experimental results showed that the recall did not
improve much. To mitigate this limitation and enhance recall effectiveness, we integrated a boundary
detection operator within the Focus module to accentuate boundary information more prominently.
The selection of the detection operator holds particular significance at this stage. Comparative analyses
were conducted using various operators, as depicted in Fig. 4, to evaluate their effectiveness.
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Laplace Marr Sobel Prewitt

Figure 4: Processing effect of different boundary detection operators

It is clear to see that the Marr operator works better than the others. The overall structure of the
network is shown in Fig. 2. The formula for the Marr boundary operator is shown in Eq. (1):

∇2G (x, y) =
(

x2 + y2 − 2σ 2

σ 4

)
e

−(x2+y2)
2σ2 (1)

where ∇2G is the filter, ∇2 is the Laplace operator, and G is a two-dimensional Gaussian function with
standard deviation σ . Algorithm 1 below demonstrates the detailed process:

Algorithm 1: Add the Marr boundary detection operator to the Focus module
Input: 3 × 1280 × 1280 (C × H × W)
Output: 32 × 640 × 640 (C × H × W)
1: x1 = x [..., ::2, ::2]; x2 = x [..., 1::2, ::2]; x3 = x [..., ::2, 1::2]; x4 = x [..., 1::2, 1::2];
2: x2_marr = marr(x2); x3_marr = marr(x3);
3: x2_final = x2 ∗ x2_marr.expand_as(x2); x3_final = x3 ∗ x3_marr.expand_as(x3)
4: Result = conv(torch.cat([x1, x2_final, x3_final, x4], 1))

The module integrating the Marr operator and Focus can make the network pay more attention to
the boundary information while reducing the information loss and retaining more shallow information
for the network, which is a good way to alleviate the problem of inconspicuous grey scale changes in
the infrared picture itself.

3.3 Focal-EIoU Loss

CIoU is used in YOLOv5s, which uses penalties including overlap area, centroid distance, and
aspect ratio. Notably, if the aspect of the detected target can increase or decrease at the same time,
then the CIOU will be invalid, but the object of this experiment will increase and decrease at the same
time the length and width of the places far away from the camera will become smaller together, and
the length and width of the places close to the camera will become larger together. Consequently, the
CIoU loss function may not precisely regress to the aspect ratio of the ground truth box. This leads
to a decrease in model training performance, including poor performance in metrics such as precision
and recall, as well as an increased risk of overfitting or underfitting. To address this limitation, the
EIoU introduces an additional penalty term based on the edge length.

Additionally, detecting objects at different temperature ranges poses varying levels of difficulty.
In infrared cameras, objects with higher temperatures are more pronounced. We define temperatures
exceeding 80°C as abnormal targets in the dataset, where objects approaching 79°C exhibit colors
similar to those at 80°C. Such samples are more challenging to distinguish compared to targets at 90°C
or 60°C. Existing metrics like EIOU and CIOU do not differentiate between these cases, prompting
the introduction of the Focal loss to address this issue. The Focal loss strategy is designed to diminish
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the impact of straightforward samples while augmenting the training emphasis on challenging ones.
When the loss of a large number of simple samples is accumulated, the number of complex samples
is relatively small, so it is difficult to learn the complex samples that the network is interested in, that
is, the simple samples swamp the complex samples. Combining Focal loss with EIoU, the resulting
formula is presented in Algorithm 2.

Algorithm 2: Focal-EIOU loss
Input: The ground truth and predicted box A, B ⊆ S ⊆ Rn

Output: LFocal − EIOU
1: For A and B,

(
xA

1 , yA
1

)
,

(
xA

2 , yA
2

)
represent coordinates of the top left corner and lower right corner

of A,
(
xB

1 , yB
1

)
,

(
xB

2 , yB
2

)
represent coordinates of the top left corner and lower right corner of B.

2: b = xB
1 + xB

2

2
, bgt = xA

1 + xA
2

2
, ρ = ‖b − bgt‖

3: wc = max
(
xA

2 − xB
2

) − min
(
xA

1 , xB
1

)
, hc = max

(
yA

2 − yB
2

) − min
(
yA

1 , yB
1

)
4: 1 − IOU = 1 − (A ∩ B)

(A ∪ B)
→ LIOU

5:
ρ2 (b, bgt)

(wc)
2 + (hc)

2 → Ldis

6:
ρ2 (w, wgt)

(wc)
2 + ρ2 (h, hgt)

(hc)
2 → Lasp

7: LIOU + Ldis + Lasp → LEIOU

8: LFocal − EIOU = IoU γ LEIoU

The modification of the loss function can make the network more adaptable to the current dataset,
and can better detect targets with too large aspect ratios and poor temperature differentiation, bringing
about an improvement in the quality of detection.

3.4 Real-ESRGAN Super-Resolution Pre-Processing

In the current sampling environment, extensive water vapor and acidic gases affect the camera
during image capture, resulting in blurred and noisy images. Additionally, transmission losses further
degrade image clarity. Moreover, the densely packed arrangement of targets increases detection
challenges, leading to potential missed detections and decreased detection accuracy. To mitigate these
issues, we preprocess the images using Real-ESRGAN. However, Real-ESRGAN is not inherently
suitable for such densely packed targets, and the substantial noise in the images can lead to artifacts
in the trained network. Therefore, improvements to the network architecture are necessary.

Initially, during training, we augmented the dataset with 15 cartoon images. Inspired by datasets
presented in the Real-ESRGAN literature, this augmentation is motivated by the low noise levels
inherent in cartoon images. In neural network training, small datasets can easily lead to overfitting,
where the model excessively relies on specific noise patterns in the dataset rather than learning a general
mapping from input to output. Introducing a small number of low-noise cartoon images into the
dataset serves as a form of regularization, helping the model reduce its reliance on noise patterns and
thereby mitigating the risk of overfitting.

Furthermore, we replace the U-Net architecture with Attention U-Net, which introduces grid-
based gating mechanisms to enhance attention focus on local regions. This modification is well-suited
for densely packed targets, as illustrated in Table 1 of the network structure.
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Table 1: Attention U-Net backbone

Backbone:

#[from, respects, module, args]
−[−1, 1, Conv2d, [64, 3, 1]] # 0
−[−1, 1, Conv2d, [128, 4, 2]] # 1
−[−1, 1, Conv2d, [256, 4, 2]] # 2
−[−1, 1,Conv2d, [512, 4, 2]] # 3
−[ [2, 3], 1, Attention block, [128]] # 4
−[3, 1, Conv2d, [256, 3, 1]] # 5
−[ [1, 5], 1, Attention block, [64]] # 6
−[2, 1, Conv2d, [128, 3, 1]] # 7
−[ [0, 7], 1, Attention block, [32]] # 8
−[1, 1, Conv2d, [64, 3, 1]] # 9
−[−1, 1, Conv2d, [64, 3, 1]] # 10
−[−1, 1, Conv2d, [64, 3, 1]] # 11
−[−1, 1, Conv2d, [1, 3, 1]] # 12

Fig. 5 shows the comparison chart of various super-resolution networks, we first use the weights
obtained from the training of each network on the public dataset, the direct input to the output image,
we can see that the image obtained by SRGAN is still very fuzzy, the image obtained by ESRGAN
changes the hue of the original image, and Real-ESRGAN is processed, such as want to become clear,
and also does not change the hue, but artifacts appeared, for this point, we improved accordingly,
and finally got the image shown in the lower right corner. The modified network is only used as a
preprocessing method and does not participate in the training of the YOLO model.

Original figure

SRGAN  ESRGAN

Real-ESRGAN Ours

Figure 5: Comparison of various super-resolution networks
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4 Experiments

The experiment was implemented based on the pyTorch framework and the code compiler used
was PyCharm. The system used a 12th Gen Intel(R) Core(TM) i9-12900H 2.50 GHz CPU, an NVIDIA
GeForce RTX 3060 Laptop GPU, and a hard drive with 512 G. The server was accessed using
MobaXterm_23 0, and the Ubuntu version was Ubuntu 18.04.6 LTS (GNU/Linux 5.4.0-144-generic
x86_64). MobaXterm_23.0 to access the server, Ubuntu version is Ubuntu 18.04.6 LTS (GNU/Linux
5.4.0-144-generic x86_64). The basic data of the network is shown in Table 2.

Table 2: Experimental parameters

Component Name/value

Input image size 1280 × 1280
Epoch 300
Training batch size 32
Initial learning rate 0.01
Momentum 0.937
Optimizer SGD

4.1 Experimental Data

The dataset used in the experiments is homemade and is obtained through the system shown
in Fig. 6. The system consists of several infrared cameras, model MAG32 of Shanghai Magnity
Electronics Co., Ltd. (Shanghai, China) with pixels of 384 × 288 and a pixel size of 17 um. Temperature
data of the polar plates are firstly collected by these infrared cameras and then transmitted to the server
through a switch and fiber optic. Switch optical fiber transmission to the upper-level network, all the
data are aggregated and then arrive at the server, and finally recorded in real-time in the software
ThermoGroup.

Figure 6: Brief architecture of image acquisition system
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A total of 1200 images were collected for the experiment. The image format is BMP, and the
dataset is labeled with ‘right’ and ‘wrong’ using Vott, above 80°C is noted as ‘Wrong’, and below 80°C
is noted as ‘Right’. Due to the overall small size of the dataset, the dataset was expanded by adding
noise and random brightness adjustment, and the final number of datasets used for training was 3112,
and the number of datasets used for testing was 816.

As shown in Fig. 7, the data set is processed by adding noise and adjusting the brightness, which
can mimic the interference of the field environment to the infrared camera.

(a) Original image (b)Adding noise and adjusting brightness

Figure 7: Dataset expansion status

4.2 Evaluation Metrics

Based on the characteristics of the project task, recall, precision, mAP, and GFLOPs amount are
used to evaluate the improved performance of the network. The evaluation criteria are expressed as
follows:

P = TP

TP + FP

(2)

R = TP

TP + FN

(3)

mAP =

K∑
i=1

APi

K
(4)

FLOPs = 2 × Cout × Hout × Wout ×
(
Cin × k2 + bias

)
(5)

where 1GLOPs = 109FLPOs, GLPOs are used as a metric, which is measured in billions of floating
point operations that can be performed per second. This metric not only reveals the computational
requirements of the model but also reflects the hardware specifications required for its operation and
the complexity of the network architecture.

4.3 Experimental Comparison with Other Models

Based on the above metrics, the results of YOLOv5s, YOLOv6s, YOLOv7, and YOLOv5s-RMF
on the homegrown datasets were compared, each one of which was obtained from the autonomous
dataset trained with the pre-trained models yolov5s.pt, yolov6s.pt, yolov7.pt, and yolov5s.pt. Results
are shown in Table 3.

As can be seen from the above table, the precision of YOLOv5 + DenseNet is higher than our
method, but the recall is low, confirming the analysis earlier in this paper that simply deepening the
depth and width of the network without shallow information protection is detrimental to the recall
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improvement. and although the recall of ours is lower than that of YOLOv7, the GLOPs are only 0.2
higher than those of YOLOv5s, and much smaller than others.

Table 3: Comparison of different algorithms

Name Precision/% Recall/% mAP@.5/% GFLOPs

YOLOv5s 92.7 61.1 78.4 15.8
YOLOv5 + DenseNet [38] 94.5 69.9 83.3 208.6
YOLOv5 + Soft-NMS [39] 93.2 60.0 78.0 15.8
YOLOv5 + DoubleHead [40] 93.0 68.3 80.6 66.2
YOLOv6s 82.9 59.2 82.9 42.8
YOLOv7 90.3 83.1 90.3 105.1
Ours 94.0 70.8 83.6 16.0

4.4 Ablation Experiments

To further verify the feasibility of the improved YOLOv5 network algorithm and the different
effects of each module on the detection results, ablation experiments were carried out on each module,
firstly comparing the effects before and after the super-resolution processing, i.e., rows one, two and
two in the table, the network precision rate after super-resolution increased by 3% and recall increased
by 0.3%, which proves that super-resolution processed images can indeed provide the network with
more feature information. Next, training on the super-resolution processed dataset, modifying the
loss function in the network, aiming to help the network better adapt to the target with larger length
and width, we can see that the precision rate of the network increases by 2.5%, and the recall rate
increases by 1.3%, and finally, modifying the first CBS in the network, because convolution of the
image will reduce the shallow information, so the Foucs operation is used to reduce the fine-grained
information of these dilution, and at the same time, to improve the recall, the Marr operator is added
to Focus, which provides clearer boundary information for the network, and it can be seen that the
precision is still higher than the initial network although it has been decreased, and at the same time,
the recall is increased by 8.2%. The details of the ablation experiment are shown in Table 4.

Table 4: Ablation study

YOLOv5s Real-ESRAGN Focal-EIOU Focus Precision/% Recall/%

� 92.7 61.1
� � 95.7 61.4
� � � 98.2 62.6
� � � � 94.0 70.8

The comparative results are shown in Fig. 8, the left figure is the result plot obtained by the
YOLOv5s network, running a 384 × 288 image, and it can be seen that in the figure, there are some
boxes with more than one target inside them, and some targets are miss-detected. The right figure is
the result obtained by the YOLOv5-RMF network running a four-times magnified image, and there
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were no missed detections. Therefore, this network helps to improve the overall inspection results and
helps factories to automate production, increase productivity, and optimize staffing.

Figure 8: Comparison of YOLOv5s and YOLOv5-RMF running results

5 Conclusion

For YOLOv5s in dealing with infrared dense targets, there are problems: the input infrared image
resolution is not high, the details are not clear; infrared picture grey scale change is not obvious, and the
target arrangement is very dense, resulting in difficulty to detect the target boundaries; the network’s
inherent loss function struggles adapt to the goal of increasing and decreasing the size of the edges in
the same way, and the difficulty of different samples in the dataset varies, so the loss function cannot
be balanced effectively. We propose several methods for improvement. Firstly, after modifying Real-
ESRGAN, the images are preprocessed with a super-resolution network; then the first CBS of the
network is modified and replaced with Focus, and at the same time the Marr boundary detection
operator is introduced in Focus; finally, the loss function of the network is modified. The experimental
results show that this method effectively reduces the phenomenon of missed detection, improves recall
and accuracy, makes up for the insufficiency of the original network, and can achieve the fast detection
of infrared-dense targets.

Based on the current operation of 216 electrolysis cells per day, each with a capacity of 0.46 tons
per cell per day, and considering an average of 3 electrode plate short circuits and interruptions (with
40% periodic energization), the system aims to increase effective electrolysis of electrode plates from
28 plates per cell per day to 31 plates. With this system, the single-cell capacity is expected to increase
to 0.483 tons per cell per day. The system also achieves a 1.44% increase in current efficiency. In
summary, adopting this system enables timely detection of short circuit faults, reduces overall energy
consumption, optimizes personnel deployment, and achieves intelligent electrolysis cell monitoring.

In our experiments, the network can be used in all electrolyzer production plants, but the
experiments have only investigated the effects of short circuits and not the problems caused by
disconnection and leakage losses. At the same time, we observed that employing super-resolution
techniques enhances the visual clarity of images, however, we noticed a potential issue where the images
appear excessively smooth. Addressing the issues of smoothness, disconnection, and leakage will be
our next research direction.



4872 CMC, 2024, vol.80, no.3

Acknowledgement: The authors would like to thank Changzhou Baoyi Company for providing a
dataset collection environment for this experiment.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Huiling Yu, Yanqiu Hang; data collection: Yanqiu Hang; analysis and interpretation of results:
Yanqiu Hang; draft manuscript preparation: Yanqiu Hang, Shen Shi, Kangning Wu, Yizhuo Zhang.
All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Due to the nature of this research, participants of this study did
not agree for their data to be shared publicly, so supporting data is not available.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Y. Hu, M. Xiao, K. Zhang, Q. Kong, G. Han and P. Ge, “Aerial infrared target tracking in severe

jamming using skeletal tracking technology,” Infrared Phys. Technol., vol. 113, 2021, Art. no. 103545. doi:
10.1016/j.infrared.2020.103545.

[2] W. Zhang, X. Fu, and W. Li, “The intelligent vehicle target recognition algorithm based on tar-
get infrared features combined with lidar,” Comput. Commun., vol. 155, pp. 158–165, 2020. doi:
10.1016/j.comcom.2020.03.013.

[3] J. Zhu, W. Li, D. Lin, H. Cheng, and G. Zhao, “Intelligent fire monitor for fire robot based on infrared
image feedback control,” Fire Technol., vol. 56, pp. 2089–2109, 2020. doi: 10.1007/s10694-020-00964-4.

[4] S. S. Rawat, S. K. Verma, and Y. Kumar, “Review on recent development in infrared small target detection
algorithms,” Proc. Comput. Sci., vol. 167, pp. 2496–2505, 2020. doi: 10.1016/j.procs.2020.03.302.

[5] Y. He et al., “Infrared machine vision and infrared thermography with deep learning: A review,” Infrared
Phys. Technol., vol. 116, 2021, Art. no. 103754. doi: 10.1016/j.infrared.2021.103754

[6] D. Zhang, J. Zhang, K. Yao, M. Cheng, and Y. Wu, “Infrared ship-target recognition based on SVM
classification,” Infrared Laser Eng., vol. 45, no. 1, pp. 1–6, 2016.

[7] P. Sun et al., “Sparse R-CNN: End-to-end object detection with learnable proposals,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 14454–14463. doi:
10.48550/arXiv.2011.12450.

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, Real-time object
detection,” in 2016 IEEE Conf. on Comput. Vis. and Pattern Recognit., Las Vegas, NV, USA, IEEE, 2016,
pp. 779–788.

[9] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in IEEE Conf. on Comput. Vis. & Pattern
Recognit., Honolulu, HI, USA, IEEE, 2017, pp. 6517–6525.

[10] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” 2018, arXiv:1804.02767.
[11] C. Wang, A. Bochkovskiy, and H. M. Liao, “Scaled-YOLOv4: Scaling cross stage partial network,” in

IEEE/ CVF Conf. on Comput. Vis. and Pattern Recognit., Nashville, TN, USA, IEEE, 2021, pp. 13029–
13038.

[12] C. Wang, H. M. Liao, Y. Wu, P. Chen, J. Hsieh and I. Yeh, “CSPNet: A new backbone that can
enhance learning capability of CNN,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Seattle, WA, USA, Jun. 2020, pp. 390–391.

https://doi.org/10.1016/j.infrared.2020.103545
https://doi.org/10.1016/j.comcom.2020.03.013
https://doi.org/10.1007/s10694-020-00964-4
https://doi.org/10.1016/j.procs.2020.03.302
https://doi.org/10.1016/j.infrared.2021.103754
https://doi.org/10.48550/arXiv.2011.12450


CMC, 2024, vol.80, no.3 4873

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for
visual recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916, 2015. doi:
10.1109/TPAMI.2015.2389824.

[14] C. Li et al., “YOLOv6: A single-stage object detection framework for industrial applications,”Sep. 07, 2022,
arXiv:2209.02976.

[15] C. Wang, A. Bochkovskiy, and H. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art
for real-time object detectors,” in Proc. of the IEEE/ CVF Conf. on Comput. Vis. and Pattern Recognit.,
Vancouver, BC, Canada, IEEE, 2023, pp. 7464–7475.

[16] Y. Cheng, X. Lai, Y. Xia, and J. Zhou, “Infrared dim small target detection networks: A review,” Sensors,
vol. 24, no. 12, 2024, Art. no. 3885. doi: 10.3390/s24123885.

[17] X. Jiao, Y. Yang, and C. Zhou, “Seam tracking technology for hyperbaric underwater welding,” (in
Chinese), Chin. J. Mech. Eng. (CJME), vol. 22, no. 2, pp. 265–269, 2009. doi: 10.3901/CJME.2009.02.265.

[18] K. Li, J. Yang, and Z. Huang, “Improved YOLOv3 target detection based on boundary limit point features,”
J. Comput. Appl., vol. 43, no. 1, pp. 81–87, 2023.

[19] R. Hamid, T. Nathan, J. Gwak, A. Sadeghian, L. Reid, and S. Savarese, “Generalized intersection over
union: A metric and a loss for bounding box,” in Proc. of the IEEE/ CVF Conf. on Comput. Vis. and Pattern
Recognit., Los Angeles, CA, USA, IEEE, 2019, 658–666.

[20] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye and D. Ren, “Distance-IoU loss: Faster and better learning for
bounding box regression,” Proc. AAAI Conf. Artif. Intell., vol. 34, no. 7, pp. 12993–13000, 2020. doi:
10.1609/aaai.v34i07.6999.

[21] Z. Zheng et al., “Enhancing geometric factors in model learning and inference for object detec-
tion and instance segmentation,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 8574–8586, 2021. doi:
10.1109/TCYB.2021.3095305.

[22] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detectin,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 2017, no. 99, pp. 2999–3007, 2017.

[23] Z. Zhao, F. Ni, Y. Song, H. Li, G. Wang and B. Yang, “Substation equipment defect detection method
based on improved SRGAN,” in Advances in Machinery, Materials Science and Engineering Application
IX , IOS Press, 2023, pp. 687–693.

[24] X. Zhou, L. Jiang, C. Hu, S. Lei, T. Zhang and X. Mou, “YOLO-SASE: An improved YOLO algorithm
for the small targets detection in complex backgrounds,” Sensors, vol. 22, no. 12, 2022, Art. no. 4600. doi:
10.3390/s22124600.

[25] S. Liu, D. Huang, and Y. Hong, “Receptive field block net for accurate and fast object detection,” in Proc.
of the Eur. Conf. on Comput. Vis. (ECCV), Munich, Germany, 2018, pp. 385–400.

[26] C. Ledig et al., “Photo-realistic single image super-resolution using a generative adversarial network,” in
Proc. of the IEEE Conf. on Comput. Vis. and Pattern Recognit., Tianjin, China, 2017, pp. 4681–4690. doi:
10.48550/arXiv.1609.04802.

[27] X. Wang et al., “ESRGAN: Enhanced super-resolution generative adversarial networks,” in Proc. of the
Eur. Conf. on Comput. Vis. (ECCV) Workshops, Munich, Germany, 2018.

[28] Z. Wang, Y. Dong, D. Niu, M. Liu, Q. Li and X. Chen, “Billet number recognition based on ESRGAN and
improved YOLOv5,” in 2022 37th Youth Acad. Annu. Conf. of Chin. Assoc. of Automat. (YAC), Beijing,
China, IEEE, 2022, pp. 1384–1389. doi: 10.1109/YAC57282.2022.10023659.

[29] B. Koonce, “MobileNetV3,” in Convolutional Neural Networks with Swift for Tensorflow, Berkeley, CA:
Apress, 2021, pp. 125–144. doi: 10.1007/978-1-4842-6168-2_11.

[30] X. Wang, L. Xie, C. Dong, and Y. Shan, “Real-ESRGAN: Training real-world blind super-resolution with
pure synthetic data,” in IEEE/ CVF Int. Conf. on Comput. Vis. Workshops, Montreal, QC, Canada, 2021,
pp. 1905–1914.

[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”
Comput. Sci., 2014. doi: 10.48550/arXiv.1409.1556.

https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.3390/s24123885
https://doi.org/10.3901/CJME.2009.02.265
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.1109/TCYB.2021.3095305
https://doi.org/10.3390/s22124600
https://doi.org/10.48550/arXiv.1609.04802
https://doi.org/10.1109/YAC57282.2022.10023659
https://doi.org/10.1007/978-1-4842-6168-2_11
https://doi.org/10.48550/arXiv.1409.1556


4874 CMC, 2024, vol.80, no.3

[32] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmen-
tation,” in Med. Image Comput. and Comput.-Assist. Intervent.–MICCAI 2015: 18th Int. Conf., Munich,
Germany, Springer International Publishing, 2015, pp. 234–241.

[33] S. Yang, Z. Zhang, B. Wang, and J. Wu, “DCS-YOLOv8: An improved steel surface defect detection
algorithm based on YOLOv8,” in Proc. of the 2024 7th Int. Conf. on Image and Graph. Process., Beijing,
China, 2024, pp. 39–46. doi: 10.1145/3647649.364765.

[34] J. Dai et al., “Deformable convolutional networks,” in Proc. of the IEEE Int. Conf. on Computer Vision,
Venice, Italy, 2017, pp. 764–773. doi: 10.48550/arXiv.1703.06211.

[35] A. G. Roy, N. Navab, and C. Wachinger, “Concurrent spatial and channel ‘squeeze & excitation’ in fully
convolutional networks,” in Medical Image Comput. and Comput. Assist. Intervent.–MICCAI 2018: 21st
Int. Conf., Granada, Spain, Springer International Publishing, 2018, pp. 421–429.

[36] H. Zheng, S. Dembele, Y. Wu, Y. Liu, H. Chen and Q. Zhang, “A lightweight algorithm capable of
accurately identifying forest fires from UAV remote sensing imagery,” Front. For. Glob. Change, vol. 6,
2023, Art. no. 1134942. doi: 10.3389/ffgc.2023.1134942.

[37] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu and C. Xu, “GhostNet: More features from cheap operations,”
in Proc. of the IEEE/CVF Conf. on Comput. Vis. and Pattern Recognit., 2020, pp. 1580–1589. doi:
10.48550/arXiv.1911.11907.

[38] X. Zhang, M. Yan, D. Zhu, and G. Yang, “Marine ship detection and classification based on YOLOv5
model,” J. Phys. Conf. Ser., vol. 2181, no. 1, 2022, Art. no. 012025. doi: 10.1088/1742-6596/2181/1/012025.

[39] H. Wang, J. Jin, H. Ke, and X. Zhang, “DDH-YOLOv5: Improved YOLOv5 based on double IoU-aware
decoupled head for object detection,” J. Real Time Image Process., vol. 19, no. 6, pp. 1023–1033, 2022. doi:
10.1007/s11554-022-01241-z.

[40] J. Shi, L. Li, F. Liu, and C. Xu, “Remote sensing image objects detection algorithm based on improved
YOLOv5,” in Int. Conf. on Mech. and Robot. (ICMAR 2022), Zhuhai, China, 2022, vol. 2331,
pp. 1206–1213. doi: 10.1117/12.2652220.

https://doi.org/10.1145/3647649.364765
https://doi.org/10.48550/arXiv.1703.06211
https://doi.org/10.3389/ffgc.2023.1134942
https://doi.org/10.48550/arXiv.1911.11907
https://doi.org/10.1088/1742-6596/2181/1/012025
https://doi.org/10.1007/s11554-022-01241-z
https://doi.org/10.1117/12.2652220

	Infrared Fault Detection Method for Dense Electrolytic Bath Polar Plate Based on YOLOv5s
	1 Introduction
	2 Related Work
	3 Methods
	4 Experiments
	5 Conclusion
	References


