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ABSTRACT

Aiming at the rapid growth of network services, which leads to the problems of long service request processing
time and high deployment cost in the deployment of network function virtualization service function chain (SFC)
under 5G networks, this paper proposes a multi-agent deep deterministic policy gradient optimization algorithm
for SFC deployment (MADDPG-SD). Initially, an optimization model is devised to enhance the request acceptance
rate, minimizing the latency and deploying the cost SFC is constructed for the network resource-constrained case.
Subsequently, we model the dynamic problem as a Markov decision process (MDP), facilitating adaptation to the
evolving states of network resources. Finally, by allocating SFCs to different agents and adopting a collaborative
deployment strategy, each agent aims to maximize the request acceptance rate or minimize latency and costs. These
agents learn strategies from historical data of virtual network functions in SFCs to guide server node selection,
and achieve approximately optimal SFC deployment strategies through a cooperative framework of centralized
training and distributed execution. Experimental simulation results indicate that the proposed method, while
simultaneously meeting performance requirements and resource capacity constraints, has effectively increased the
acceptance rate of requests compared to the comparative algorithms, reducing the end-to-end latency by 4.942%
and the deployment cost by 8.045%.

KEYWORDS
Network function virtualization; service function chain; Markov decision process; multi-agent reinforcement
learning

1 Introduction

In recent years, with the explosive growth of mobile data traffic and the emergence of various
new services and application scenarios in 5G networks, Network Function Virtualization (NFV)
technology has gained widespread attention from academia and industry due to its ability to decouple
5G network functions from underlying hardware, enabling flexible and elastic resource management
and resource sharing. By orchestrating Service Function Chains (SFC) in a specific order, NFV
provides end-to-end network services and achieves soft-hard decoupling of network element functions.
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NFV manages the traditional middlebox as a specific Virtual Network Functions (VNFs). VNFs
alone cannot provide complex network functions. When network operators receive new SFC requests,
they need to represent data processing services as a collection of virtual nodes and virtual links,
while ensuring resource constraints such as latency and bandwidth are met. Traffic must then pass
sequentially through the predefined order of virtual nodes. Since the resource demand of SFC is
dynamically changing, it is necessary to select the physical general servers and physical links that
satisfy the service demand from the limited physical resources to be deployed in order to meet the
changing service demand. Based on limited resources and under the conditions of prioritizing various
network resources, how to save resource consumption, reduce operating costs, and efficiently realize
SFC deployment has become an urgent problem in NFV.

Currently, SFC mapping optimization is a key research topic in the field of NFV. Based on diverse
service demands and network environments, the researchers have set appropriate optimization criteria
and designed and developed various algorithms to solve these problems. Early heuristic algorithms,
although able to provide solutions quickly, relied on manually set rules and were difficult to adapt to
the dynamic changes in the network environment. Liu et al. [1] proposed a dynamic programming-
based algorithm to optimize SFC deployment costs under resource constraints. Cao et al. [2] utilized
sorting, greedy, and shortest path algorithms to map virtual resources to the physical network, optimiz-
ing the mapping process. However, this method does not fully account for the order and dependencies
among VNFs. In contrast, artificial intelligence algorithms that combine reinforcement learning and
deep learning can learn near-globally optimal strategies through interaction with the environment.
Agents acquire high-dimensional data through interactions, utilize deep learning for environmental
state perception and feature representation, and then make decisions through reinforcement learning.
This process maps the current state to the agent’s actions, guiding the agent to adopt optimal strategies
to reach target positions.

The deployment of SFC is essentially the allocation process of physical network resources, in
order to improve the efficiency of network resource orchestration, a large number of scholars have
carried out in-depth research on efficient deployment methods for SFC. Current heuristic methods
or mathematical model methods for SFC deployment have the problem of over-optimizing a single
resource (latency or bandwidth) and easily falling into local optimality, resulting in a significant
increase in overhead, unstable performance, and reduced service quality. Aiming at the above prob-
lems, this paper proposes a muti-agent deep deterministic policy gradient optimization algorithm for
SFC deployment (MADDPG-SD) that effectively improves the request acceptance rate and reduces
the SFC deployment costs and end-to-end transmission latency while satisfying the performance
requirements and resource capacity constraints. Within the NFV domain, reusing initialized VNF
eliminates bandwidth consumption between two VNF and reduces SFC latency [3]. Considering that
network services have specific requirements for customized VNFs, reusing existing VNFs cannot meet
service requirements, therefore, this paper conducts research in a scenario that does not include reuse.
Specifically, this paper makes the following contributions:

• This paper analyzes the shortcomings in SFC deployment, such as poor strategy coordination
in single-agent deployment strategies and a tendency to fall into local optima.

• This paper establishes a costs minimization model for service function chain deployment under
user latency requirements and resource capacity constraints. And model the dynamic problem
as a Markov decision process (MDP).

• Combining action and state information from other intelligences and storing them together in
the current intelligence’s experience playback pool is used to centrally train the Critic network,
where each intelligence is allowed to learn its state and action value functions separately.
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The rest of this paper is organized as follows. Section 2 provides an overview of related work
previously conducted by other researchers. Section 3 presents the network architecture, optimization
objective, and formula description for SFC deployment. Section 4 describes the MADDPG-SD
deployment methodology and algorithmic training steps in detail. Section 5 describes the design of
the simulation experiments and analyzes the results. Section 6 summarizes and concludes this paper.

2 Related Work

In the NFV environment, a network function node can deploy multiple instances of different
network functions, the orchestration of various functions can be modeled as service function chaining
problem [4]. With the advancement of NFV technology, the deployment of SFCs tailored to service
requests has become a hot topic in academic research, attracting widespread attention. SFC deploy-
ment is proven to be an NP-hard problem [5]. The existing SFC deployment methods mainly take costs,
energy consumption, load balancing and end-to-end delay as optimization objectives, and are divided
into service function chain deployment methods based on mathematical programming model, heuristic
algorithm and artificial intelligence algorithm. Bari et al. [6] provided a dynamic programming-based
heuristic to solve virtual network function assignment problem in order to reduce network operating
costs. Reddy et al. [7] proposed a novel optimization model based on the concept of robustness to
deal with uncertainties in the traffic demand and as a consequence in the resource requirements
of the VNFs while fulfilling individual average roundtrip delay bounds for each chain of VNFs.
Jemaa et al. [8] introduced VNF placement and provisioning optimization strategies over an edge-
central carrier cloud infrastructure taking into account Quality of Service (QoS) requirements (i.e.,
response time, latency constraints and real-time requirements) and using queuing and QoS models.
As the scale of the underlying network continues to expand, the applicability and time efficiency of
the above methods become lower and lower.

Heuristic algorithms offer greater flexibility, computational efficiency, and practicality in address-
ing the service function chain deployment issue compared to mathematical planning model algorithms.
To optimize the resource utilization, Li et al. [9] designed a two-stage heuristic solution T-SAT
to solve the integer linear programming model and minimize the number of physical machines
used. Rankothge et al. [10] proposed a resource allocation algorithm for VNFs based on genetic
algorithms and conducted a comprehensive analysis of the initial placement of VNFs and how to
scale them to adapt to traffic changes. Zhang et al. [11] devised an algorithm that constructs subsets
of candidate base nodes and candidate base paths prior to embedding, significantly reducing the
execution time of mapping without compromising performance. Nonetheless, heuristic methods lack
rigorous theoretical validation, often resulting in convergence towards local optimal solutions.

The advantage of artificial intelligence algorithms over heuristic methods lies in their ability
to learn strategies that approximate global optimality through interaction with the environment,
thereby demonstrating superior performance in practical applications. Zhu et al. [12] introduced a
deep reinforcement learning-based cross-domain mapping algorithm for service function chaining
within a centralized orchestration framework. This approach models the segmentation of SFC requests
as a Markov decision process, facilitating cross-domain SFC deployment. However, the algorithm
overlooks disparities in resource requirements among different VNF types, leading to excessive
complexity. Luo et al. [13] presented an online scaling algorithm that dynamically adjusts VNF
instance deployment to optimize operational, maintenance, and deployment costs. Regrettably, this
algorithm neglects consideration of request latency. In order to solve the problem of automatic fault
recovery in SFC, Avgeris et al. [14] proposed a distributed solution that supports reinforcement
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learning in a seamless manner in real time. Qu et al. [15] proposed a reliability-aware method
that combines VNF deployment with routing optimization, reducing resource consumption through
backup sharing. However, while using the backup mechanism to improve reliability, it also increases
the link length of the SFC, which to some extent increases the SFC latency. Yang et al. [16] used the
Deep Q-Network (DQN) algorithm to maximize the overall energy efficiency of communication and
computing within the mobile edge computing server and sensor by jointly optimizing the allocation
of channels and computing resources, effectively reducing the total energy consumption of the system
while ensuring accuracy. Chen et al. [17] combined deep neural networks and Markov decision process
reinforcement learning networks to establish a service function chain migration mechanism based on
a Double Deep Q-Network (DDQN) to achieve online migration decisions and avoid overestimation.
Nonetheless, this approach necessitates the selection of optimal policies at each time step, which may
not fully ensure service quality for swiftly incoming service requests. Therefore, Schneider et al. [18]
proposed a centralized Deep Reinforcement Learning (DRL) framework. However, during interaction
with the network, this approach relies on delayed state information and requires periodic updates to
forwarding rules.

In conclusion, heuristic algorithms are prone to fall into local optimality and unstable per-
formance. Single-agent deep policy gradient algorithms lack coordination and may have unstable
gradients and poor adaptability to the environment. Multi-agents provide more efficient, flexible and
robust solutions than single agents in SFC resource deployment problems through parallel processing,
distributed decision-making, optimized resource sharing, and improved learning efficiency. This paper
uses multiple agents to jointly find the optimal strategy. Through collaboration and information
sharing between agents, it can comprehensively consider multiple performance indicators and resource
constraints, thereby finding a more global and efficient SFC deployment solution, which can achieve
positive results in improving request acceptance rate, reducing deployment costs, and shortening end-
to-end latency.

3 System Model and Problem Description
3.1 System Model

The NFV architecture comprises an application layer [19], a virtualization layer, and an infrastruc-
ture layer, as illustrated in Fig. 1. The application layer is tasked with creating SFC to fulfill network
service requests, thereby delivering specific services to users. The virtualization layer handles network
state monitoring and the analysis of underlying network loads. The infrastructure layer provides SFC
with instantiated physical resources, which include general-purpose servers, compute resources, and
link bandwidth resources. The NFV infrastructure depicted in the figure includes physical nodes
and links within the NFV network. NFV orchestration management is crucial in gathering relevant
information about VNF, such as resource requirements and successor VNF on the SFC. Based on the
current network state and service deployment policies, it devises fast and efficient VNF deployment
solutions. Table 1 lists key notations that will be used in the following of the paper.
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Figure 1: NFV architecture

Table 1: Notations

Parameters Description

G = (V , E) Network as a graph.
v NFV servers in the network.
E A set of paths between any two servers.
Cv

n CPU resource capacity of server v ∈ V .
Bs

ab Bandwidth of path a, b ∈ V .
Tvalue Server resource thresholds.
G = (N, L) A set of SFCs, each of which contains a series of ordered

VNFs.
Ni A set of VNFs.
Li A collection of virtual links on SFC.
xn

i,j Binary variable that equals 1 if VNF Ni,j
i is deployed on

n ∈ N.
ye

i,j Binary variable that equals 1 if li ∈ Li is mapped in e ∈ E.

First, the underlying physical network of the infrastructure network is represented as an undi-
rected graph G = (V , E), where V denotes the set of physical nodes, i.e., servers, and E denotes
the set of connection links between each pair of physical nodes. For any physical node v ∈ V , Cv

n

denotes its total CPU resource, and two neighboring physical servers a, b ∈ V , ab denotes the physical
link connecting a and b, with its limited bandwidth resources represented as Bs

ab. Each server can
deploy multiple VNF with sufficient resources. Considering the energy consumption issue and the
convenience of managing the servers, Tvalue is set as the server resource threshold to ensure that each
node’s resource consumption does not exceed 90% of its total resources [20].
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One SFC request can be represented as a directed graph G = (N, L), with S denoting the set
of service function chain requests. The i− th SFC is represented as Gi = (Ni, Li), where Ni denotes
the VNF of the service request, including common network functions such as firewalls, proxy services,
load balancers, NAT, deep packet inspection, and customized VNF, and Li represents the set of virtual
links on the SFC. For randomly arriving service requests, a set of ordered VNF must be processed.
The SFC needs to arrange VNF instances in sequence as VNF1, VNF2, ..., VNFn. Define a binary
Boolean variable xn

i,j = 0, 1, When the j−th VNF Ni,j
i of the i−th SFC is successfully deployed on the

physical server n ∈ N, xn
i,j = 1, otherwise, xn

i,j = 0. Define a binary Boolean variable ye
i,j = 0, 1. When

the j−th virtual link li ∈ Li of the i−th SFC is successfully deployed on the physical link e ∈ E, ye
i,j = 1,

otherwise, ye
i,j = 0.

3.2 Problem Description

In the paper, the SFC end-to-end latency is defined to include two parts, service processing latency
and service transmission latency, and the end-to-end latency is denoted by Ttotal, with service processing
latency represented by Dm, and transmission latency represented by Dtr, which can be described by
Eq. (1) and Eq. (2). �i represents the end-to-end maximum tolerable latency of the SFC. Processing
latency refers to the time required to handle the SFC at network nodes, occurring only at nodes with
computing resources. The average data sent in time slot t must not exceed ωm, the maximum data a
user can send at once is ηm, and the service rate coefficient β indicates the amount of data a single CPU
can process per second.

Dm =
∑

m∈N
i,j
i

xn
i,j (t)

ωmt + ηm

Cm
n β

(1)

Dtr = ωmt + ηm

Bs
e

(2)

At time slot t, the total latency constraint for SFC requests is given as Eq. (3).

Ttotal = Dm + Dtr < �i (3)

The SFC deployment costs encompass two aspects: the energy consumption costs incurred by
deploying VNF operations when the server is active and the energy consumption costs incurred when
the server is in standby mode after VNF deployment, as given in Eq. (4).

Ct =
∑
i∈Ni

∑
n∈N

(
xn

i,jλi,j + onfnye
i,jλi,j

)
(4)

As exhibited in Eq. (4), λi,j represents the energy consumption costs of deploying VNF, on denotes
the duration of occupancy, and 0 ≤ fn ≤ 1 signifies the percentage of energy consumption costs when
the server is in standby mode post-VNF deployment.

The SFC request acceptance rate refers to the ratio of successfully deployed SFCs to the actual
number of network service requests over a given period, as given in Eq. (5).

Ra = lim
T→∞

ns (T)

nq (T)
(5)

As exhibited in Eq. (5), ns (T) and nq (T) represent the number of service requests successfully
processed and the total number of requests received within the 0 → T time interval, respectively.
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The paper aims to minimize the deployment cost of SFC and reduce service latency, as demon-
strated in Eq. (6).

Here, ξα and ξβ represent weighted parameters, where the weighting coefficients ξα, ξβ satisfy
ξα, ξβ ∈ (0, 1) and ξα + ξβ = 1.

min
(
ξαTtotal + ξβCt

)
(6)

The SFC deployment problem in this paper can be formulated as follows: how to rationalize the
mapping of VNF as well as to get the minimized deployment costs and the minimized end-to-end
latency with limited network resources such as bandwidth resources and CPUs. The objective function
and constraints are given as Eq. (7).

minξαTtotal + ξβCt

s.t.

C1: xn
i,j (t) = {0, 1} , ∀i ∈ S, ∀j ∈ Gi, ∀n ∈ V

C2: ye
i,j (t) = {0, 1} , ∀i ∈ S, ∀j ∈ Gi, ∀e ∈ E

C3:
∑
n∈V

Nn
i,j

(t) = 1, ∀i ∈ S, ∀j ∈ Gi

C4:
∑
e∈E

Le
i,j

(t) = 1, ∀i ∈ S, ∀j ∈ Gi

C5:
∑
i∈S

∑
j∈Gi

xn
i,j (t) Cv

n ≤ Cv
m, ∀m ∈ V

C6:
∑
i∈S

∑
j∈Gi

ye
i,j (t) Bs

ab ≤ Bs
nm, ∀nm ∈ Li

C7: Ttotal < �i, ∀i ∈ S

(7)

As exhibited in Eq. (7), C1 indicates that the virtual node mapping satisfies the binary variable
constraints. C2 indicates that the link mapping satisfies the binary variable constraints. C3 indicates
that a virtual node in a virtual network service function chain can be mapped to only one physical
node. C4 indicates that a virtual link in a virtual network service function chain can be mapped to
only one physical link. C5 ensures that the CPU resource requirement of the SFC does not exceed
the available resources of the deployed physical node. C6 ensures that the bandwidth resources of the
SFC are less than the available resources of the link. C7 indicates that each SFC meets the latency
requirements.

4 MADDPG-SD Deployment Methodology
4.1 MADDPG-SD Algorithm Description

The MADDPG-SD algorithm employs the principle of centralized learning training and dis-
tributed execution, making it applicable to complex large-scale network environments that cannot
be handled by traditional reinforcement learning algorithms, where each set of Actor networks and
Critic networks is an intelligent agent. The Actor network is responsible for selecting actions based
on the current state, while the Critic network is responsible for evaluating the value of these actions
and learning them using the strategies of the other intelligences, i.e., each intelligence approximates
the strategy of the other intelligences by one function. While traditional reinforcement learning
algorithms have to use the same information data for both learning and application, the MADDPG-
SD algorithm allows the use of some of the global information for learning, but only local information
for application decisions.
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The MADDPG-SD algorithm is a multi-agent deep reinforcement learning algorithm designed
for environments where multiple agents learn and perform tasks collaboratively. Each agent has its
own policy, and their actions influence each other. MADDPG-SD aims to maximize the expected
cumulative reward by training multiple agents while accounting for the presence and behavior of
other agents. During training, a central controller coordinates the policy updates of multiple agents,
gathering state information and actions from all agents. This information is used to train a global
policy or value function. Each agent possesses a local Actor network to select actions and relies on
a global Critic network to evaluate the effectiveness of the joint actions of all agents. Through this
iterative process, each agent continuously learns and refines its strategy, enhancing cooperation in
the multi-agent environment. The MADDPG-SD algorithm is capable of handling continuous action
spaces, and the structure of the algorithm is shown in Fig. 2.

Virtual network resource

Batch sampling

Status input

Experiential

playback pool

CriticActor

SFC

NFVO

Control and management

Firewall Agency Load balancerUser A Deep packet

inspection

Actor Critic

Agent1 Agent n

Status output

Figure 2: Structure of the MADDPG-SD algorithm

Each intelligence computes the forward propagation of its own Critic network by stitching the
states of all intelligences, including itself, such as current network load, resources used by the server,
etc., into a state vector s = {s1, s2, . . . , sn}, splice all intelligent agent actions into an action vector
a = {a1, a2, . . . , an}, (s, a) serves as an input to the Online Critic network and outputs a one-dimensional
Q-value, which is Qφi (s, a), by playing back the samples it is possible to calculate Qφi (s

′, a′). The mean
square error (MSE) loss function for both is constructed in terms of the temporal difference error, and
the gradient descent is utilized in order to update the parameter φi. The loss function and the gradient
are shown in Eqs. (8) and (9).

min
φi

Loss = min
φi

E(s,a,r,s′,d)∼D

⎡
⎢⎣((Qφi (s, a) − (ri + γ (1 − di)Qφi(s

′, a′)))︸ ︷︷ ︸
J(φi)

2

⎤
⎥⎦ (8)

∇φi J (φi) == ∇φiE(s,a,r,s′ ,d)∼D

[(
Qφi (s, a) − (

ri + γ (1 − di) Qφi (s
′, a′)

))2
]

(9)
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where a′ = {
μθ̃

(
s′

1

)
, μθ̃

(
s′

2

)
, . . . , μθ̃

(
s′

N

)}
, to compute the action taken by the next state intelligence.

The parameters are then updated using gradient descent. In computing the forward propagation of its
own Actor, each intelligence takes as input to the Online Actor network only its own local state vector
s = {s1, s2, . . . , sn}, and outputs a deterministic action ai, which is μθi (si). Next, the MSE loss function
for the temporal difference error is calculated and the gradient is computed with respect to parameter
θi. The loss function and gradient are shown in Eqs. (10) and (11).

min
θi

Loss = min
θi

−Es∼D

[
Qφi (s, a)

]
(10)

∇θi J (θi) = −Es∼D

[
∂Qφi

∂θi

]
= −Es−D

[
Qφi (s, a)

∂μθi (si)

μθi (si)

∂θi

]
(11)

4.2 Mapping of Deployment Issues

Deep reinforcement learning can be described using a Markov decision process. By making
online decisions and continuously sampling, it acquires immediate reward values to evaluate the value
function of the current state. This approach simulates the stochastic policies and returns achievable
by the agent to obtain the optimal SFC deployment strategy. Under long-term iteration, the states
observed by the intelligences are random, and part of the intelligences’ states depend on the actions
taken by the intelligences, thus modeling the VNF deployment process as MDP {S, A, P, R, γ }, where
S is the state space, A is the action space, P is the state transfer probability, R is the reward function,
and γ ∈ [0, 1] is the discount factor for future rewards.

• State space S

Define the state st ∈ S as st = {M (t) , W (t)}, where M (t) = {∂c (t) , ∂b (t) , dt} denotes the SFC
mapping state, ∂c (t) denotes the physical resources required by the VNF, ∂b (t) denotes the bandwidth
resources required by the SFC, dt denotes the total latency of the service function chain from the
source node to the current state, W (t) = {μc (t) , μb (t)t} μc (t) μb (t)t denotes the physical network
state, μc (t) denotes the remaining available resources of the server node, and μb (t)t denotes the
remaining available bandwidth resources of the physical link. Based on the real-time availability of
computational resources across physical nodes, the deployment locations and resource allocations for
each VNF within the current SFC are determined. Consequently, the environmental state observed by
each VNF of the SFC is defined by the remaining computational resources across all physical nodes
in the infrastructure.

• Action space A

The agent performs action a upon the arrival of a service request at a node. In this paper, the
action at time slot t is defined as at = kt

n. If node n can process the service request within time slot t,
then kt

n = 0, otherwise, kt
n = 1.

• State transfer probability P

Pa (s, s′) = E (st+1 = s′|S = st, A = at) represents the probability that the execution of the operation
of deploying the VNF by the intelligent agent when the environment is in the state st at time slot t leads
to the transformation of the environment into s′ at moment t + 1.

• Reward function R

In this paper, the objective is to minimize the SFC end-to-end latency as well as the deployment
costs, then the reward function can be defined as the VNF its own deployment costs and the negative
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value of the latency, as shown in Eq. (12).

Rreward = −
(

ξα

∑
i

Ttotalγ + ξβ

∑
i

Ctγ

)
(12)

4.3 Training Process

In deep reinforcement learning, the Actor-Critic algorithm combines the Actor and Critic
strategies to optimize the decision-making process through agent-environment interaction. The Actor
is responsible for selecting actions, while the Critic evaluates the value of the selected actions. The
Critic is extended to learn from the policies of other agents, enabling each agent’s policy gradient to
incorporate a Critic that uses the global policy as input. This means that each agent approximates the
policies of other agents through a function approximation. In this paper, the process of handling a
service request is divided into multiple time slots, denoted by T = {1, 2, . . . , t}, with each time slot t
representing a link mapping processing cycle. Each agent possesses its own policy network and requires
a centralized controller for policy network training during the training phase. During operation, each
agent interacts with the environment independently and makes decisions based on its own observed
states using its policy network. Each agent independently deploys its own policy network π (ai|si; θ i)

and configures its parameters θ i. The input to the policy network is the agent’s individual state si. Each
agent’s decision ai is independent of the states of other agents s.The central controller hosts n value
networks, denoted as q (s, a; wi). These value networks have identical structures, but their parameters wi

are typically different. The input to the value network q consists of all s and all a. The central controller
obtains the states s and actions a of all agents. During training, the central controller is aware of all
agents’ states, actions, and rewards. The multi-intelligent body training process is shown in Fig. 3.

Figure 3: Multi-agent training process
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The pseudocode of our proposed intelligent framework, which includes local training and
aggregation training, is described in Algorithm 1. Learning effectiveness and stability are improved
by using an independent Actor-Critic architecture for each intelligence and considering the policy
information of other intelligences during training.

Algorithm 1: MADDPG-SD
Input: t slot network status st

Output: SFC deployment policy
(1) Randomly initialize the network parameter vectors θ a and θ c for Actor and Critic and the network
parameter vectors θ a′ and θ c′ for target Actor and Critic
(2) Initializes the experience playback pool
(3) for each episode = 1,2,3, . . . ,do
(4) Initializing network systems and environments
(5) for each step = 1,2,3, . . . ,do
(6) for each agent do
(7) Obtain the network observation status s
(8) Actor outputs action a and deploys VNF on the network based on this
(9) According to Action a get a reward r and get the next network status
(10) If the experience playback pool is full
(11) Do Extract small-batch state transfer sample data from the experience playback pool
(12) Update the network parameters of Critic
(13) Update network parameters for actors under the guidance of Critic
(14) Update the target network parameter vector
(15) End if
(16) end for
(17) end for

5 Simulation Experiment Design and Result Analysis
5.1 Simulation Experiment Environment Design

In order to verify the validity of the models and methods proposed in this paper, the simulation
experiments are run on a device with rows of i5-12490F CPU @ 3.00 GHz, 16 GB-DDR4 RAM
and GTX-3070 graphics card based on Python 3.6.12 and tensorflow-gpu-2.4.0 platforms. In order
to validate the performance of the proposed algorithm, it is compared with the DQN [21], DDPG
[22] and PG [23] algorithms in terms of performance in terms of latency, request acceptance rate and
deployment costs. To mitigate the impact of randomness, the average of 100 simulation test results is
used as the final test outcome. The number of VNF instances deployed on each node is uniformly
distributed between [2,5]. In this simulation experiment, the set of network service function requests
includes all SFC requests within one time period t. Each SFC request consists of 2 to 5 types of network
functions, with a total of 5 types of VNF. The CPU and memory resources required for the normal
operation of each VNF are randomly distributed between [10,20], and the bandwidth requirements
for virtual links are uniformly distributed between [10,20]. The arrival times of SFC requests follow a
Poisson distribution, with an average of 5 arrivals per time period. The service time for each request
is a random number between [10,50]. For the MADDPG-SD algorithm, during training, the neural
network employs the Adam optimizer and ReLU activation function, comprising two fully connected
hidden layers with 128 neurons each. The learning rates for both the Actor and Critic are set to 0.001,
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the batch size is set to 128, the replay buffer size is 10,000, and the discount factor is set to 0.95. The
parameter settings in the simulation are shown in Table 2.

Table 2: Parameter settings in the simulation

Experimental parameters Parameter value

VNF [2,5]
CPU [10,20]
Bandwidths [10,20]
Learning rate 0.001
Batch size 128
Experience replay pool 10,000
Discount factor 0.95

5.2 Analysis of Experimental Results

Fig. 4 shows convergence of the MADDPG-SD algorithm in the simulation experiment environ-
ment of this paper. As the training iterations increase, the overall average reward of the MADDPG-SD
algorithm tends to stabilize. In the pre-training period, since the MADDPG-SD algorithm needs to
provide the global information of the virtual network function for centralized training, the convergence
is more volatile, and the algorithm convergence tends to be stabilized by periodically updating the
target network parameters to stabilize the training.

Figure 4: Convergence of MADDPG-SD algorithm



CMC, 2024, vol.80, no.3 4887

(1) System End-to-End Latency Performance Comparison

Using the number of service function chain requests as a variable, Fig. 5 illustrates the end-to-end
latency comparison of various service function chains, it can be seen that as the number of service
function chain requests continues to increase, the amount of data that needs to be processed also
gradually increases, and the time used to process the data also increases. The end-to-end latency of
all four algorithms increases accordingly. However, the MADDPG-SD algorithm excels in achieving
balanced network resource allocation, exhibiting a markedly lower increase in end-to-end latency
compared to the DDPG, DQN, and PG algorithms. This algorithm leverages a centralized Critic
to aggregate data from all Actors, facilitating neural network updates that enable Actors to make
informed decisions under the Critic’s guidance. By integrating global information, the MADDPG-
SD algorithm ensures stable and smooth updates, ultimately attaining a globally optimal solution.

Figure 5: System end-to-end latency comparison

In the training process of this article, in order to better simulate the actual network environment
and conduct effective research under limited resources, the case of 30 SFCs was selected to verify the
delay distribution. The distribution of the counts of training rounds reaching a certain latency is shown
in Fig. 6, where MADDPG-SD has a large statistic of small latency bias and the maximum latency
is the lowest compared to the other algorithms, indicating that the algorithm has an advantage in the
general trend of latency increase. After an in-depth analysis of the experimental data distribution, the
MADDPG-SD end-to-end latency bias has a large statistic and the end-to-end latency is the lowest
compared to other algorithms, which reveals that the MADDPG-SD algorithm has a significant stabil-
ity in terms of latency control for SFC deployment. The MADDPG-SD algorithm enhances network
resource allocation by minimizing latency deviations and fluctuations, thereby significantly improving
overall network performance. By integrating policy gradient methods with entropy regularization, the
algorithm enables agents to rapidly adapt their strategies to real-time network conditions, effectively
managing dynamic changes in the network environment.
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Figure 6: End-to-end latency with 30 SFCs

(2) System Deployment Request Acceptance Rate Performance Comparison

The request acceptance rates under different request intensities are shown in Fig. 7. The figure
illustrates that the acceptance rates of all four algorithms decline as SFC requests arrive and the
physical network resources are progressively occupied, leading to subsequent service requests being
rejected. However, as the number of SFC requests increases, the rate of decline in acceptance for
MADDPG-SD is noticeably smaller than that for the PG, DQN, and DDPG algorithms. The PG
algorithm, which does not consider the resource status of underlying server nodes and links in its
deployment strategy, frequently overuses certain central links and nodes, resulting in local congestion
and the fastest rate of decline. At the end of time step t, MADDPG-SD achieves the highest acceptance
rate of 72.17%. This indicates that the proposed algorithm effectively coordinates the allocation
of underlying resources, allowing for the reasonable distribution of resources to each SFC within
a resource-constrained physical network, thereby deploying more SFC requests and exhibiting an
advantage in request acceptance rate.
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Figure 7: Request acceptance rate

(3) Comparison of Total System Deployment Costs Performance

The deployment costs of the MADDPG-SD, DDPG, DQN, and PG algorithms under varying
numbers of SFC requests are depicted in Fig. 8. The DQN and DDPG algorithms typically select the
superior action based on the current state during execution. However, centralized algorithms tend to
prioritize fulfilling the needs of front-row users in resource allocation, neglecting global optimality,
which leads to diminished rewards for back-row users. Conversely, the MADDPG-SD algorithm
employs a centralized platform to harness global network information, simplifying the learning
process while enabling agents to make independent decisions based on local observations within a
distributed environment. This architecture comprehensively considers the needs of all users, aiming
for a globally optimal solution, thereby discovering more efficient deployment strategies for SFC.
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Figure 8: Comparison of total system deployment costs

Similarly, when selecting a quantity of 30 SFCs, the distribution of deployment costs was verified,
and the distribution of training round counts reaching a certain deployment cost is shown in Fig. 9.
Comparatively, the MADDPG-SD algorithm shows a larger statistical frequency of lower deployment
costs and achieves the lowest maximum deployment costs among the algorithms. By leveraging the
differences in state value functions to adjust the next action in each time slot, the MADDPG-SD
algorithm can identify the globally optimal actions and obtain correspondingly higher reward values,
resulting in lower deployment costs compared to the other algorithms.

A comprehensive comparison of deployment costs and total system latency reveals that as the
number of SFC requests increases, both deployment costs and total system latency rise across all four
algorithms. However, since the PG algorithm optimizes only for latency without considering the VNF
deployment costs, it results in the highest deployment costs due to suboptimal resource allocation. The
DQN algorithm, which optimizes both latency and the operational costs associated with deployment
failures, has a higher total latency than the PG algorithm. Additionally, because the DQN algorithm
is suited for discrete action spaces, it performs significantly worse than the DDPG and MADDPG-
SD algorithms in optimizing latency and VNF deployment costs, as the action space in this study
is continuous. The MADDPG-SD algorithm, building upon the DDPG algorithm, characterizes the
exploration rate of each time slot action through state value function differences, enabling it to find
more optimal actions and thus achieve better reward values. Consequently, the proposed algorithm
results in lower deployment costs and total system latency.
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Figure 9: Deployment costs with 30 SFCs

6 Conclusion

This paper proposes the MADDPG-SD algorithm with the optimization objectives of improving
the request acceptance rate, reducing latency and cost. The algorithm constructs a multi-agent deep
strategic gradient SFC optimization model and transforms the SFC deployment optimization problem
into a Markov decision process to adapt to the dynamic network environment. The multi-agent col-
laboration mechanism promotes mutual coordination of intelligence to achieve effective deployment
of SFC and ultimately achieve a near-optimal deployment strategy. Although the algorithm performs
well in a simulated environment, the non-stationarity problem in the multi-agent environment will
lead to instability in algorithm training, so its scalability in large-scale 5G networks in the real world
remains to be fully verified. Our future researches will include the integration between the computing
power network and AI-based intelligent systems to make our services more robust, secure and efficient.
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