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ABSTRACT

This paper introduces the African Bison Optimization (ABO) algorithm, which is based on biological population.
ABO is inspired by the survival behaviors of the African bison, including foraging, bathing, jousting, mating, and
eliminating. The foraging behavior prompts the bison to seek a richer food source for survival. When bison find a
food source, they stick around for a while by bathing behavior. The jousting behavior makes bison stand out in the
population, then the winner gets the chance to produce offspring in the mating behavior. The eliminating behavior
causes the old or injured bison to be weeded out from the herd, thus maintaining the excellent individuals. The above
behaviors are translated into ABO by mathematical modeling. To assess the reliability and performance of ABO,
it is evaluated on a diverse set of 23 benchmark functions and applied to solve five practical engineering problems
with constraints. The findings from the simulation demonstrate that ABO exhibits superior and more competitive
performance by effectively managing the trade-off between exploration and exploitation when compared with the
other nine popular metaheuristics algorithms.
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1 Introduction

There are lots of complex computational problems in the fields of scientific computing, socioeco-
nomics, and engineering which exhibit a high degree of non-linearity, non-differentiability, disconti-
nuity, and high complexity [1]. In many cases, the conventional optimization algorithms that rely on
analysis are inadequate for solving these problems. As a result, many new metaheuristic optimization
algorithms are explored to overcome the above problems.

Nature has evolved over billions of years through genetic evolution to perfectly demonstrate
its efficiency and magic. Meanwhile, humans have learned a great scale from natural systems to

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.050523
https://www.techscience.com/doi/10.32604/cmc.2024.050523
mailto:zhao@ustl.edu.cn
mailto:jwang@monmouth.edu


604 CMC, 2024, vol.81, no.1

develop new algorithms and models for solving complex problems [2–4]. Nature-inspired metaheuristic
optimization algorithms can be categorized into four groups, biological evolution-based, natural
physics-based, human-based, and biological swarm-based approaches (See Fig. 1).

Figure 1: Metaheuristics classification

Evolution-based algorithms mimic natural evolutionary processes, including reproduction, muta-
tion, recombination, and selection. Genetic Algorithms [5] stand out as a popular technique that draws
inspiration from Darwin’s theory of evolution and simulates its principles. Other popular algorithms
are Differential Evolution (DE) [6] and Evolution Programming [7].

Physics-based algorithms are derived from fundamental principles of the natural world. These
physical phenomena are represented by objects such as sound, light, force, electricity, magnetism, and
heat. The most popular algorithm is the Sine Cosine Algorithm (SCA) [8]. Other popular algorithms
are Gravitational Search Algorithm [9], and Magnetic Optimization Algorithm [10].

Human-based algorithms draw inspiration from a variety of human activities, including cognition
and physical behaviors. There are teaching-learning based optimization [11], Human Mental Search
[12], and Social Group Optimization [13].

Swarm-based algorithms emulate the social behaviors exhibited by animals. Among these tech-
niques, Particle Swarm Optimization (PSO) [14], Whale Optimization Algorithm (WOA) [15], and
Gray Wolf Optimizer (GWO) [16] have gained tremendous popularity. In recent years, new algorithms
such as Flower Pollination Algorithm (FPA) [17], Chimp Optimization Algorithm (CHOA) [18], Rat
Swarm Optimizer (RSO) [19], Tunicate Swarm Algorithm (TSA) [20], Reptile Search Algorithm (RSA)
[21], and Artificial Rabbits Optimization (ARO) [22] are proposed.

All swarm-based optimization algorithms share common properties: exploration and exploitation.
The tradeoff between exploration and exploitation has been a central issue in the field of evolutionary
computation and optimization research. It is crucial for minimizing computational costs and achieving
efficient results. Therefore, optimization algorithms must possess the capability to explore the global
space and exploit local regions. The No Free Lunch (NFL) states that there is no algorithm that can
solve all optimization problems well [23]. In other words, an algorithm can have brilliant results in a
specific class of problems but fails to solve other problems.
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The above-mentioned facts inspire us to propose a novel algorithm with swarm intelligence char-
acteristics for solving optimization problems. In this paper, the proposed African Bison Optimization
(ABO) algorithm is inspired by the survival behaviors of African bison, including foraging, jousting,
mating, and eliminating from the herd. As far as we know, these behaviors are proposed for the first
time, and there is no similar study in the literature. The African Buffalo Optimization algorithm models
the organizational skills of African buffalos by two basic sounds, waaa and maaa when they are finding
food sources [24]. Although the African buffalo and bison are related species, ABO proposed in this
paper is based on completely different principles.

The main contributions of this paper can be summarized as follows:

• A swarm-based African Bison Optimization (ABO) is proposed and the survival strategies of
bison are investigated and modeled mathematically.

• The proposed ABO is implemented and tested on 23 benchmark test functions.
• The performance of ABO is compared with some classical and latest optimizers.
• The efficiency of ABO is examined for solving the real-world engineering problems with

constraints.

The rest of the paper is arranged as follows: Section 2 shows the biological characteristics of
the African bison and introduces the proposed ABO algorithm. In Section 3, the performance and
efficiency of ABO are tested by using benchmark test functions. The results of the algorithm on
five constrained real-world engineering problems are discussed in Section 4. Section 5 provides a
comprehensive conclusion of the study, along with future research directions.

2 African Bison Optimization Algorithm
2.1 African Bison

African bison is a genus of animals in the even-toed ungulates, bovidae, with five subspecies. As
shown in Fig. 2, it has characteristics of a broad chest, strong limbs, a large head, and long horns.
The African bison is widely distributed throughout most of sub-Saharan Africa. Their habitats are
extensive, including open grasslands, savannas with drinking water, and lowland rainforests.

African bison are social animals, and only old or injured individuals will be broken away from
the herd. The strongest bison becomes the leader and enjoys the right to eat the best grains. African
bison cannot live without water, so they are rarely far away from water. They often hide in the shade,
or dip in pools or mud to keep their bodies at a cooler temperature. To drink and feed, African bison
often live near water. When food and water are plentiful, they will soak their entire body in water and
reduce activities significantly to avoid high temperatures. Jousting and Mating take place in the rainy
season when the temperature is comfortable and the food is abundant. Parts of the survival behaviors
of the African bison described above are shown in Figs. 3–5.
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Figure 2: African Bison in nature

Figure 3: Foraging behavior
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Figure 4: Bathing behavior

Figure 5: Jousting behavior

2.2 Mathematical Model and Algorithm

This subsection focuses on the mathematical modeling of foraging, jousting, mating, and elimi-
nating of African bison herd, and provides a detailed description of ABO.
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2.2.1 Initialization

In the initialization part, a uniformly distributed population is generated by random initialization,
and this approach can be implemented by the following equation:

Xi = Xmin + rand ∗ (Xmax − Xmin) (1)

where Xi is the position of i-th individual, rand is a random number in the range from 0 to 1, and Xmin

and Xmax are the lower and upper bounds of the problem, respectively.

In Eq. (2), the members of the bison population are represented through a population matrix. In
this matrix, each row represents a potential solution, while the columns correspond to the suggested
values for the variables of the problem.

X =

⎡
⎢⎢⎢⎢⎢⎣

X1

...
Xi

...
XN

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

x1,1 · · · x1,j · · · x1,d

...
. . .

...
...

xi,1 · · · xi,j · · · xi,d

...
...

. . .
...

xN,1 · · · xN,j · · · xN,d

⎤
⎥⎥⎥⎥⎥⎦

(2)

where X is the population matrix, N and d represent population size and individual dimension,
respectively. xi,j is the j-th dimension of the i-th individual.

In ABO, each individual is metaphorically represented as a bison, serving as a potential solution
to the given problem. The fitness values are determined by using a vector in Eq. (3).

F =

⎡
⎢⎢⎢⎢⎢⎣

F1

...
Fi

...
FN

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

F(X1)
...

F(Xi)
...

F(XN)

⎤
⎥⎥⎥⎥⎥⎦

(3)

where Fi is the fitness value of the i-th individual. F is the vector of these fitness values.

2.2.2 Cluster and Finding the Best Individual

In ABO, the population is divided into two subgroups with the same size N/2: male and female
(See Fig. 6). In the herd, the position of the best individual also represents the place where the richest
food source is located in. Therefore, we define the best position as the location of the richest food
source and it is denoted as XGbest (See Fig. 7).
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Figure 6: Examples of population grouping

Figure 7: The definition of the best individual

2.2.3 Defined the Satiety Rate and Temperature

African bison are very sensitive to temperature. When the temperature is high and food is plentiful,
they soak their body in the water and reduce activities. They tend to breed during the rainy season
when the temperature is suitable and food is plentiful. Individuals are competing for the right to mate.
Inspired by above behaviors, we use the satiety rate (S) and temperature (Q) to balance the exploration
and exploitation in ABO, and defined by Eqs. (4) and (5):

S = 2 ∗ sin((3t/2T) ∗ π) (4)

Q = cos(−((T − t)/T) ∗ π/2) (5)

where the S is used for the balance of the exploration and exploitation phase, which has values from
−2 to 2. Q is used for the balance of the development phase and it has values from 0 to 1. The current
and maximum number of iterations are denoted by t and T , respectively.

2.2.4 Exploration Phase

If |S| < Threshold_1 (Threshold_1 = 0.5), it means that the individuals are hungry. They will
randomly update their position to find food. This behavior happens in the male and female subgroups
and is modeled by Eqs. (6) and (7):

X t+1
i = (X t

rand ∗ S) + A ∗ ((Xmax − Xmin) ∗ R1) ∗ R3
2 (6)
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A = cos((Frand/Fi) ∗ π) ∗ R3 (7)

where X t
rand is the current position of a random individual, R1 and R2 are random numbers between [−1,

1], respectively. A represents the bison’s ability to find food. Frand and Fi are fitness values of random
and current one, respectively. R3 is a random number between [−5, 5].

2.2.5 Exploration Phase

If |S| ≥ Threshold_1, it means that food and water are enough. The bison will be bathing, jousting,
mating, and eliminating according to the temperature level (Q).

If Q ≥ Threshold_2 (Threshold_2 = 0.6), it means that food and water are enough but the
temperature is high. The bison will soak their body in water and reduce activities to avoid high
temperatures. We define this behavior as bathing behavior. It is represented by Eq. (8) in the male
and female subgroups:

X t+1
i = 2 ∗ (X t

Gbest − X t
i ) ∗ R4 + exp(R5 ∗ Q5) ∗ cos(Q ∗ 2π) (8)

where X t
Gbest is the best position in the herd, R4 and R5 are the random numbers between [0, 2],

respectively.

If Q < Threshold_2, it means that food and water are enough and the temperature is suitable for
surviving. Then, the herd enters the jousting stage, and the winner has the right to mate.

The bison jousting behavior is represented by Eqs. (9) and (10) in the male and female subgroups:

J = X t
Sbest − X t

Sbest ∗
(

rand ∗ X t
i

2

)
∗ (cos(X t

i ) + sin(X t
i )) ∗ R6

5 (9)

X t+1
i = X t

Sbest − J ∗ R7 (10)

where J is the fighting power of bison in the population. R6 is a random number between [−0.01, 0.01],
R7 is a random number between [0, 2], and X t

Sbest denotes the position of the best individual in the male
or female subgroup.

The mating behavior of male bison is represented by Eqs. (11) and (12):

MM = cos(Fi_f /Fi_m) (11)

X t+1
i_m = X t

i_m + sin(2π ∗ R8) ∗ R8 ∗ MM ∗ (X t
i_m − X t

i_f ) (12)

where MM is the mating ability of male individuals, Fi_m and Fi_f are the fitness values of the current
male and female individual, respectively. X t

i_m and X t
i_f denote the current position in the male and

female population, respectively. R8 is a random number between [0, 1].

The mating behavior of female bison is achieved by the following expressions:

MF = sin(Fi_m/Fi_f ) (13)

X t+1
i_f = X t

i_f + cos(2π ∗ R9) ∗ R9 ∗ MF ∗ (X t
i_f − X t

i_m) (14)

where MF is the mating ability of female individuals and R9 is a random number between [0, 1].

The eliminating behavior means the aged or injured individuals will consciously detach themselves
from the herd, thus allowing the entire population to remain at the highest level of competence. This
behavior is represented by the following Eq. (15):

X t
worst = Xmin + R10 ∗ (Xmax − Xmin) (15)
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where X t
worst represents the eliminating of the old or injured individuals from the population. R10 is a

random number between [0, 1].

2.2.6 The ABO Pseudo-Code

The above behaviors are mathematically modeled in this paper to construct ABO. To show the
iterative process of ABO more clearly, Algorithm 1 gives the pseudo-code of the algorithm.

Algorithm 1: African Bison Optimization Algorithm
Input: Xmax, Xmin, Popsize(N), Max_Iter(T), Iter(t)
Output: The best position and its fitness
1: Random initialization of population using Eq. (1)
2: The population is divided equally into two subgroups and calculate the fitness value for each

individual
3: Find the best position and its fitness in two subgroups
4: For t = 1: T
5: Calculate the S and Q using Eqs. (4) and (5)
6: If (|S|) < Threshold_1
7: Foraging behavior using Eq. (6) in two subgroups
8: Else
9: If (Q < Threshold_2)

10: Bathing behavior using Eq. (8) in two subgroups
11: Else
12: If (r ≥ 0.6)

13: Jousting behavior using Eq. (10) in two subgroups
14: Else if (0.1 < r < 0.6)

15: Mating behavior using Eqs. (12) and (14) in the male and female subgroup,
respectively

16: Else
17: Eliminating behavior using Eq. (15) in two subgroups
18: End if
19: End if
20: End if
21: Calculate the fitness value for each individual and update the best position and its fitness
22: End for
23: Return best solution

2.3 Computational Complexity

The complexity of an algorithm is determined by the population size (n), number of
iterations (T), and problem dimensionality (d). The computational complexity of ABO can be
summarized into the following three stages: the initialization of the population, the calculation of the
fitness, and the position update of the individuals. It can be expressed as: O(ABO) = O(Initialization)
+ O(Function evaluation) + O(Location update of the individuals) = O(n + Tn + Tnd).
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2.4 Parameters Threshold_1 and Threshold_2 Sensitivity Analysis

The Threshold_1 and Threshold_2 are the key parameters to balance the exploration and exploita-
tion stages of ABO. This section analyzes the sensitivity of the parameter Threshold_1 and Thresh-
old_2 by setting different values. The results are shown in Table 1, where the Threshold_1 and
Threshold_2 are set to (0, 0.4), (0.5, 0.6), (1, 0.8) and (2, 1), respectively. The performance of (0.5,
0.6) is the best compared with others.

Table 1: Results of different combinations of Threshold_1 and Threshold_2

Function (0.5, 0.6) (0, 0.4) (1, 0.8) (2, 1)

F1 Mean 0 0 0 0
F2 0 0 0 0
F3 0 0 0 0
F4 0 0 0 7.83439E-84
F5 1.090042539 7.359920014 0.488914301 0.70970151
F6 0.029361478 0.046890454 0.046474359 0.060522219
F7 0.000176978 8.382E-05 0.000136326 0.000210415
F8 −12398.06721 −12050.56684 −12320.76541 −11939.14066
F9 0 0 0 0
F10 8.88178E-16 8.88178E-16 8.88178E-16 8.88178E-16
F11 0 0 0 0
F12 0.004475098 0.032834546 0.020679249 0.014471592
F13 0.046484731 0.122087636 0.108531792 0.078069042
F14 1.233075861 2.676849143 1.330986282 1.033865839
F15 0.000344918 0.000685222 0.000338614 0.000336355
F16 −1.031628435 −1.031368619 −1.031627418 −1.031626074
F17 0.397887361 0.398676955 0.397887864 0.397887515
F18 3.000008251 3.002797211 3.000000625 3.000000074
F19 −3.862781389 −3.861817866 −3.862751303 −3.862769483
F20 −3.319823751 −3.235794903 −3.295627739 −3.31810832
F21 −10.14934325 −10.12086745 −10.14776529 −10.12883157
F22 −10.40009336 −10.36792913 −10.39813134 −10.38037045
F23 −10.5320396 −10.48339948 −10.52951159 −10.50306925

2.5 The Survival Behaviors Analysis

ABO is inspired by the survival behaviors of the African bison. The foraging behavior drives
the individuals to search for local optimal solutions randomly. The bathing behavior enables the
individuals to fully explore near the local optimal solutions, thus improving the quality of the solution.
Through jousting and mating behavior, the population can produce better individuals, so that ABO
can converge to the optimal value faster. The worst individual in the population is eliminated and
replaced by the elimination behavior, so the whole population can always maintain diversity in the
iteration.
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3 Experimental Results and Discussion

This section presents the results of experiments conducted on 23 benchmark functions to demon-
strate the performance superiority of ABO. The experimental results of ABO are compared with those
of nine other metaheuristic optimization algorithms.

3.1 Benchmark Test Functions

To comprehensively evaluate the performance of ABO in terms of optimization, we test it on 23
benchmark functions. These functions can be classified into three main categories: Unimodal, Multi-
modal, and Fixed-dimension multimodal [25]. The presence of a single global optimum in Unimodal
(F1–F7) benchmark functions serves as a valuable test for evaluating the exploration capability of the
algorithm under consideration. The optimization algorithms’ diversification capabilities are shown by
using the Multimodal (F8–F13) and Fixed-dimension multimodal (F14–F23) benchmark functions.
Details about these functions can be found in [15].

3.2 Experimental Setup

The parameters of the other algorithms (PSO, GWO, CHOA, SCA, RSA, FPA, WOA, RSO, and
TSA) are derived from the corresponding papers. The experimentation process and algorithms have
been carried out on an i5 processor operating at 2.60 GHz and 16 GB of RAM.

3.3 Performance Comparison

To ensure an equitable comparison, we maintain a consistent population size of 30 individuals
across all optimization algorithms and perform 500 generations. The mean, std, best result, and
ranking after 30 independent runs of each algorithm are presented in Tables 2–4, where the ranking is
determined based on the mean.

Table 2: The mean, std, and best values on the unimodal functions

Functions ABO PSO WOA RSO CHOA FPA GWO RSA SCA TSA

F1 Mean 0 2.739504 4.96E-74 2E-259 1.62E-08 1863.119 6.53E-28 0 8.847723 3.1E-195
Std 0 1.381861 1.66E-73 0 6.87E-08 645.9023 9.15E-28 0 13.03789 0
Best 0 1.059479 1.53E-91 0 9.48E-28 1135.756 7.44E-29 0 0.097024 6.6E-205
Rank 1 8 5 3 7 10 6 2 9 3

F2 Mean 0 4.677332 2.97E-51 1.4E-139 8.22E-07 30.14067 1.24E-16 0 0.026963 1.5E-100
Std 0 1.170234 8.8E-51 5.1E-139 1.95E-06 5.886052 1.39E-16 0 0.042914 5.5E-100
Best 0 3.016678 8.08E-60 0 6.14E-10 22.85537 1.56E-17 0 7.77E-05 1.3E-106
Rank 1 9 4 3 7 10 6 2 8 3

F3 Mean 0 187.8865 45969.67 5.1E-255 102.1504 1456.598 1.28E-05 0 8696.327 1.4E-182
Std 0 51.43875 12211.16 0 214.6503 348.5603 2.6E-05 0 5048.532 0
Best 0 98.23863 16083.88 0 0.335248 885.9155 9.73E-09 0 1579.356 1.8E-187
Rank 1 7 10 3 6 8 5 2 9 3

F4 Mean 0 1.924234 44.24386 4.69E-90 0.013704 23.59319 5.63E-07 0 35.77706 4.15E-92
Std 0 0.229176 29.14158 2.57E-89 0.013756 3.252222 5.81E-07 0 14.17494 1.56E-91
Best 0 1.49975 1.268282 0 0.000243 17.58065 2.58E-08 0 11.50938 2E-100
Rank 1 7 10 4 6 8 5 2 9 3

F5 Mean 1.090043 806.674 27.79136 28.76958 28.93083 301659 26.98143 22.19044 24182.83 28.52099
Std 4.29301 342.0505 0.443458 0.210932 0.065806 155153.4 0.796159 12.45145 61679.71 0.365193
Best 0.000384 359.691 26.91447 28.14204 28.73378 78722.21 25.8111 2.76E-27 30.88447 28.05151
Rank 1 8 5 6 7 10 4 2 9 6

F6 Mean 0.029361 2.29193 0.448323 3.278986 3.138063 1884.918 0.720921 6.946221 15.91793 5.941678

(Continued)
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Table 2 (continued)
Functions ABO PSO WOA RSO CHOA FPA GWO RSA SCA TSA

Std 0.036941 0.828593 0.257496 0.602236 0.388782 293.0147 0.37812 0.676677 22.48097 0.845228
Best 1.19E-06 0.712171 0.097252 1.762142 2.336074 1262.862 7.1E-05 3.932309 4.294536 3.941324
Rank r1 5 2 6 6 10 3 8 9 7

F7 Mean 0.000177 18.89928 0.003832 0.00051 0.001878 0.324021 0.002313 0.000137 0.176878 6.71E-05
Std 0.000166 15.2891 0.004263 0.000505 0.001714 0.087986 0.001023 0.000126 0.261323 6.2E-05
Best 6E-06 1.562643 1.94E-05 3.59E-05 4.35E-05 0.180599 0.000859 4.17E-06 0.003958 2.19E-06
Rank 3 10 7 4 5 9 6 2 8 1

Table 3: The mean, std, and best values on the multimodal functions

Functions ABO PSO WOA RSO CHOA FPA GWO RSA SCA TSA
F8 Mean −12398.1 −6368.57 −10310.7 −5819.19 −5712.53 −6393.11 −5871.21 −5498.44 −3708.51 −3327.75

Std 269.4774 1300.051 1587.465 897.3912 83.868 233.5901 719.9325 132.336 208.6469 461.9023
Best −12569.1 −8956.26 −12568.8 −6924.98 −6026.69 −6957.85 −7152.02 −5722.93 −4054.57 −4447.49
Rank 1 5 3 6 7 4 6 8 9 10

F9 Mean 0 171.5526 5.68E-15 0 1.082867 183.3753 1.683353 0 35.99174 20.11077
Std 0 32.82081 1.73E-14 0 2.984753 12.67538 2.497436 0 27.08043 42.84416
Best 0 100.3091 0 0 3.98E-13 159.8033 5.68E-14 0 0.473392 0
Rank 1 9 3 2 4 10 5 2 8 7

F10 Mean 8.88E-16 2.583473 4.91E-15 1.36E-15 19.96288 7.321006 1.09E-13 8.88E-16 10.44769 4.56E-15
Std 0 0.347243 2.91E-15 1.23E-15 0.001377 1.265033 2.72E-14 0 9.624672 6.49E-16
Best 8.88E-16 1.876971 8.88E-16 8.88E-16 19.9601 5.059116 7.55E-14 8.88E-16 0.075379 4.44E-15
Rank 1 7 4 3 10 8 5 2 9 3

F11 Mean 0 0.130369 0 0 0.015213 18.85045 0.005716 0 0.812483 0.002264
Std 0 0.060892 0 0 0.024037 4.806672 0.009628 0 0.379886 0.006266
Best 0 0.053012 0 0 3.15E-13 11.20103 0 0 0.019209 0
Rank 1 8 2 3 6 10 5 3 9 4

F12 Mean 0.004475 0.055503 0.022159 0.350741 0.315031 41.34128 0.043116 1.355855 19106.87 1.090577
Std 0.005746 0.046017 0.010872 0.13331 0.106485 69.48961 0.01846 0.286829 71302.46 0.319172
Best 1.37E-07 0.014218 0.007322 0.183195 0.148244 12.0622 0.013064 0.742027 0.920505 0.511953
Rank 1 4 2 6 6 9 3 8 10 7

F13 Mean 0.046485 0.529532 0.558913 2.866925 2.809285 68964.71 0.717013 0.093335 307141.1 2.561741
Std 0.051307 0.213334 0.248765 0.045647 0.10323 95611.47 0.30797 0.47412 882041.5 0.296405
Best 2.66E-05 0.200496 0.099758 2.802804 2.586901 662.1132 0.101023 1.45E-30 2.805047 1.841649
Rank 1 4 3 8 8 9 5 2 10 7

Table 4: The mean, std, and best values on the fixed-dimension multimodal functions

Functions ABO PSO WOA RSO CHOA FPA GWO RSA SCA TSA

F14 Mean 1.233076 2.770934 2.960349 2.381829 1.062489 0.998144 4.128514 3.671247 2.122922 10.36112
Std 0.514499 2.623468 3.32548 1.847044 0.239231 0.000495 4.305079 2.755154 0.999311 5.126076
Best 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 1.01025 0.998004 1.992031
Rank 3 6 7 5 2 1 9 8 5 10

F15 Mean 0.000345 0.000846 0.000683 0.001603 0.004891 0.000617 0.005057 0.001475 0.000941 0.00462
Std 4.5E-05 0.000133 0.000423 0.003677 0.016176 0.000124 0.008592 0.000693 0.000353 0.008114
Best 0.00031 0.000525 0.000309 0.000399 0.001234 0.000358 0.000308 0.00066 0.000322 0.000313
Rank 1 4 3 7 9 2 10 7 5 8

F16 Mean −1.03163 −1.03163 −1.03163 −1.03149 −1.02849 −1.03163 −1.03163 −1.02976 −1.03157 −1.02423

(Continued)
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Table 4 (continued)
Functions ABO PSO WOA RSO CHOA FPA GWO RSA SCA TSA

Std 5.6E-08 4.7E-16 2.11E-09 0.00018 0.009536 9.51E-08 2.35E-08 0.002971 4.2E-05 0.013599
Best −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03161 −1.03163 −1.03163
Rank 4 1 3 7 9 6 5 8 7 10

F17 Mean 0.397887 0.397887 0.397906 1.180402 0.400341 0.397891 0.397906 1.121332 0.400458 0.399368
Std 1.05E-08 0 4.59E-05 1.215561 0.00516 4.89E-06 8.89E-05 1.276393 0.003794 0.003143
Best 0.397887 0.397887 0.397887 0.398106 0.39789 0.397887 0.397887 0.399553 0.397951 0.397944
Rank 2 1 6 10 8 4 5 10 9 7

F18 Mean 3.000008 3 3.00009 3.000051 3.000185 3 3.000044 5.811115 3.000176 12.26838
Std 4.49E-05 6.32E-15 0.000185 0.000117 0.000193 4.12E-09 4.55E-05 8.577847 0.000516 22.61218
Best 3 3 3 3 3.000007 3 3.000001 3 3 3.000001
Rank 3 1 5 9 7 2 4 8 6 10

F19 Mean −3.86278 −3.86278 −3.85399 −3.49464 −3.8547 −3.86278 −3.86162 −3.79781 −3.85453 −3.85952
Std 1.19E-06 1.49E-14 0.013546 0.298841 0.002898 1.26E-08 0.002318 0.061135 0.002967 0.002388
Best −3.86278 −3.86278 −3.86278 −3.84748 −3.86221 −3.86278 −3.86278 −3.85726 −3.86177 −3.86265
Rank 3 1 9 10 7 3 5 10 8 6

F20 Mean −3.31982 −3.25859 −3.22231 −1.75724 −2.60286 −3.29848 −3.23749 −2.71951 −2.85248 −3.137
Std 0.002542 0.060328 0.115741 0.492095 0.492071 0.015875 0.080339 0.382472 0.347177 0.124958
Best −3.32177 −3.322 −3.32106 −2.55937 −3.23866 −3.31623 −3.32199 −3.17246 −3.17695 −3.29692
Rank 1 4 6 10 9 3 5 10 8 7

F21 Mean −10.1493 −7.29673 −8.52957 −0.88619 −3.17522 −10.1399 −9.06434 −5.0552 −2.66714 −7.13858
Std 0.00572 3.005022 2.529567 0.695632 2.041282 0.015535 2.520117 3.32E-07 1.688837 1.51868
Best −10.1532 −10.1532 −10.1523 −3.37099 −5.00764 −10.1531 −10.153 −5.0552 −5.11201 −9.70639
Rank 1 6 5 10 9 2 4 8 10 7

F22 Mean −10.4001 −9.60625 −7.33244 −0.93678 −3.06208 −10.2934 −10.2238 −5.08767 −2.95511 −6.26446
Std 0.004205 1.956164 3.184573 0.513169 2.048768 0.151153 0.970056 7.99E-07 1.72394 2.116332
Best −10.4029 −10.4029 −10.4014 −2.07786 −5.03666 −10.4025 −10.4027 −5.08767 −6.8096 −9.97328
Rank 1 5 6 10 9 3 4 8 10 7

F23 Mean −10.532 −9.95552 −7.56613 −1.2381 −4.17562 −10.3441 −10.3559 −5.12847 −3.79545 −5.06172
Std 0.010876 1.783603 3.098342 0.666509 1.652114 0.285731 0.978592 1.79E-06 1.473324 2.732771
Best −10.5364 −10.5364 −10.5362 −3.62608 −5.82866 −10.5233 −10.5363 −5.12848 −6.50974 −9.163
Rank 1 5 6 10 9 4 3 7 10 8

According to Table 2, the mean, std, and best of ABO on F1–F4 are all zero, which indicates that
the algorithm can accurately find the global optimum of these functions each time. For F5 and F6,
ABO can achieve significantly better optimal solutions than other algorithms. On F7, ABO is similarly
competitive, with optimization results next only to TSA and RSA. The results demonstrate that ABO
has significant advantages in exploitation compared to other algorithms.

According to the experimental results in Tables 3 and 4, ABO achieves very competitive results.
On F8–F13, F15, and F20–F23, the optimization results of ABO are better than other algorithms,
and the ranking is 1. On the other functions, the proposed algorithm also achieves satisfactory results,
and the optimization performance is better than most algorithms. These results illustrate that ABO
has excellent performance in terms of exploration capability.

3.4 Convergence Analysis

Fig. 8 shows the convergence curves of ABO with the other algorithms on benchmark test
functions. It can be seen that ABO has three different convergence behaviors. In the early stages, it
explores fully the given search space, allowing the highest convergence efficiency. In the second stage,
the algorithm initiates iterative processes aimed at approaching the optimal solution until reaching the
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maximum allowed number of iterations. The last stage is the iterative process of rapid convergence of
ABO, where it finds the optimal solution to the benchmark test problem through full exploration
and exploitation. The above analysis show that ABO achieves a good balance of exploration and
exploitation than other metaheuristic optimization algorithms.

Figure 8: Convergence plots for various benchmark functions

3.5 Statistical Testing

In addition to utilizing standard statistical measures such as mean and standard deviation, we have
also employed the Wilcoxon sum rank test for further analysis and comparison [26]. It is used to assess
whether ABO’s results statistically significantly differ from that of other competing algorithms. In this
paper, the sample size of the Wilcoxon sum rank test is 30 and the confidence interval is 95%. The
significance of an algorithm can be determined by examining its p-value. If the p-value of a algorithm
is lower than 0.05, it signifies that the algorithm exhibits statistical significance when compared to the
other algorithms under consideration. Table 5 shows the Wilcoxon sum rank test for the 23 benchmark
test functions. From the experimental results of the table, it can be obtained that the p-value obtained
from the comparison of ABO with the other algorithms is much less than 0.05 in general for all the
benchmark functions. It can be shown that ABO has a significant difference compared with other
algorithms.

Table 5: p-values of the Wilcoxon rank-sum test with 5% significance for F1–F23

Functions PSO WOA RSO CHOA FPA SCA GWO RSA TSA

F1 1.21E-12 1.21E-12 1.46E-04 1.21E-12 1.21E-12 1.21E-12 1.21E-12 NaN 1.21E-12
F2 1.21E-12 1.21E-12 1.27E-05 1.21E-12 1.21E-12 1.21E-12 1.21E-12 NaN 1.21E-12
F3 1.21E-12 1.21E-12 5.58E-03 1.21E-12 1.21E-12 1.21E-12 1.21E-12 NaN 1.21E-12

(Continued)
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Table 5 (continued)
Functions PSO WOA RSO CHOA FPA SCA GWO RSA TSA

F4 1.21E-12 1.21E-12 2.21E-06 1.21E-12 1.21E-12 1.21E-12 1.21E-12 NaN 1.21E-12
F5 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.99E-04 3.02E-11
F6 3.02E-11 3.69E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.62E-10 3.02E-11 3.02E-11
F7 3.02E-11 1.03E-06 1.03E-03 1.20E-08 3.02E-11 3.02E-11 3.02E-11 4.02E-01 1.06E-03
F8 3.02E-11 6.53E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F9 1.21E-12 8.14E-02 NaN 1.21E-12 1.21E-12 1.21E-12 1.08E-12 NaN 2.93E-05
F10 1.21E-12 3.08E-10 4.18E-02 1.21E-12 1.21E-12 1.21E-12 1.18E-12 NaN 2.71E-14
F11 1.21E-12 NaN NaN 1.21E-12 1.21E-12 1.21E-12 6.62E-04 NaN 4.19E-02
F12 8.99E-11 1.41E-09 3.02E-11 3.02E-11 3.02E-11 3.02E-11 6.07E-11 3.02E-11 3.02E-11
F13 3.02E-11 4.08E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.08E-11 6.53E-08 3.02E-11
F14 8.30E-01 7.84E-01 1.45E-01 3.95E-01 7.62E-03 5.26E-04 4.73E-01 7.77E-09 8.15E-11
F15 3.02E-11 7.60E-07 4.98E-11 3.02E-11 1.61E-10 9.76E-10 1.91E-01 3.02E-11 7.06E-07
F16 2.36E-12 4.23E-03 3.02E-11 3.02E-11 1.75E-05 3.02E-11 7.96E-03 3.02E-11 3.34E-11
F17 1.21E-12 7.09E-08 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.08E-11 3.02E-11 3.02E-11
F18 2.97E-11 6.52E-08 4.69E-08 2.87E-10 4.21E-02 6.12E-10 6.12E-10 2.37E-10 3.47E-10
F19 2.16E-11 1.46E-10 3.02E-11 3.02E-11 9.76E-10 3.02E-11 4.20E-10 3.02E-11 3.02E-11
F20 6.63E-01 7.60E-07 3.02E-11 3.02E-11 8.15E-11 3.02E-11 3.79E-01 3.02E-11 3.02E-11
F21 8.30E-01 6.05E-07 3.02E-11 3.02E-11 8.15E-05 3.02E-11 1.12E-01 3.02E-11 3.02E-11
F22 9.51E-06 1.07E-09 3.02E-11 3.02E-11 2.03E-09 3.02E-11 1.96E-01 3.02E-11 3.02E-11
F23 6.53E-07 1.07E-07 3.02E-11 3.02E-11 1.33E-10 3.02E-11 1.02E-01 3.02E-11 3.02E-11

4 Engineering Problems

In this section, ABO is tested also with five constrained engineering design problems: Pressure
vessel design, Rolling element bearing design, Tension/compression spring design, Cantilever beam
design, and Gear train design. Mathematical models of these engineering design problems can be
found in the corresponding literature. For the constraint problem, this paper uses the widely used
penalty function method to deal with the constraints [22]. To ensure an equitable comparison, we
maintain a consistent population size of 30 individuals across all optimization algorithms and perform
500 generations.

4.1 Pressure Vessel Design Problem

The pressure vessel design is an engineering problem initially presented by Kannan and Kramer
[22]. As shown in Fig. 9, this design challenge involves the optimization of a pressure vessel’s
manufacturing cost, encompassing expenses related to materials, forming processes, and welding. The
primary objective is to minimize the overall cost of producing the pressure vessel while ensuring it
meets all design constraints and performance requirements.

Figure 9: Pressure vessel design
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We use ABO to optimize the problem and compare the experimental results with other algorithms.
The results presented in Table 6 illustrate the statistical outcomes of the algorithms in terms of the
optimal and variables. By utilizing ABO, it is possible to obtain the optimal function value of f1 =
6285.942, with corresponding structure variables x = (0.8140874, 0.4987349, 41.91206, 179.0077).
The results show that ABO can find the optimal design of the pressure vessel problem with the lowest
manufacturing cost compared with other algorithms.

Table 6: Comparison of optimum results for pressure vessel design

Algorithm x1 x2 x3 x4 Optimal value

CHOA 1.25639 0.770405 64.3998 25.8942 9131.5308
ABO 0.8140874 0.4987349 41.91206 179.0077 6285.942
WOA 1.22615 0.660536 63.476 17.7501 7570.0419
GWO 1.25018 0.779287 58.5525 43.3575 8756.1309
SCA 0.8680526 0.6206409 43.22946 186.2539 7503.0508
TSA 1.22625 0.691567 63.2978 20.2611 7890.503
L-SHADE [23] 0.8525 0.5775 56.3105 65.7572 7672.4972
LSHADE-EpSin [23] 0.9330 0.6982 59.9952 47.5678 6854.5191
TEO [23] 2.5816 1.4787 47.1647 148.7692 32593.2941

4.2 Rolling Element Bearing Design

The design of rolling element bearings is a well-known engineering benchmark problem intro-
duced by Rao and Tiwari in 2007. This problem aims to maximize the dynamic load-carrying capacity
of rolling bearings, as illustrated in Fig. 10. The problem is framed by ten constraints and ten design
variables.

Figure 10: Rolling element bearing design

Table 7 shows the optimal values and optimal variables obtained by these algorithms on this
problem. ABO can obtain the optimal function value f2 =−85380.5266 with the structure variables
x = (125.6417, 21.40225, 11, 0.515001, 0.5154961, 0.4021139, 0.6181131, 0.3026727, 0.03466326,
0.6025443). The outcomes reveal that ABO can identify the optimal configuration for the design of
rolling element bearings, maximizing their dynamic load-carrying capacity.
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Table 7: Comparison of optimum results for rolling element bearing design

Algorithm Dm Db z fi go KDmin KDmax ε e ζ Optimal value

CHOA 125 21.62214 10 0.515 0.6 0.5 0.7 0.3 0.02 0.651701 −81549.3006

ABO 125.6417 21.40225 11 0.515001 0.5154961 0.4021139 0.6181131 0.3026727 0.03466326 0.602544 −85380.5266

PSO 125 21 9 0.515 0.515 0.5 0.7 0.4 0.1 0.6 −35585.8093

WOA 125 21 9 0.515 0.515 0.4 0.6 0.3 0.053251 0.6 −72214.8943

GWO 125 21.09474 5 0.515 0.5693567 0.4246166 0.671365 0.325135 0.020982 0.610848 −49186.3383

Chaotic GWO [3] 125.68089 21.4174 11 0.5153 0.56367 0.49617 0.67858 0.3000001 0.05734287 0.616924 -81803. 645

SCA 125 20.82613 11 0.515 0.515 0.4 0.6 0.3 0.02 0.607731 −81343.9831

TSA 125 21.13977 11 0.515 0.5485597 0.4 0.627163 0.3 0.026647 0.6 −83519.8965

DE [22] 125.7192 21.2508 10.8654 0.5153 0.56021 0.4199 0.6197 0.3012 0.0472 0.6740 −83629.26366

PVS [27] 125.7191 21.4256 11 0.515 0.515 0.4004 0.6802 0.3 0.08 0.7 −81859.74121

4.3 Tension/Compression Spring Design Problem

The design problem introduced by Arora focuses on tension/compression spring design. This
design problem, as depicted in Fig. 11, provides a visual representation of the optimization process
for the spring design. The primary goal is to minimize the weight of the spring while ensuring it meets
specific constraints, including minimum deflection, vibration frequency, and shear stress.

Figure 11: Tension spring design

The comparison results between ABO and other algorithms are given in Table 8. The superiority
of ABO is evident as it attains the optimal solution with the variables set at x = (0.0518975, 0.36175,
11), resulting in an objective function value of f3 = 0.012666.

Table 8: Comparison of optimum results for tension/compression spring design

Algorithm d D N Optimal value

CHOA 0.05 0.310598 15 0.0132
ABO 0.0518975 0.36175 11 0.012666
PSO 0.064277 0.74196 3 0.015327
CPSO [22] 0.051728 0.357644 11 0.0126747
WOA 0.056439 0.4746 7 0.013606
GWO 0.057758 0.52053 6 0.013892
CGWO [3] 0.05169 0.356717 11 0.012665
CDE [3] 0.051609 0.354714 11 0.0126702

(Continued)
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Table 8 (continued)

Algorithm d D N Optimal value

SCA 0.05 0.310549 15 0.013198
TSA 0.057676 0.51037 6 0.013582

4.4 Cantilever Beam Design

The cantilever beam design is given in Fig. 12. The design objective of the problem is to minimize
the weight of the cantilever beam and the constraint is to satisfy a vertical displacement constraint [22].
It consists of five hollow members. Each unit is defined by distinct variables with a specific thickness,
thus rendering this design problem to encompass five decision variables.

Figure 12: Cantilever beam design

Table 9 presents the optimized outcomes obtained from ABO as well as other competing methods.
Notably, ABO achieves the optimal function value of f4 =1.3422 by utilizing the structure variables
x = (5.8506, 5.4175, 4.4818, 3.6739, 2.0867). The conclusion that can be drawn is that ABO finds the
optimal set of structural parameters for the cantilever beam design.

Table 9: Comparison of optimum results for cantilever beam design

Algorithm x1 x2 x3 x4 x5 Optimal value

CHOA 6.5777 5.4091 5.2894 3.4565 1.7035 1.4
ABO 5.8506 5.4175 4.4818 3.6739 2.0867 1.3422
WOA 8.0555 3.9969 4.6084 3.4613 2.0585 1.5281
GWO 6.0888 5.5787 4.3128 3.3401 2.2174 1.344
SCA 6.7659 4.833 4.9445 2.9159 3.5721 1.4372
TSA 6.0608 5.7167 4.3507 3.3217 2.1229 1.3461
AOA [23] 6.114257 5.352915 4.085839 3.181646 1.72922 1.3866
ACO [28] 5.0311 4.3266 2.0812 1.7568 3.3254 1.9311
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4.5 Gear Train Design

The last engineering design problem is the gear train design [11]. As shown in Fig. 13, this problem
has four integer decision variables, where Ta, Tb, Td, and Tf represent the number of teeth of four
different gears, respectively. Its objective is to minimize the transmission ratio cost of the gear train.
The transmission ratio is given as Tb/Ta · Td/Tf .

Figure 13: Gear train design

The comparison results obtained by ABO and other optimizers are given in Table 10. The optimal
gear parameters obtained by the ABO optimization for this problem are x = (34, 20, 13, 53) and
the transmission ratio is f5 = 2.3078E−11. The results demonstrate that ABO outperforms other
algorithms in identifying the optimal design for the gear train, effectively minimizing the cost of
transmission ratio.

Table 10: Comparison of optimum results for gear train design

Algorithm Ta Tb Td T f Optimal cost

ARO 55 17 21 45 1.36E-09
CHOA 60 25 18 52 2.36E-09
ABO 34 20 13 53 2.3078E-11
PSO 60 13 40 60 2.73E-08
WOA 60 34 14 55 1.36E-09
GWO 59 14 28 46 2.46E-08
SCA 39 23 12 40 2.18E-08
TSA 26 12 15 48 2.36E-09
DE [22] 47 19 15 42 5.5209E-09

5 Conclusion

In this paper, a new metaheuristic optimization algorithm based on biological population, named
ABO, is proposed. ABO mimics the foraging, jousting, mating, and eliminating behaviors of the
African bison herd while introducing the parameters S and Q to balance the exploration and
exploitation phases. To test the ability of ABO in global exploration and local exploitation, it is tested
on 23 benchmark test functions and five constrained real-world engineering problems.

The experimental results of ABO demonstrate its superiority and the ability to solve real-world
engineering problems, especially when compared to other existing algorithms. In future work, ABO
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could be further developed and modified to explore other aspects. One direction is to combine ABO
with other algorithms to extend it to more fields, such as neural networks, image processing, etc.
Another direction is to expand ABO into a multi-objective optimization tool. Incorporating multi-
objective optimization capabilities could greatly enhance the utility of ABO, making it well-suited for
solving complex problems with multiple objectives.
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