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ABSTRACT

Network anomaly detection plays a vital role in safeguarding network security. However, the existing network
anomaly detection task is typically based on the one-class zero-positive scenario. This approach is susceptible to
overfitting during the training process due to discrepancies in data distribution between the training set and the
test set. This phenomenon is known as prediction drift. Additionally, the rarity of anomaly data, often masked by
normal data, further complicates network anomaly detection. To address these challenges, we propose the PUNet
network, which ingeniously combines the strengths of traditional machine learning and deep learning techniques
for anomaly detection. Specifically, PUNet employs a reconstruction-based autoencoder to pre-train normal data,
enabling the network to capture potential features and correlations within the data. Subsequently, PUNet integrates
a sampling algorithm to construct a pseudo-label candidate set among the outliers based on the reconstruction loss
of the samples. This approach effectively mitigates the prediction drift problem by incorporating abnormal samples.
Furthermore, PUNet utilizes the CatBoost classifier for anomaly detection to tackle potential data imbalance
issues within the candidate set. Extensive experimental evaluations demonstrate that PUNet effectively resolves
the prediction drift and data imbalance problems, significantly outperforming competing methods.
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1 Introduction

Network anomaly detection holds a crucial position within the domain of network security [1].
It enables the identification of anomalous network traffic patterns stemming from cyberattacks, facil-
itates the monitoring and measurement of network data, and triggers appropriate countermeasures.
Consequently, it constitutes an indispensable element in ensuring the security of networks [2–5].

The field of network anomaly detection can be broadly categorized into two primary research
directions: traditional machine learning-based [6,7] and deep learning-based approaches [8,9]. Tra-
ditional machine learning techniques encompass density estimation methods (e.g., LOF [10] and
KDE [11]), clustering-based methods (e.g., OC-SVM [12]), sample probability density distribution
methods (e.g., ECOD [13] and COPOD [14]), and ensemble learning methods (e.g., IForest [15] and
SUOD [16]). However, these methods often encounter challenges in capturing intricate offensive
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and defensive data patterns and exhibit a high dependence on anomalous data samples. In contrast,
deep learning (DL)-based network anomaly detection methods leverage sophisticated neural network
architectures such as autoencoders (AEs) [17,18], generative adversarial networks (GANs) [19,20],
multi-layer perceptrons (MLPs) [21–23], or Transformers [24–26], which leverage their powerful
representation capabilities to effectively model the underlying correlations among sample features,
thereby significantly enhancing the performance of network anomaly detection. Nevertheless, DL-
based network architectures leverage their powerful representation capabilities to effectively model
potential correlations between sample features, leading to significant improvements in network
anomaly detection performance. However, these methods often rely on zero-positive sample scenarios
for model training and data fitting. This limitation restricts the model’s ability to generalize across
diverse data distributions. Inconsistencies between the training and test data distributions can cause
overfitting to the former, resulting in subpar performance on the latter. This phenomenon is known
as prediction drift. Moreover, network anomaly detection is inherently challenging due to the rarity
of abnormal data, which is easily obscured by normal data.

To address the aforementioned challenges, we propose PUNet, a semi-supervised representation
learning method for anomaly detection. PUNet adeptly integrates traditional machine learning with
deep learning techniques to effectively mitigate the prediction drift problem arising from inconsistent
data distributions between training and test sets, as well as the performance degradation caused
by imbalanced training data in subsequent anomaly detection classifiers. Specifically, the PUNet
architecture begins with a variational recurrent neural network (VRNN) [27] for pre-training on
normal data, which integrates the architecture of a variational autoencoder (VAE) [28] and a
recurrent neural network (RNN) [29] to effectively capture temporal dependencies and latent variable
representations in the data. Subsequently, PUNet employs a candidate set sampling algorithm based
on sample reconstruction loss to construct a pseudo-labeled training candidate set containing anomaly
data. This approach ensures that the distribution of the candidate set aligns with that of the test
set, effectively resolving the prediction drift problem. Finally, considering potential data imbalance
within the candidate set, PUNet utilizes CatBoost [30] as the classifier for network anomaly detection.
Extensive experimental evaluations demonstrate that PUNet effectively tackles the prediction drift and
data imbalance problems, leading to improved network anomaly detection performance and enhanced
robustness. The primary contributions of this article can be summarized as follows:

(1) We propose a novel semi-supervised anomaly detection method, named PUNet, which seam-
lessly integrates traditional machine learning and DL techniques, which effectively solves the
prediction offset problem and data imbalance problem caused by inconsistent data distribu-
tion, and shows significant advantages in network anomaly detection tasks.

(2) We propose a candidate set sampling algorithm based on reconstruction loss (CSSARL) to
mitigate prediction drift between the training set and test set, which stems from inconsistent
data distribution, in subsequent anomaly detection algorithms.

(3) We introduce a VRNN-based feature extraction module and a CatBoost anomaly detection
module to address the feature encoding and data imbalance challenges of network traffic data.

Experimental results show that PUNet outperforms the one-class semi-supervised network
anomaly detection algorithms in terms of Area Under the Receiver Operating Characteristic Curve
(AUCROC) and Area Under the Precision-Recall Curve (AUCPR) scores on CTU13 and CIRA-CIC-
DoHBrw-2020 datasets.
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The remainder of this paper is organized as follows: Section 2 briefly reviews related work.
Section 3 presents the details of the proposed PUNet framework. Section 4 compares the test results
of the PUNet framework and ablation experiments. Finally, Section 5 concludes the paper.

2 Related Works

In this section, we review recent advances in one-class network anomaly detection algorithms and
DL-based network anomaly detection algorithms.

2.1 One-Class Classification-Based Network Anomaly Detection Algorithm

Semi-supervised one-class network anomaly detection algorithms, deeply rooted in traditional
machine learning techniques, leverage labeled normal samples and unlabeled data during the training
process. These algorithms aim to distinguish between normal and abnormal samples and identify
outliers within the unlabeled data. Notable semi-supervised one-class anomaly detection algorithms
include those based on support vector machines (SVMs) [12], probability density estimation, and
gradient boosting decision trees (GBDTs). These algorithms capitalize on limited labeled data to train
models, enabling effective outlier detection in unlabeled data scenarios.

Miao et al. [12] introduced a real-time intrusion detection system utilizing the OC-SVM (one-
class support vector machine) algorithm. By monitoring and analyzing running container kernel
system calls, training data in a secure environment, and evaluating the system’s enhanced network
attack detection capabilities, they demonstrated the OC-SVM algorithm’s efficacy across various
feature extraction methods, kernel functions, and segment lengths. Inspired by copula theory for
modeling multivariate data distributions, Li et al. [14] proposed the COPOD outlier detection
algorithm. COPOD estimates the tail probability of each data point by constructing an empirical link
function, enabling anomaly assessment. This algorithm exhibits parameter-free, highly interpretable,
and efficient computational characteristics. Building upon this work, Li et al. [13] presented ECOD
(outlier detection based on empirical cumulative distribution), a semi-supervised algorithm. ECOD
estimates the underlying data distribution by computing the empirical cumulative distribution for each
data dimension. Subsequently, these empirical distributions are used to evaluate the tail probabilities
for each data point, which are then aggregated to calculate an outlier score for each data point.
The method’s parameter-free nature and ease of interpretation have been validated through extensive
experiments. Furthermore, Zhao et al. [16] consolidated previous research and proposed the SUOD
ensemble learning algorithm. SUOD aims to leverage the outliers of abnormal samples to expedite the
training and scoring of new samples.

In summary, semi-supervised one-class anomaly detection methods grounded in machine learning
exhibit promising anomaly detection performance in specific tasks involving sequence data and
low-dimensional encoded data. However, as data volumes and complexity escalate, coupled with
increasingly stringent anomaly detection requirements, traditional methods encounter challenges in
capturing intricate data patterns and inter-sample dependencies.

2.2 Semi-Supervised Network Anomaly Detection Based on DL

Benefiting from automatic feature learning and intricate model architectures, DL-based anomaly
detection algorithms are superior to traditional machine learning methods in terms of data fitting
ability and scenario applicability. This advantage becomes particularly pronounced when handling
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large-scale and complex data sets. Consequently, semi-supervised anomaly detection techniques DL-
based have gained widespread adoption in various domains, including network security [31–33],
financial fraud detection [34–36], and medical diagnosis [37].

DL-based anomaly detection algorithms primarily leverage architectures such as AEs [17,18],
GANs [19,20], MLPs [21–23] and Transformers [24–26] to extract hidden layer features from network
data streams. These features are subsequently employed to construct a scoring network or are evaluated
based on reconstruction losses to identify anomalous data. Monshizadeh et al. [38] introduced a hybrid
architecture that combines conditional variational autoencoders (CVAEs) and random forest (RF)
classifiers, which enables the automatic learning of similarities between input features and provides
data distribution information. By extracting discriminative features from the original features, the
model can classify various types of attacks. Similarly, Wang et al. [39] introduced BAE (BIRCH-
Autoencoder), an outlier detection algorithm that ingeniously integrates a clustering algorithm and
an autoencoder, which employs the BIRCH clustering algorithm for pre-classification and combines
it with an autoencoder model. This integration facilitates threshold-based outlier detection, leading
to improved performance on network security data sets. Furthermore, Li et al. [40] introduced OC-
LSTM, a semi-supervised learning method that seamlessly integrates the traditional one-class support
vector machine (OC-SVM) with a long short-term memory recurrent neural network (LSTM), which
effectively tackles the challenge of outlier detection through end-to-end training and target loss
optimization functions. Moreover, it efficiently handles data set imbalance issues, as evidenced by its
superior performance on multiple complex network traffic datasets.

In brief, the aforementioned one-class semi-supervised anomaly detection algorithms are typically
trained using only a single data category (i.e., anomaly detection in zero-positive scenarios). This
limitation restricts the model’s ability to generalize to diverse data distributions. Considering the
potential inconsistency between the training set and test set data distributions, the model may overfit
on the training set, leading to prediction bias on the test set. To address this challenge, we propose the
PUNet network. PUNet first employs a variational recurrent neural network (VRNN) for pre-training
on a zero-positive data set to capture underlying dependencies and latent variable representations
within the data. Subsequently, the Candidate Set Sampling Algorithm based on Reconstruction Loss
(CSSARL) constructs a pseudo-label candidate set on the unlabeled data set, effectively mitigating
the prediction offset issue. Finally, the CatBoost classifier is utilized for anomaly detection to handle
potential data imbalance within the candidate set. Compared with other single-class anomaly detection
algorithms, PUNet effectively resolves the prediction drift problem and achieves superior network
anomaly detection performance.

3 Architecture of PUNet

As depicted in Fig. 1, the PUNet framework comprises four primary components: Traffic Prepro-
cessing Module (TPM), which is responsible for data acquisition, preprocessing, and normalization.
Traffic Feature Extraction Module (TFEM), which employs a VRNN to extract high-level features
from the preprocessed data. Candidate Set Sampling Module (CSSM), which constructs a pseudo-
label candidate set using the CSSARL algorithm to address the prediction offset problem. Anomaly
Detection Module (ADM), which utilizes the CatBoost classifier for anomaly detection, effectively
handling potential data imbalance within the candidate set.
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Figure 1: Architecture of PUNet, which includ es traffic preprocessing module, traffic feature extrac-
tion module, candidate set sampling module, and anomaly detection module

3.1 Traffic Feature Extraction Module

TFEM is employed to extract hidden layer feature representations z from input traffic data x
to alleviate the complexity of subsequent anomaly detection algorithms. The front-end of TFEM is
constructed utilizing a variant of the VRNN architecture, which consists of three main components:
feature encoding, feature decoding and variational lower bound. Specifically, TFEM uses an encoder
to extract latent feature representation z from raw traffic data x. Subsequently, the decoder reconstructs
the original traffic data, providing the reconstruction error e and the reconstruction error residual
ε. During the training process we use variational lower bounds to evaluate the convergence of the
algorithm. The three parameters z, e and ε can jointly characterize the deviation of abnormal samples
from the normal data distribution and can enhance the generalization ability of unseen traffic data.

• Feature Encoding (FE): Given n normal flow data as N multivariate time series data, a set of
observations is represented by x = {

x(i)
}N

i=1
. For each stream xi = {

xi
t

}T

t=1
, where T represents the

length of the data stream. In order to infer the hidden layer representation of the current traffic
data x(i), we adopt TFEM to encode the input data x(i), and the encoding module updates the
hidden variable h at each time step t. At the same time, the prior probability p(z(i)

t |x(i)
<t; z(i)

<t) of z(i)
t

is obtained. We input the hidden content of the previous time step ht−1 into the prior network,
generating the mean μpri,t and standard deviation σpri,t of the data distribution. We then apply
this to random sampling from a standard normal distribution to obtain subsequent output
calculations and hidden state updates. Therefore, the process of feature encoding is as follows:

z(i)
t ∼ N(μpri,t, σ 2

pri,t),

[μpri,t; σ 2
pri,t] = ϕpri(ht−1),

(1)

where μpri,t and σpri,t represent the mean and standard deviation of the prior conditional
probability, and ϕpri represents the feature encoding forward propagation process. By inputting
the data x(i)

t into the feature encoding, we obtain the hidden layer feature representation z(i)
t :

z(i)
t |x(i)

t N(μFE,t, σ 2
FE,t),[

μFE,t, σ 2
FE,t

] = ϕFE

(
ht−1, ϕx

(
x(i)

t

))
.

(2)

Feature Decoding (FD): The feature decoding process aims to reconstruct the input data x(i)
t . Its

output depends not only on z(i)
t , but also on the hidden layer variable ht−1. Therefore, the entire
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feature decoding process is as follows:

x(i)
t |z(i)

t ∼ N(μFD,t, σ 2
FD,t),

[μFD,t, σ 2
FD,t] = ϕFD(ϕz(z(i)

t ), ht−1),
(3)

where ϕx and ϕz are feed forward neural networks used to extract features from x(i) and z(i),
respectively. Finally, a Gate Recurrent Unit (GRU) neural network is employed to update ht:

ht = ϕGRU (xt; Zt; ht−1). (4)

• Variational Lower Bound: TFEM adopts VRNN, a time series model, and learns data prior
information to improve data reconstruction and obtain the correct hidden layer representation
z(i). The Evidence Lower Bound (ELBO) determines its lower bound, so our loss function L is
the negative of the optimal lower bound:

L = −
T∑

t=1

E[logp(x(i)
t |z(i)

<t; x(i)
<t) − KL(NFE,t||Npri,t)], (5)

which the first term is to minimize the reconstruction error p(x(i)
t |z(i)

<t; x(i)
<t), while the second term

aims to make the posterior distribution NFE,t closely approximate the prior distribution Npri,t.

Leveraging TFEM, we reconstruct the high-dimensional original traffic data x̂ and obtain the
hidden layer feature representation z. In addition, we also obtain two other key elements, namely the
reconstruction error sets e and the reconstruction error residual sets ε:

z = {
FFE (x) |z ∈ R

M
}
(M � T), (6)

e = ∥∥x − x̂
∥∥, (7)

ε = {(ei − δe)}n
i=1, (8)

where FFE is the feature encoding process, ‖ · ‖ is the L2 norm, and δe is the maximum reconstruction
error of the pre-training set. ε is represents the difference between the reconstruction error of the data
set and the maximum reconstruction error in the training set. Essentially, it indicates the direction
of the input data. To sum up, z, e, and ε characterize the input data. Notably, these three elements
uniquely represent the input samples and they provide input to subsequent modules.

3.2 Candidate Set Sampling Module

Leveraging the TFEM, we extract the feature representation and reconstruction error set of the
training set, as well as the feature representation and reconstruction error set of the unlabeled data set.
We define the training set data with reconstruction errors smaller than the maximum reconstruction
error of the training set as the inlier candidate set P. Conversely, the unlabeled data with reconstruction
errors greater than α times the reconstruction error are considered outlier candidate sets O. Therefore,
the specific implementation of the CSSARL algorithm is as follows:

• Normal Candidate Set P: We generate candidate 2-tuple samples using importance sampling
based on outlier scores. Specifically, we first sample N query objects from an internal candidate
set P based on outlier scores. The probability of a data object xi ∈ DTrain being sampled as a
query object is inversely proportional to its outlier value, defined as follows:

p
(
x+

i

) = φ (ri)

ri

, (9)
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where φ(ri) = ∑N−n
i=1 ri represents importance sampling, which facilitates the selection of high-

probability representative training set points as query objects. N − n indicates that there is no
repeated sampling.

• Pseudo-Label-Based Outlier Candidate Set O: We sample negative examples x− from the outlier
candidate set O based on the reconstruction loss. Specifically, we define the outlier candidate
set O as the set of data points with reconstruction errors greater than α times the maximum
reconstruction error of the training set. Subsequently, we extract m counterexamples from O
using importance sampling to select the most likely outliers. Given a data object oi(xi, e) ∈ O,
the probability of it being selected as a counterexample is defined as:

p
(
x−

i

) = ei(∑|O|
i=1 ei

) . (10)

By constructing the normal candidate set P and pseudo-label-based outlier candidate set O, we
obtain a training set that can be utilized for subsequent anomaly detection and employed to build the
subsequent ADM.

3.3 Anomaly Detection Module

The anomaly detection module employs CatBoost as the primary architecture for the classification
stage of the PUNet network. CatBoost is a classification algorithm based on boosted trees. Despite its
numerous parameters, only a select few significantly influence model performance. A notable advan-
tage of the CatBoost model is that many parameters require minimal adjustment, and satisfactory
prediction accuracy can be achieved even with default parameter settings. Therefore, in the anomaly
classifier, we employ a combination of grid search and ten-fold cross-validation to optimize a few
critical parameters, including the learning rate, tree depth, number of trees, and L2 regularization
parameter. All other parameters are set to their default values. The output pseudo-label candidate set
generated by CSSM is fed into CatBoost to train an anomaly detection classifier.

After the CSSM, we obtain a set of labeled candidate training data sets DCT = {(zi, yi)}i=1,2,...,N+m,
where zi = {z1

i , z2
i , . . . , zd

i } represents a vector with d features, N is the number of normal candidate
samples P, m is the number of randomly sampled outlier candidates O, which is approximately �% of
the outlier candidate set data, y ∈ {0, 1} is the sample label. The training set DCT is independently and
identically distributed according to an unknown distribution P(z, y). The goal of the learning task is to
train function F : Rk → {0, 1}, minimize expected mean square error loss L(F) : = EL(y,F(z)). Here
L (; ) is the smoothing loss function and (z, y) are test examples sampled from the unlabeled dataset
U independently of the training set DCT . Considering that there is a serious imbalance problem in the
abnormal data in the sampled candidate training set, here we use the CatBoost algorithm, and the
expression of its loss function L is as follows:

L (yi,F (ŷi|zi)) = 1
N + m

N+m∑
i=1

[yilogF (zi) + (1 − yi) log (1 − F (zi))] (11)

Assume that the feature space R
d is divided into J disjoint regions (i.e., tree nodes). Each region

(i.e., leaf of the tree) has a corresponding value bj, which is an estimate of the predicted class label.
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Therefore, the decision tree T can be written as the superposition of all regional estimates:

T (z) =
J∑

j=1

bjI{z∈Rj}, (12)

where I is the indicator function.

In the gradient boosting process, a series of approximate functions Ft : Rd → R are established to
minimize the expected loss L in a greedy way:

F t = F t−1 + αTt, (13)

where α is the step size and Tt is a tree selected from a series of H functions to minimize L(F) in the t
iteration:

Tt = argminT∈HL
(
F t−1 + T

)
= argminT∈HL

(
y,F t−1 (z) + T (z)

)
.

(14)

After n iterations, we obtain a series of approximate functions Ft(t = 0, 1, . . .) and add them to
get the final model:

F (z) =
n∑

t=1

Tt. (15)

It is worth mentioning that the target of the first tree T 1 is y, while the subsequent tree Tt takes
the residual rt of the target y and the estimated result of the previous model Tt−1(z) as the target.

CatBoost processes categorical features during training rather than during preprocessing: for each
example, CatBoost performs a random permutation of the dataset and calculates the average label
value for that example where the same class value precedes the given class value in the permutation:

zk
i =

∑n

j=1 I
{

zk
j =zk

i

} · yi + θ · p∑n

j=1 I
{

zk
j =zk

j

} + θ
, (16)

where p represents the prior value and θ is the weight of the prior value. For regression tasks, the
standard technique for computing the prior is to take the average label value in the data set.

All categorical features can be combined into a new feature. When constructing new splits for
trees, CatBoost considers combinations in a greedy manner. The first split in a tree does not consider
any combinations, but for subsequent splits, CatBoost combines all predefined combinations with
all categorical features in the dataset. All splits selected in the tree are treated as categories with two
values and are used in combination. By sampling based on the Ordered Boosting principle, CatBoost
improves upon the standard gradient boosting process, achieving unbiased boosting. Finally, CatBoost
uses a forgetting tree as the base predictor, where the same splitting criterion is used throughout the
entire tree level. Such trees are balanced and less prone to overfitting. In a forgetting tree, each leaf
index is encoded as a binary vector of length equal to the tree depth. Through these combinations,
CatBoost achieves high generalization performance.

3.4 Training Process

A two-stage training strategy is adopted to build PUNet. In the first stage, only normal samples are
used for pre-training to train the TFEM module. In this stage, all samples containing only normal data
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can well obtain a hidden layer representation vector, reconstruction error and reconstruction residual,
which can uniquely represent the original data. Then we randomly sample part of the data from the
unlabeled dataset through the trained TFEM module, and then combine the CSSARL algorithm
to obtain part of the pseudo-labeled abnormal data. In the second stage, TFEM is used to use the
extracted features and the pseudo-label candidate set provided by the CSSM module to provide input
for the subsequent ADM module. The CatBoost algorithm in the ADM module can effectively use
part of the pseudo-labeled abnormal data provided by the CSSM module and use it as a priori, thereby
effectively realizing anomaly detection.

4 Experimental Evaluation
4.1 Dataset Description

The network anomaly detection performance of PUNet is evaluated on two publicly available
encrypted traffic anomaly detection datasets, namely CTU13 [41] and CIRA-CIC-DoHBrw-2020
(DoH2020) [42]. Before using these datasets for anomaly detector evaluation, processing and recon-
structing the dataset is a critical step, which involves operations such as encoding and normalizing key
features of the dataset to improve the quality of the data and enhance the accuracy of the detection
results. Specifically, we first extract the initial 500 bytes of the payload of an individual data flow in
each dataset to capture the basic characteristics of the data flow. Then, data streams exceeding 500
bytes are truncated to ensure consistency, and data streams less than 500 bytes in length are numerically
padded to maintain the uniformity of training and test data. Finally, we normalized the data to
ensure consistent data distribution between different data sets, thereby providing a more consistent
and comparable data basis for subsequent network anomaly detection. Table 1 shows the details of
the datasets.

Table 1: Dataset details

Network traffic
dataset

Pre_trained
normal dataset

Unlabeled datasets

Normal dataset Abnormal data Abnormal rate

CTU13 48580 48580 12496 20.5%
DoH2020 309037 309037 71101 18.7%

4.2 Evaluation Indicators

Common network anomaly detection methods typically use one-class anomaly scores to identify
outliers, usually by setting a threshold to determine anomalies. However, determining an appropriate
threshold is a challenging task and often requires domain expertise and continuous tuning. To
overcome this problem, this study adopts two methods to evaluate anomaly detection performance:
Precision-Recall Area Under Curve (AUCPR) and Receiver Operating Characteristic Area Under
Curve (AUCROC). These two methods comprehensively consider all possible thresholds, thereby
providing a more comprehensive assessment of anomaly detection performance. In anomaly detection,
normal samples are typically much more abundant than abnormal samples, leading to Precision-Recall
curves being more reflective of the true performance of the model in network anomaly detection.
AUCPR comprehensively considers Precision and Recall, thus providing a more accurate evaluation
of the model’s performance at different thresholds, unaffected by sample imbalance issues. In con-
trast, AUCROC represents the area under the Receiver Operating Characteristic curve, reflecting
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the relationship between True Positive Rate (TPR) and False Positive Rate (FPR), while AUCPR
focuses on the relationship between Precision and Recall. AUCROC is mainly used to evaluate the
overall predictive performance of both normal and abnormal categories, whereas AUCPR emphasizes
performance centered around anomalies. It is worth mentioning that both AUCROC and AUCPR
range from 0 to 1, where higher values indicate better network anomaly detection performance.

4.3 Compare Algorithm and Model Parameter Settings

Competing Methods: PUNet is compared with eight semi-supervised anomaly detection methods,
namely: ECOD [13], COPOD [14], OCSVM [12], IForest [15], INNE [5], LOF [10], KDE [11], and
SUOD [16]. All comparison algorithms are implemented using the PyOD library in Python, and
all methods use default parameters. It is worth noting that PUNet is implemented based on the
PyTorch framework and experimented on a computer equipped with a GeForce RTX 3090 GPU and
an Intel (R) Xeon (R) Silver 4216 CPU using PyTorch 2.0.0 framework through PyCharm 2022.2.5
(Community Edition).

Parameter Settings: By default, the input encoder and prior encoder of PUNet consist of two linear
encoding layers and one Batchnorm1D regularization layer. The decoder structure is similar, using a
GRU neural network as the intermediate hidden layer. The activation function for the intermediate
layers is ReLU, while the final output layer uses the Sigmoid function as its activation function. The
input data dimension is 500, and the dimension of the encoded data is 128, the learning rate is 1e−4. It
is worth noting that the PUNet model underwent a total of 200 epochs during training, with a batch
size of 128 for each batch, the parameter of the GRU module is 1024. At the end of each training
stage, the obtained validation results were used to evaluate the model’s generalization ability, aiding in
determining whether to retain the trained TFEM. For the CSSM, 95% of the pre-training set data was
selected as the training set, the α in the CAASL algorithm parameters is 1.05, and the �% in ADM
parameters is 5%, CatBoost algorithm tree depth is 8, the number of trees is 1000, learning rate is
2e−4, and other parameters are default parameters.

4.4 Experiment Results with Competitive Methods

In this section of the experiment, we focus on describing the network anomaly detection perfor-
mance of PUNet on the data sets DoH2020 and CTU13. To illustrate the advantages of this algorithm,
we compared the performance of eight baseline algorithms with PUNet in terms of AUCROC and
AUCPR, as shown in the Table 2.

Table 2: Comparison of performance between PUNet and comparative algorithms

Algorithm DoH2020 CTU13 Average_Performance
AUC_ROC AUC_PR AUC_ROC AUC_PR AUC_ROC AUC_PR

ECOD 0.973 0.778 0.852 0.447 0.913 0.613
COPOD 0.985 0.902 0.870 0.605 0.928 0.754
INNE 0.994 0.963 0.983 0.903 0.989 0.933
SUOD 0.996 0.977 0.911 0.661 0.954 0.819
IForest 0.991 0.957 0.924 0.748 0.958 0.853
OCSCM 0.999 0.992 0.987 0.936 0.993 0.964
KDE 0.753 0.649 0.818 0.430 0.786 0.540

(Continued)
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Table 2 (continued)

Algorithm DoH2020 CTU13 Average_Performance
AUC_ROC AUC_PR AUC_ROC AUC_PR AUC_ROC AUC_PR

LOF 0.991 0.885 0.905 0.538 0.948 0.712
Average 0.960 0.888 0.906 0.659 0.934 0.774
PUNet
(Ours)

0.999 0.999 0.999 0.999 0.999 0.999

According to the results in the Table 2, it can be observed that PUNet achieved the best objective
indicators on both the data sets Doh and CTU13. It is worth noting that compared with the suboptimal
method, PUNet improved the AUCPR of the dataset DoH by 0.7%, and improved the AUCROC and
AUCPR of the dataset CTU13 by 1.2% and 6.3%, respectively.

4.5 Ablation Experiment

4.5.1 Pseudo-Label Data Set Validity Verification

In this section, we test the impact of different sampling ratios on the selection of pseudo-label data
in outliers on the results.

Notably, we consider the sample ratio in the candidate set. Given that the unlabeled data set U
contains approximately 1/5 abnormal samples, our candidate set sampling algorithm, based on the
reconstruction loss threshold for sampling, may yield a slightly lower ratio. To explore this aspect, we
randomly select five sets of experiments with different anomaly candidate set ratios: 0.001, 0.01, 0.02,
0.05, and 0.1. As illustrated in the Fig. 2, we observe a consistent increase in AUCROC and AUCPR
metrics as the proportion of abnormal data increases, reaching a stable peak of 0.999. It is evident that
the optimal anomaly ratio is 0.05, which corresponds to approximately 1% of the unlabeled data set.
This finding effectively addresses the challenge of data imbalance in semi-supervised network anomaly
detection.

Figure 2: Impact of different sampling rate on the results in abnormal pseudo-label data
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4.5.2 Model Robustness against Contamination

In this section, we test the performance comparison of PUNet and five comparison algorithms
on two datasets under different contamination rates of the training set data: 0%, 1%, 5%, 10%, 15%
and 20%. The comparison algorithms selected are ECOD [13], COPOD [14], INNE [5], OCSVM [12],
and SUOD [16]-five algorithms with training set contamination resistance. The comparison results are
shown in Fig. 3.

Figure 3: Comparison of robustness against contamination between PUNet and comparative
algorithms

According to the experimental results of the performance comparison between PUNet and
the five network anomaly detection methods, it can be seen that for the performance indicators
on the DoH2020 dataset, PUNet achieves the optimal anomaly detection performance when the
contamination rates are at 1%, 5%, and 15%. However, for the performance indicators of the CTU13
dataset, the network anomaly detection performance of PUNet and the five network anomaly
detection methods gradually declines with the increase in contamination rate. Compared with most
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anomaly detection classification algorithms. PUNet performs relatively well and is more robust than
other comparison algorithms.

4.5.3 Complexity Analysis

In this part, we present a time complexity evaluation of the proposed PUNet. For the sake of
comprehensive comparison, we conducted computational complexity analysis on each component of
the model. Notably, since the front end of the model is based on the TFEM of VRNN, we employ two
indicators: Floating-point Operations (Flops) and Parameters (Params).

• TFEM Complexity: The complexity of a learning network is a key metric for evaluating its
performance and resource requirements. VRNN is used in PUNet for feature extraction.
VRNN is a generative model that combines the ideas of autoencoders and probabilistic
graphical models. Its principle has been introduced in detail in Section 3.1. The time complexity
of TFEM is shown in Table 3. During TFEM training, FLOP and Params were around 16.9
M, but during testing, it was only 2.12 M, which is only 1/8 of the training. Capable of handling
applications in large-scale networks.

• CatBoost Complexity: The complexity of the CatBoost model is primarily influenced by the
number and depth of trees, the complexity of feature handling, and the size of the model.
During training, CatBoost continuously constructs a series of decision trees, with each tree
built to minimize the loss of the previous trees. Thus, it optimizes the loss function using
gradient descent to establish the final classifier model. Hence, the overall time complexity
becomes O(s ·n2). However, in practical implementation, CatBoost reduces the time complexity
of constructing a single tree to O(s ·n) through optimizations such as optimizing decision paths.
The computational complexity of the entire CatBoost is as follows (Table 4).

Table 3: Computational complexity analysis of TFEM in PUNet during training and testing phases

Model FLOP (MMAC) Train_params (M) Test_params (M)

VRNN 16.9 16.8 2.12

Table 4: CatBoost computational complexity

Procedure Calculate
gradient

Build T Calculate
all bt

j

Update M Calculate
ordered TS

Complexity for
iteration t

O (s · n) O (|C | · n) O (n) O (s · n) O(NTS,t · n)

When looking at how complex PUNet is overall, we need to consider two main parts: a) The
VRNN in the TEFM part: Its complexity is O(n∗(H2 + HD1)). Here, n is how many samples we have,
H is how big the hidden state is, and D1 is how many inputs we have. b) The Catboost in the ADM
part: Its complexity is O(n∗T ∗F ∗D2). T is the number of trees, n is the number of samples again, F is
how many features we’re using, and D2 is how deep the trees can get. After we simplify this, we can say
that PUNet’s overall complexity is O(n). This is because n, the number of samples, is the main thing
that changes. We can treat the other parts as staying the same most of the time. This means that as we



340 CMC, 2024, vol.81, no.1

increase the number of samples, the time PUNet needs to run will increase in a straight line. This is
good because it shows PUNet can handle more data without slowing down too much.

5 Conclusion

In this paper, we propose PUNet, a novel semi-supervised network anomaly detection model,
to tackle the prediction drift and data imbalance challenges in semi-supervised one-class anomaly
detection. Specifically, in the feature encoding stage, PUNet transforms the input data into a more
informative representation, where typical anomalies can deviate significantly from normal samples.
Subsequently, we propose CSSARL to address the prediction drift issue caused by discrepancies in
the distribution of training set data and test set data. Finally, we introduce a CatBoost-based ADM to
handle the data imbalance problem. Extensive experiments demonstrate that the proposed method
effectively mitigates prediction drift and data imbalance issues in network anomaly detection and
outperforming competing methods. In our future work, we plan to make our model stronger and
safer. We will study how bad data and hidden attacks can affect how well the model works, and create
ways to find and stop these problems. This will help our model work better in tricky situations. We
will also make the model easier to use and faster, so it can work well in real-time. To make sure our
model is useful in many different situations, we will test it on more types of network data. We want to
see how well it can adapt to different network setups and make it better at handling new situations.
All of this work will help make sure our model is useful in real-world situations.
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