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ABSTRACT

Thanks to the strong representation capability of pre-trained language models, supervised machine translation
models have achieved outstanding performance. However, the performances of these models drop sharply when
the scale of the parallel training corpus is limited. Considering the pre-trained language model has a strong ability
for monolingual representation, it is the key challenge for machine translation to construct the in-depth relationship
between the source and target language by injecting the lexical and syntactic information into pre-trained language
models. To alleviate the dependence on the parallel corpus, we propose a Linguistics Knowledge-Driven Multi-
Task (LKMT) approach to inject part-of-speech and syntactic knowledge into pre-trained models, thus enhancing
the machine translation performance. On the one hand, we integrate part-of-speech and dependency labels into
the embedding layer and exploit large-scale monolingual corpus to update all parameters of pre-trained language
models, thus ensuring the updated language model contains potential lexical and syntactic information. On the
other hand, we leverage an extra self-attention layer to explicitly inject linguistic knowledge into the pre-trained
language model-enhanced machine translation model. Experiments on the benchmark dataset show that our
proposed LKMT approach improves the Urdu-English translation accuracy by 1.97 points and the English-Urdu
translation accuracy by 2.42 points, highlighting the effectiveness of our LKMT framework. Detailed ablation
experiments confirm the positive impact of part-of-speech and dependency parsing on machine translation.

KEYWORDS
Urdu NMT (neural machine translation); Urdu natural language processing; Urdu Linguistic features; low resources
language; linguistic features pretrain model

1 Introduction

Neural Machine Translation (NMT) has become a predominant approach in developing machine
translation systems. NMT, as introduced by [1], represents the cutting-edge methodology for machine
translation. It has garnered prominence in both academic circles, as evidenced by the work of
[2–4], and the industrial domain, with notable contributions from [5,6]. In the realm of advancements,
recent studies by [7–10] have expanded the capabilities of NMT to encompass multilingual translation.
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This entails the development of a unified model capable of seamlessly translating between multiple
language pairs. Such endeavours mark significant strides in the evolution of NMT, positioning it as
a versatile and powerful tool for overcoming language barriers across diverse linguistic landscapes.
Language generation, distinct from understanding, focuses on creating natural language sentences
based on given inputs. This involves various tasks such as NMT as demonstrated by [1,11,12] text
summarization, as explored by [13,14] and conversational response generation, as researched by [15],
these tasks often require large amounts of data, with many operating under low-resource or even zero-
source conditions regarding training data.

Pre-trained Language Models (PLMs) have emerged as effective tools for text representation by
incorporating rich contextual information. Among these, auto-encoding PLMs like BERT [16] and
RoBERTa [17] are widely used for Natural Language Understanding (NLU) tasks. These models
differ from auto-regressive PLMs, such as GPT [18], which rely on standard language models for
training. Instead, auto-encoding PLMs depend on specific pre-training tasks to grasp contextual
data. A key task in this domain is the Masked Language Model (MLM), introduced by BERT and
widely adopted in others like RoBERTa, ALBERT [19], ERNIE [20], and DeBERTa [21]. MLM
focuses on restoring words from masked text, chosen randomly, indicating its linguistic-agnostic
nature. While PLMs are recognized for encompassing extensive linguistic knowledge, some researchers
suggest enhancing PLMs with external knowledge. Efforts to integrate linguistic knowledge into PLMs
include adding structural knowledge and other linguistic tasks. Despite these initiatives, previous
works have limitations, mainly focusing on integrating various linguistic features without thoroughly
analyzing their individual contributions or the interplay between different tasks. Moreover, these
implementations can be complex, as structural knowledge is not readily integrated into PLMs.

Urdu exhibits flexibility in word order, with a Subject-Object-Verb (SOV) structure being com-
mon. Table 1 presents the languages used in our experiments and their linguistic features. Traditional
machine translation models struggle with capturing such variations, leading to inaccuracies in trans-
lated output.

Table 1: Languages and their characteristics. Additionally, English is fusional languages, while Urdu
analytic

language Character Word order

English Latin alphabet SVO
Urdu Aryan SOV

Unlike widely spoken languages such as English, there may be a lack of well-established pre-
trained language models for Urdu.

Despite progress in machine translation (MT) and pre-trained language models (PLMs), chal-
lenges persist, particularly with low-resource languages like Urdu, which lacks extensive, varied
datasets. This limitation hinders the development of effective NLP models, affecting performance
and generalization. Urdu’s intricate morphology and flexible syntactic structures further complicate
natural language processing, especially in morphological analysis and understanding [22]. Current
models often fail to grasp these complexities, and the integration of specific linguistic knowledge into
PLMs is not well-explored.

Our research addresses these gaps by proposing a novel pre-training strategy for Urdu and
English, integrating Part-of-Speech (POS) and Dependency (DEP) features into multi-task NMT
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models. This approach enhances contextual understanding and translation accuracy by managing
Urdu’s morphological richness and syntactic variations, advancing the field of NMT for low-resource
languages. We explore the effectiveness of this linguistic knowledge integration, demonstrating how
our pre-trained model optimizes performance for both language understanding and generation tasks
by adapting BERT-like methods to the unique demands of sequence-to-sequence learning frameworks.
This targeted strategy addresses the critical issue of corpus insufficiency and paves the way for more
robust translation models. The contribution of the paper is as follows:

1. Creation of a unique pre-trained language representation model specifically optimized for
Urdu and English, addressing the gap of high-quality pre-trained models for low-resource
languages.

2. We proposed method to incorporate linguistic knowledge, specifically POS and DEP features
into pretrain model, using a linguistic knowledge pre-training strategy of Urdu and English as
a multitask.

3. We develop techniques to better handle the morphological richness and flexibility of Urdu by
leveraging morphological features in the translation process.

4. Implementing a multi-task learning framework that allows the model to simultaneously learn
translation and linguistic annotations, improving overall translation quality and robustness.

2 Related Work

Pre-trained language models are designed to leverage extensive corpora during pre-training,
aiming to capture a broad understanding of language that incorporates contextual nuances. Early
approaches to word embeddings relied on static methods, pre-training embeddings using large corpora
to capture semantic and syntactic similarities [23,24].

2.1 Pre-Trained Language Models for Machine Translation

Recent advancements in pre-trained language models such as BERT and GPT have significantly
enhanced NMT by leveraging extensive pre-training on large corpora, capturing a broad understand-
ing of language. Integrating these pre-trained models, such as by replacing the Transformer encoder,
has led to improvements in WMT14 En↔De and En↔Fr tasks [25,26]. Combining BERT and GPT-
2 with Transformer architecture further enhanced translation quality on the WMT-14 dataset [27].
CeMAT, a conditional masked language model, achieved significant performance gains [28], while
leveraging pre-trained checkpoints for sequence generation tasks resulted in state-of-the-art results
[25]. To address data scarcity, pre-trained models improved performance on the IWSLT’14 En↔De
dataset [29], and mBART enhanced low-resource and unsupervised MT tasks [30]. Additionally, rein-
forcement learning-based curriculum learning improved model performance [31], and synthetic pre-
training mitigated issues such as toxicity and bias [32]. Enhancing NMT for low-resource languages
by integrating syntactic and semantic knowledge showed substantial improvements [33]. Notably,
developing an English-Urdu NMT system achieved a high score [34].

2.2 Knowledge-Enhanced Machine Translation

Incorporating various types of linguistic knowledge into NMT models has significantly enhanced
their performance. Lexical integration, for instance, utilizes fine-tuned vector-based linguistic infor-
mation from BERT to improve generalization in NMT, resulting in notable improvements [35].
A knowledge-aware NMT approach models additional linguistic features using RNNs, achieving
significant BLEU (Bilingual Evaluation Understudy) score improvements in Chinese↔English and
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English→German tasks [36]. Morpheme segmentation and linguistic features have been used to
enhance translation predictions, particularly improving performance in low-resource conditions [37].
Incorporating these features in BPE-based NMT models for Indian languages has also shown
significant performance boosts [38]. Multi-source neural models utilize separate encoders for the
source word sequence and linguistic feature sequences, improving translation quality for Turkish-
English and Uyghur-Chinese tasks [39]. NMT systems developed for English-Kannada using a pre-
trained Cross-Lingual Language model have achieved significant performance improvements [40].
Moreover, low-resource multilingual NMT using linguistic feature-based relevance mechanisms has
resulted in significant BLEU score improvements for multiple Asian languages [41].

2.3 Syntactic Integration in Machine Translation Models

Integrating syntactic knowledge into NMT models has consistently shown to enhance translation
quality. For instance, a framework was proposed for leveraging pre-trained models through dynamic
fusion mechanisms and knowledge distillation, significantly improving translation quality [33]. In
another study, NMT was applied to English-Tamil and English-Malayalam, using pre-trained Byte-
Pair-Encoded (BPE) embeddings and MultiBPE embeddings to address the out-of-vocabulary (OOV)
issue in low-resource languages, which substantially outperformed Google Translate [42]. A multi-task
learning approach was employed to incorporate auxiliary tasks such as semantic parsing, syntactic
parsing, and named-entity recognition, effectively injecting semantic and syntactic knowledge into
the translation model and resulting in enhanced performance for English-French, English-Farsi,
and English-Vietnamese translations [43]. Additionally, a method was introduced for learning latent
feature representations from input sentences using a latent feature encoder, significantly boosting
translation performance in large-scale tasks [44]. A fine-tuning procedure combining embeddings
freezing with adversarial loss for domain adaptation in pre-trained multilingual NMT models was
introduced, leading to improved performance on specialized data with minimal loss in general domain
quality [45]. Furthermore, a penalty mechanism was developed to regulate copying behaviors during
pre-training, enhancing translation quality [46]. In another development, a language-generation model
was pre-trained using a Masked Sequence-to-Sequence pre-training method for Korean and Japanese,
achieving high performance in unsupervised NMT by leveraging shared syntactic structures [47].
Finally, a framework was introduced for integrating BERT into NMT, ensuring the retention of
pre-trained knowledge and avoiding catastrophic forgetting, which led to significant BLEU score
improvements [48]. Even with the advances in pre-trained language models (PLMs) and machine
translation (MT), there are still issues, particularly with low-resource languages like Urdu that lack
large datasets. The construction of efficient NLP models is hampered by this scarcity, which has
an impact on the models’ generalisation and performance. Morphological analysis and syntactic
comprehension in natural language processing are made more difficult by Urdu’s intricate morphology
and flexible syntax. These complexity are frequently beyond the capabilities of current models, and
there is still much to learn about how to incorporate language expertise into PLMs.

3 Model

Our proposed model as depicted in Fig. 1 introduces transformative innovations in linguistic
analysis and translation tasks. It integrates extensive linguistic knowledge embeddings, including
POS, DEP tags, punctuation sensitivity, verb aspect, and noun case embeddings, which enhance
syntactic parsing and semantic understanding. The advanced encoder-decoder architecture features
specialized multi-head attention mechanisms optimized for linguistic tasks, each head focusing on
different linguistic features like syntactic dependencies and semantic roles for improved contextual
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awareness. A key innovation is the self-adjusting attention mechanism in the translation module,
which dynamically adjusts focus based on text complexity and linguistic features, ensuring idiomatic
and accurate translations. Additionally, our novel positional encoding combines fixed and dynamic
components, better handling long-range dependencies and varied sentence structures, beneficial for
languages with flexible syntax like Urdu. The output stage finely tunes translations by applying
processed linguistic features for linguistic accuracy and contextual nuance. The model’s training
involves a synergistic multi-task learning strategy, enhancing its capabilities across various linguistic
tasks by leveraging the interconnectedness of linguistic features, thus boosting overall performance.

Figure 1: Overview of our model. We use one Urdu and English in the input for simplicity as
Multilingual with linguistic feature (POS and DEP), NMT for only two language Urdu and English

3.1 Linguistic Features

Our goal is to employ linguistic features in a straightforward manner. To achieve this, the linguistic
features we generate must possess two essential traits: high accuracy and uniqueness. High accuracy
implies that these features should reliably represent the text’s structure. While existing language
analysis tools like Stanford Stanza [49] can analyze linguistic features, not all of them exhibit high
accuracy. Uniqueness dictates that each input token should be associated with precisely one target tag
for a specific linguistic feature, as illustrated in Fig. 2a for Urdu and Fig. 2b for English. In this study,
we utilize Stanford Stanza tools, following the approach outlined by [49], to annotate the input text
with two primary types of linguistic features: POS and DEP.

Figure 2: (a) POS features of Urdu (SOV) right to left based language; (b) POS features of English
(SVO) right to left based language

These features play a pivotal role in our analysis. To facilitate comprehension, we present a
comprehensive list of linguistic tags used in our approach, we provide specific insights into the scope
and categories of linguistic annotations employed in our study. For POS tagging, each input token
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receives a unique POS label, resulting in a total of 20 distinct POS tag types for both Urdu and English
languages showing in Table 2.

Table 2: POS tag on the input sequence use in our approach

No. Pos tags Descriptions

1. ADJ Adjective
2. ADV Adverb
3. INTJ Interjection
4. NOUN Noun
5. PROPN Proper noun
6. VERB Verb
7. ADP Ad position
8. AUX Auxiliary verb
9. CONJ Coordinating conjunction
10. DET Determiner
11. NUM Numeral
12. PART Particle
13. PRON Pronoun
14. SCONJ Subordinating conjunction
15. PUNCT Punctuation
16. SYM Symbol
17. X Other
18. CCONJ Coordinating conjunction
19. PART Particle
20. . Punctuation

Regarding DEP, syntactic dependency parsing is conducted on the input sequence. It’s important
to note that we assign the relation label to its dependent, guaranteeing that each token receives a unique
label. This approach leads to a total of 38 different types of dependency relations and the different type
of DEP in showing Fig. 3a,b.

Figure 3: (a) DEP features of Urdu (SOV); (b) DEP features of English (SVO)

We present a comprehensive list of linguistic tags used in our approach, detailed in Table 3
for DEP.
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Table 3: Dependency parsing on the input sequence use in our approach

No. DEP Descriptions No. DEP Descriptions

1. ACL Clausal modifier of noun 2. FIXED Fixed multiword expression
3. ADVCL Adverbial clause modifier 4. FLAT Flat multiword expression
5. ADVMOD Adverbial modifier 6. GOESWITH Goes with
7. AMOD Adjectival modifier 8. IOBJ Indirect object
9. APPOS Appositional modifier 10. LIST List
11. AUX Auxiliary 12. MARK Marker
13. CASE Case marking 14. NMOD Nominal modifier
15. CC Coordinating conjunction 16. NSUBJ Nominal subject
17. CCOMP Clausal complement 18. NUMMOD Numeric modifier
19. CLF Classifier 20. OBJ Object
21. COMPOUND Compound 22. OBL Oblique nominal
23. CONJ Conjunct 24. ORPHAN Orphan
25. COP Copula 26. PARATAXIS Parataxis
27. CSUBJ Clausal subject 28. PUNCT Punctuation
29. DEP Unclassified dependent 30. REPARANDUM Overridden disfluency
31. DET Determiner 32. ROOT Root
33. DISCOURSE Discourse element 34. VOCATIVE Vocative
35. DISLOCATED Dislocated elements 36. XCOMP Open clausal complement
37. EXPL Expletive 38. NEG Negation modifier

3.2 Linguistics Knowledge-Driven

For every linguistic task, we approach it as a classification endeavor. Each input token undergoes
projection to its respective linguistic features (POS, DEP), annotated via the methodology outlined in
the preceding section. Upon scrutiny of these linguistic attributes, it becomes evident they possess
varying degrees of significance. We hypothesize that POS stands as the foundational linguistic
attribute, trailed by DEP. Considering their interdependencies, we allocate distinct learning rates to
each linguistic feature, thereby facilitating quicker acquisition of POS compared to DEP. This mirrors
the natural learning process observed in humans, where fundamental concepts are typically grasped
before delving into more complex, dependent knowledge domains. To achieve this, we implement
a fully-connected layer for mapping input tokens to their corresponding linguistic labels across
each task.

In the model, each token from the input sequence undergoes a sophisticated transformation
process. This transformation integrates the token’s original embedding with the embeddings generated
for POS and DEP tags. this is represented by the equation as:

e
′
i = ReLU(We.ei + Wp.epi + Wd.edi + be) (1)

In this equation, ei is the original embedding of the token, epi and edi are the embeddings for POS
and DEP tags, and We, Wp, Wd, and be are the weights and bias parameters learned during training. The
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ReLU (Rectified Linear Unit) function is applied to introduce non-linearity, enhancing the model’s
ability to learn complex patterns.

For POS tagging, each token is projected onto a POS space using the weight matrix Wpos and
bias bpos. The projected feature is then classified using a softmax layer to determine the probability
distribution over all possible POS tags. This is expressed as:

POS (t) = Wpos.e
′
i + bpos (2)

Ppos(t) = softmax(POS(t)) (3)

For DEP tagging, a similar approach is used, where each token is projected onto a DEP space
using its respective weight matrix Wdep and bias bdep. The classification through a softmax layer then
assigns probabilities to each DEP label:

DEP (t) = Wdep.e
′
i + bdep (4)

Pdep(t) = softmax(DEP(t)) (5)

The learning speed is adjusted to prioritize the learning of POS tags over DEP tags. This is done
by modifying the learning rate α with a factor γ for POS tagging, such that αpos = α × γ .

And αdep = α. This adjustment ensures that the model learns the fundamental linguistic features
at a faster rate before progressing to the more complex dependencies inherent in DEP tagging. This
model will be used to understand the language beyond the surface level tokens, enabling it to delve
into the grammatical structure and relationships between words, which is particularly beneficial for
languages with rich morphological features like Urdu.

3.3 MLM Task

The pre-training of the model follows the methodology introduced in the original BERT paper
by [16], incorporating the masked language model task. This task entails training the model to predict
tokens that have been masked at random within a sequence. Typically, 15% of the tokens in a given
sequence are randomly chosen for masking. In this process, each selected token si in the sequence has
an 80% probability of being replaced by a [MASK] token, a 10% chance of being substituted with a
random token, and a 10% probability of remaining unaltered, as illustrated in the masking procedure
below:

S = [s1, s2, s3, s4, . . . ., sn] (6)

The MLM model then predicts a probability distribution over the entire vocabulary v for each
masked token, calculated as:

P(v|ei) = softmax(W .ei + b) (7)

Here, ei is the embedding of the masked token, and Wand b are trainable parameters of a linear
layer applied to the embeddings. The model’s effectiveness in languages like Urdu and English hinges
on its ability to capture and predict contextually relevant tokens, considering the linguistic intricacies
and structural differences between these languages.
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3.4 Decoder Layers

In the initial embedding layer, the model utilizes a Transformer encoder to perform additional
processing on these embeddings. Each encoder layer consists of two essential sub-layers: a multi-
head self-attention mechanism and a position-wise feed-forward network. Multi-head self-attention
mechanisms are employed to handle sequences of words, a design renowned for its capacity to
effectively capture long-range dependencies in text. Within this architecture, every token in the input
sequence undergoes transformation into query Q, key K, and value V vectors via learned linear
transformations. The self-attention score for each token is computed as follows:

Attention (Q, K, V) = softmax
(

QKT

√
dk

)
(8)

Here, dk is the dimensionality of the key vector. This score determines how much focus to put on
other parts of the input sequence when encoding a specific part. The attention mechanism computes a
weighted sum of the values, where the weight assigned to each value is determined by a compatibility
function of the query with the corresponding key.

In the Transformer decoder, the self-attention mechanism is modified to incorporate masking.
This is critical in a generation task to ensure that the prediction for a particular token can only
depend on previously generated tokens. The masked self-attention mechanism can be mathematically
represented as follows:

MaskedAttention (Q, K, V) = softmax
(

QKT

√
dk

+ M
)

V (9)

Here, Q, K, and V represent the queries, keys, and values, respectively, similar to the standard
attention mechanism. M is a mask matrix applied to prevent future tokens from influencing the
generation of the current token. The mask effectively eliminates information about future tokens,
aligning with the autoregressive nature of language generation.

Besides the masked self-attention, the decoder incorporates an additional layer of attention
that focuses on the output of the encoder. This encoder-decoder attention mechanism is crucial for
integrating information from the source text into the target translation process.

The encoder-decoder attention operates as follows:

EncDecAttention (Qdec, Kenc, Venc) = softmax
(

QdecKT
enc√

dk

)
Venc (10)

In this equation, Qdec represents the queries from the decoder, while Kenc and Venc are the keys
and values from the encoder output. This attention layer effectively allows the decoder to ‘attend’ to
different parts of the input sentence as it generates each word of the translation.

Each decoder layer is the feed-forward network (FFN). This network consists of two linear
transformations with a ReLU activation in the middle, further processing the information from the
attention layers. The FFN can be expressed as:

FFN (x) = max (0, xW1 + b1) W2 + b2 (11)

The FFN enhances the decoder’s ability to capture complex language features, facilitating the
generation of grammatically and contextually coherent translations. The input to the FFN, denoted
as x is first passed through a linear layer. This linear layer is characterized by a weight matrix W1 and
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a bias term b1. The linear transformation can be mathematically represented as xW1 + b1. While W 2

and b2 project the input data into a higher-dimensional space, allowing the model to represent more
complex patterns and relationships. After the ReLU activation, the resulting features will be further
refined through a second linear transformation with weight matrix W 2 and bias term b2, enabling
the model to capture intricate linguistic features necessary for producing accurate translations. The
Transformer’s non-sequential processing and attention mechanisms are particularly advantageous in
translating between Urdu and English, which differ significantly in syntax and structure. It efficiently
captures contextual nuances and long-range dependencies that are crucial for accurate translation
between these languages.

4 Experiments

In this section, we conduct a detailed examination of our newly developed linguistic feature,
starting with an assessment of its classification accuracy scores. Subsequently, we incorporate these
extracted linguistic features into the NMT framework, as outlined in Section 3.3. This integration
allows us to evaluate the impact of these features on the performance of various models.

4.1 Data Sources

We utilized a substantial corpus consisting of 5,464,575 sentences, which encompass approxi-
mately 95.4 million tokens, as documented by [50] show in Table 4. This dataset not only served as the
primary training set but also facilitated model validation, with 0.2% of the data reserved specifically
for validation purposes. we selected a news.2010.en.shuffled.deduped dataset of English.

Table 4: Urdu dataset statistics

Corpus Sentences Tokens Vocabulary

Urd Planet 4,793,736 78,045,722 536,789
Urd BBC 423,828 11,974,394 96,008
Urd library 96,240 1,692,948 44,812
Urd books 83,282 2,458,402 39,955
Urd iFastnet 24,639 427,324 28,103
Urd Awaz 22,031 388,498 20,591
Urd noman diary 18,664 375,531 19,770
Urd faisaliat 2155 49,008 5542
Total 5,464,575 95,411,827 582,795

Text Processing Approach: We extract POS and DEP features using Sandford library stanza1 for
Urdu and English. We adopted the Bert tokenizer. For linguistic processing tasks, we utilized the stanza
tool [49]. The vocabulary set, consistent with the BERT-Multilingual-case2, contains 21,128 entries.
For tasks specific to machine translation, the pipeline extends to handle parallel data. sentences in both
the source and target languages are tokenized using BERT same as for linguistics features, considering
the linguistic characteristics of English and Urdu.

1 https://stanfordnlp.github.io/stanza/usage.html (accessed on 25 August 2024)
2 https://github.com/google-research/bert/blob/master/multilingual.md (accessed on 25 August 2024)

https://stanfordnlp.github.io/stanza/usage.html
https://github.com/google-research/bert/blob/master/multilingual.md
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Model Configuration: For all task both the encoder and the decoder incorporating 6 layers each
for both the encoder and decoder. we set dmodel = 786 and Nhead = 8. The dropout ratio is set to 0.3.

For processing input data, the model accommodates a maximum sequence length of 512 tokens.
The more detailed show in Table 5. For model optimization, we employed the ADAM algorithm [51]
with a weight decay rate of 0.1. We started with an initial learning rate of 5e-5. Each model underwent
training for 2 million steps, including a 10,000-step linear warm-up phase for the learning rate. All
models were trained from the ground up. We set the maximum sequence length in our models to 512
and established an overall masking ratio of 20% for the training data.

Table 5: Parameters of our approach

Parameters Value

Optimizer Adam
Learning rate 5e-5
Training regime Epoch-based (32 epochs)
weight decay rate 0.1

4.2 Main Results

LKMT, which utilizes a 6-layer transformer, stands out with its significant increases in BLEU
scores, achieving a +1.97 point jump for Urdu to English and a +2.42 point rise for English to Urdu
translations on monolingual corpus.

Our results are illustrated in Fig. 4. Compared with others previous methods [52] and XLM [53],
MASS [54] mBART [30] for language generation tasks showing in Table 6, our method not only
encapsulates the cumulative knowledge gleaned from prior models but also suggests the integration of
more effective linguistic processing techniques. Such an increase is indicative of a model that is adept
at navigating the linguistic complexities inherent in translation tasks, setting a new standard in the
field with its notable performance. The BLEU score improvements achieved by LKMT underscore
the potential for NMT to continue its path of rapid development, promising even greater levels of
language understanding and translation fidelity in the future.

Low-Resource Neural Machine Translation: In the low-resource NMT scenario, we select the Tanzil
corpus, comprising 0.7 million paired sentences from the Urdu-English parallel corpus [60], to assess
the efficacy of our method across various low-resource contexts. Additionally, we incorporate the
religious corpus [61], which contains 13,000 sentences, for further evaluation. Employing the BPE
(Byte Pair Encoding) codes acquired during the pre-training phase, we tokenize the training sentence
pairs. Subsequently, we fine-tune the pre-trained model on the paired data using the Adam optimizer,
with the learning rate appropriately configured. The selection of the optimal model is based on its
performance accuracy on the development set. Initially, we outline the experiments focusing on low-
resource NMT for Urdu and English. We continue to employ the same learned BPE codes from the
pre-training phase for tokenization of the training sentence pairs, coupled with POS and DEP labels
utilizing the stanza library. Furthermore, we adjust the hyperparameters for the NMT fine-tuning task,
setting it to 1e-4. The results, along with the ablation study, are presented in Table 8.
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Figure 4: The comparisons between LKMT and the baseline with different NMT model on translation
task. The results are reported in BLUE score

Table 6: We report the BLEU score for LKMT with 6 layer transformer, NMT, and their combinations
on only two directed language pairs. Results are obtained on Tanzil corpus for ur – en and en – ur

Method Setting ur – en en – ur

Transformer [52] – 27.43 27.93
XLM [53] 4-layer Transformer 27.72 28.49
MASS [54] 6-layer Transformer 27.95 28.85
mBART [30] 4-layer Transformer 28.13 29.49
mRASP [55] – 30.10 30.60
IndicBART [56] – 28.90 29.80
BIBERT [57] – 29.90 30.40
CeMAT [28] – 29.60 30.10
NLLB-200 3.3B [58] – 29.80 30.20
M2M-124 [59] – 29.20 30.00
Base + POS Tags 6-layer Transformer 29.00 29.50

Base + DEP Tags 29.20 29.70
Base + Multitask Learning 29.60 30.05
Base + POS + Morphological 29.50 30.40

Full model 29.86 30.90

4.3 Comparative Experiment of POS and DEP

We mainly compare our results with pre-trained language models that use a similar amount of
training data for POS and DEP. Experimental results are shown in Table 7.

Our model in the table represents the culmination of our proposed approach showing in Fig. 5.
It exhibits superior performance across all measured metrics. Notably, in POS tagging, our model
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achieved an F1 score of 94.07 for Urdu and 96.19 for English, which represents a marginal but
consistent improvement over the strong baseline established by RoBERTa, which scored 93.63 and
95.57, respectively, on our dataset. In the more complex task of dependency parsing, our model’s
enhancements become more pronounced. It achieved a Labelled Attachment Score (LAS) of 85.71
for Urdu and 86.99 for English and an Unlabelled Attachment Score (UAS) of 92.14 for Urdu and
94.67 for English. These results show a marked improvement over the previously leading jPTDP-v2
model by [62], which scored 80.44 and 84.71 in LAS and 86.74 and 87.55 in UAS for Urdu and English,
respectively. When considering the average performance across languages, our model maintains a lead
with an average POS F1 score of 95.13 and an average DEP score (LAS and UAS) of 86.35 and 93.40,
denoting the robustness of our model across both languages and tasks.

Table 7: Experimental results on our linguistic features for Urdu and English F1 score of POS and
LAS/UAS score of our annotated

Model POS DEP

F1 LAS UAS

ur en ur en ur en AVG POS AVG LAS AVG UAS-DEP

jPTDP-v2 [62] 93.35 95.48 80.44 84.71 86.74 87.55 – – –
XLM-Rbase 93.54 95.12 81.24 84.94 88.56 90.95 – – –
RoBERTa 93.63 95.57 82.10 85.67 89.87 91.99 – – –
Our 94.07 96.19 85.71 86.99 92.14 94.67 95.13 86.35 93.40

Figure 5: The comparisons between LKMT and different model on POS,DEP task. The results are
reported F1 score for POS and LAS,UAS score for DEP

5 Ablation Study

In our paper, we conduct two ablation studies: one to evaluate the impact of each linguistic task
in Section 5.1, and the other focusing on the NMT task. The purpose of these studies is to ascertain
the individual effectiveness of each linguistic task in our model.
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Our ablation study, devised to analyze the impact of different components in our Urdu-English
NMT model trained on the Tanzil corpus, aimed to assess the performance of our method across
diverse low-resource scenarios, as detailed in Section 4.2. With sentences from each corpus and 1.2k for
validation, the study yielded valuable insights. Each configuration examined in the study contributed
valuable data regarding the influence of various linguistic features on translation quality, as depicted
in Table 8.

Table 8: Ablation results on using different linguistic features of NMT

Configuration BLEU (ur – en) BLEU (en – ur) Average BLEU �

Without POS and DEP 26.33 27.62 28.47 –
With POS only 26.90 28.03 28.54 +0.06
With DEP only 27.50 28.85 29.10 +0.62
Full model 28.40 29.70 30.15 +1.67

Without POS and DEP serves as the baseline. It uses a fundamental NMT system without any
syntactic enrichment from POS or DEP embeddings. The Average BLEU score is 28.475, setting a
standard for comparison with other enriched models. Incorporating POS information alone results
in a minor increase in translation quality with an Average BLEU score of 28.54. The � Average
BLEU of +0.065 suggests that POS features have a slight positive impact, likely by providing the
model with better syntactic context, aiding in more accurate word choice and sentence structure.
Adding DEP alone leads to a more significant improvement in the Average BLEU score, reaching
29.1. The � Average BLEU of +0.625 indicates that DEP features contribute more substantially to
the model’s performance. This suggests that understanding the grammatical relationships between
words is highly beneficial for generating coherent translations. The full model, presumably integrating
POS and DEP along, achieves the highest Average BLEU score of 30.15. The � Average BLEU
of +1.675 reflects the aggregate effect of all model components and possibly additional advanced
features or training techniques. This indicates that while POS and DEP embeddings are valuable, the
greatest translation performance is achieved when they are part of a comprehensive NMT system. The
ablation study effectively demonstrates the varying impacts of syntactic features on an NMT system’s
performance. POS and DEP embeddings each independently enhance the system, with their combined
use leading to significant improvements. However, the full model’s superior performance underscores
the multiplicative benefit of a holistic approach that leverages all available linguistic and contextual
information to achieve the highest translation accuracy. This analysis not only validates the importance
of POS and DEP features but also encourages further research into other model enhancements that
can contribute to the effectiveness of NMT systems.

5.1 Ablation Study for Linguistics Features Task

The ablation study involves adding each linguistic task to the masked language model baseline, to
assess their individual contributions. The results of this study are presented in Table 8. Our findings
indicate that all three types of linguistic features POS, DEP positively contribute to the overall
performance. Notably, the DEP features stand out as particularly crucial, especially for downstream
POS tasks. In addition, when we combine all three linguistic features in our model, we observe a further
enhancement in its final performance. This comprehensive approach leads to consistent improvements
across all downstream tasks, underscoring the value of integrating multiple linguistic features in the
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model. The study was carried out using the Universal Dependencies (UD) dataset alongside our
annotated dataset, ensuring a broad coverage of linguistic features and syntactic structures. The model
architecture is based on a robust transformer framework with positional encoding, which is critical for
maintaining the order of tokens in sequences.

Our ablation study meticulously deconstructed this complex relationship, shedding light on the
individual and collective impacts of POS Tagging and DEP on model performance. The results, while
substantial, align with the expected incremental progress characteristic of high-dimensional NLP
models. Without the integration of POS and DEP features, the baseline model’s performance served
as a control point, registering F1 scores of 91.50 and 93.70 for Urdu and English, respectively. The
Labeled Attachment Score (LAS) and Unlabeled Attachment Score (UAS) similarly reflected foun-
dational translation capabilities without the benefit of syntactic or structural guidance. Incorporating
POS Tagging, the model witnessed an appreciable enhancement, with average improvements of +1.25
across F1, LAS, and UAS metrics shown in Table 9. This uptick underscores the criticality of syntactic
information in translation precision, as POS Tagging provides granular cues about the functional roles
of words, thereby refining the model’s linguistic comprehension.

Table 9: Ablation results on using different linguistic features, Urdu and English F1 score of POS and
LAS/UAS score of UD (deep universal dependencies 2.8) dataset

Model POS DEP

F1 LAS UAS

ur en ur en ur en Average

Without POS and DEP 91.50 93.70 79.00 81.50 87.00 88.50 –
With POS Only 92.80 94.80 80.50 82.50 88.50 90.00 +1.25
With DEP Only 92.87 94.90 81.50 83.00 89.00 90.50 +1.50
Full POS and DEP 93.50 95.60 82.21 83.49 89.64 91.17 +2.00

Integrating DEP features alone, the model demonstrated a further performance boost, with a
+1.50 average increase in LAS and UAS. These metrics particularly benefited from the structural
insights offered by DEP features, as they inform the model about the grammatical relationships
between words, facilitating a more coherent translation output. The comprehensive model, equipped
with both POS and DEP, emerged as the most adept variant, exhibiting an average delta of +2.00.
This configuration epitomized the synergetic potential of fusing multiple linguistic features, leading
to superior translation fidelity. Each feature’s contribution to capturing the intricacies of language
was accentuated when combined, suggesting a multiplicative rather than merely additive effect on
translation quality. The ablation study’s findings delineate a clear trajectory for future enhancements.
The measured yet significant improvements observed reaffirm the essential roles of POS and DEP
features in NMT. Furthermore, they invite exploration into the integration of additional linguistic
dimensions, such as semantic role labeling and discourse analysis, to potentially catalyze further
advancements in the field.

6 Conclusion

In our research, we introduce a pioneering pre-trained language model that integrates two key
linguistic features POS and DEP through a linguistics enhancement approach. This model, which



966 CMC, 2024, vol.81, no.1

includes a masked language model, undergoes multi-task tasks including linguistics features and trans-
lation task. It uniquely predicts not only the original word but also its linguistic tags for masked tokens.
Our Linguistics Knowledge-Driven Multi-Task is designed to first grasp basic language elements
before progressing to complex ones, a method empirically proven effective. This model significantly
surpasses existing pre-trained language models, particularly in low-resource languages, highlighting
the advantage of incorporating linguistic knowledge. We have conducted extensive experiments on
natural language understanding tasks in Urdu and English. Crucially, our model requires just one
pre-training phase and can then be fine-tuned for language generation tasks, including NMT. It has
achieved BLEU scores in both Urdu-English and English-Urdu NMT, surpassing previous records by
over +1.97 point for Urdu to English and a +2.42 point rise for English to Urdu translations. Looking
forward, we plan to enhance our model with more linguistic features, like semantic dependency
parsing, for both Urdu and English and transfer learning. Additionally, the success of our task warmup
strategy prompts us to explore its application in other multi-task learning settings and different
languages for NMT.
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