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ABSTRACT

Research on panicle detection is one of the most important aspects of paddy phenotypic analysis. A phenotyping
method that uses unmanned aerial vehicles can be an excellent alternative to field-based methods. Nevertheless, it
entails many other challenges, including different illuminations, panicle sizes, shape distortions, partial occlusions,
and complex backgrounds. Object detection algorithms are directly affected by these factors. This work proposes
a model for detecting panicles called Border Sensitive Knowledge Distillation (BSKD). It is designed to prioritize
the preservation of knowledge in border areas through the use of feature distillation. Our feature-based knowledge
distillation method allows us to compress the model without sacrificing its effectiveness. An imitation mask is used
to distinguish panicle-related foreground features from irrelevant background features. A significant improvement
in Unmanned Aerial Vehicle (UAV) images is achieved when students imitate the teacher’s features. On the UAV
rice imagery dataset, the proposed BSKD model shows superior performance with 76.3% mAP, 88.3% precision,
90.1% recall and 92.6% F1 score.
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1 Introduction

The majority of the world’s population consumes rice as a staple food. Globally, it is grown in more
than 100 countries, but Asia contributes 90% of the production. In addition to meeting caloric needs,
rice constituents have potential health benefits. It is, however, important to consider any benefits in
the context of the changing environment. Agricultural practices and environmental change affect rice
quality and production in a significant way. As a staple in the global food system, rice must survive [1].
Precision agriculture and plant phenotyping tools have increased rice yield monitoring and prediction.
Farmers can thus make better crop management decisions as a result of making educated decisions.
Furthermore, it reduces resource use, which results in higher yields and profitability. During rice field
phenotyping, structural traits, root traits, water-related traits, carbon-based traits, and photosynthesis-
associated traits are measured [2]. Several factors influence grain yield, including plant density, the
number of tillers per plant, the number of grains per panicle, the approximation of panicle heading
date, and grain size. Rice plant shoot habits and panicles are directly related to yield potential. It is
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especially critical to grasp the importance of the panicle since its development directly impacts grain
density [3]. Panicle distribution is essential for plant breeders and agronomists to understand paddy
production. Therefore, panicle detection is key to paddy phenotyping. Paddy panicles are difficult
to quantify in the field. In the field, manual sampling is often used for yield estimation, although it
is inherently imprecise and requires a lot of effort. As a result, alternative automated methods are
developed for estimating paddy density and yield. The advent of low-cost imaging devices opens up
the potential of substituting manual inspection in the rice field with image-based panicle analysis [4].
A variety of remote sensing platforms are available for agricultural data collection, including ground-
based sensors, Unmanned Aerial Vehicles (UAVs), and satellite sensors. UAVs offer several advantages
over other remote sensing platforms. Less expensive, enhanced flight capabilities, and more effective
operation are some of the benefits of this technology. Drones provide a reliable method of acquiring
data about rice crops [5]. UAVs equipped with RGB, thermal, and multispectral cameras provide
information on rice crop growth above agricultural fields, enabling large-scale breeding experiments to
be conducted. It has been demonstrated that the combination of UAV RGB data and deep learning is
more effective than the conventional regression model for multispectral imagery. The problem remains
that extracting valuable information from images is still difficult, despite the ease and speed at which
images can be acquired.

Recently, researchers have demonstrated significant interest in using machine learning methods
to detect crop diseases [6,7], water stress, and crop yield prediction. Wu et al. [8] presented an image
analysis method for counting grains in a panicle. Linear regression is used to count grains and has an
accuracy of 96% for Japonica rice and 97% for Indica rice. Yang et al. [9] measured High throughput
Leaf Scoring (HLS) through image analysis based on the Hue, Saturation and Illumination colour
space method. Li et al. [10] attempted to detect rice seedlings in each hill. The implementation and
analysis of several colour models is performed to differentiate rice seedlings from the rest of the field.
Handcrafted features, on the other hand, require manual extraction of complicated features and are
suited to a specific scene, limiting model generalization. Machine learning algorithms are not well
suited to complicated field scenes with densely distributed paddy panicles and significant occlusion.
Deep learning models automatically learn features from input images due to deep hidden layers.
However, there are still several research challenges with automatic UAV-based panicle detection: (1)
Complex field background including weeds, shades, and water reflection. (2) Rice panicles vary greatly
in size, shape and colour depending on growth stages, lighting conditions and UAV camera angle. (3)
Occlusion between panicles, stems and leaves. These considerations motivate the development of an
efficient panicle detection algorithm based on UAV imagery. The main advantage of the proposed
algorithm is that the panicles along the edge of the image border can be easily identified, regardless of
the size of the panicle. Consequently, the performance of the system is enhanced as a result.

The main contributions are:

1. To improve panicle detection performance, Border Sensitive Mechanism-based Knowledge
Distillation (BSKD) is proposed.

2. To distinguish between the foreground and background features, a mask is used. The student
learns these aspects as an added benefit.

3. The border sensitive method is applied to ResNet50 to derive border features more effectively.

The structure of this paper is as follows: Section 1 introduces rice phenotypic research and
discusses existing machine learning techniques. The Section 2 discusses prior research on rice panicle
detection. The Section 3 describes the dataset and the proposed BSKD method. The proposed model
results are depicted and explained in Section 4. The paper concludes with Section 5.
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2 Related Works

Previous crop phenotype researchers used machine learning to analyze phenotypic traits auto-
matically. Guo et al. [11] analyzed time-series RGB images to study rice panicle flowering dynamics.
These images were captured at 2 m altitude with a Canon DSLR camera. Their approach is a hybrid
of algorithms including scale-invariant features, a support vector machine, and a bag of visual words.
Yang et al. [12] developed a UAV-based dataset for rice seedling classification and d etection. The
images were taken from 20 m altitude with the DJI Phantom4 Pro and the DJI Zenmuse. The image
has a resolution of 5472 × 3648 and is annotated with the LabelImg tool. Tseng et al. [13] refined
the preceding model by providing a hybrid method that combined transfer learning and machine
learning. The author emphasizes recognizing small objects and using previously unknown data. In the
experiment, an open-source rice seedling dataset based on UAV is applied and obtained 0.87 mIoU.
Yu et al. [14] created a rice panicle phenotyping approach based on the Faster RCNN model to assess
spikelet and kernel traits. In the study, Qiu et al. [15] examined rice qualification at various growth
stages. These images are processed using the ENVI5.3 tool and the Pix4D mapper tool. The author
proposed an optimal vegetative index (VI) approach and an object-oriented segmentation method to
analyze rice growth qualifications.

Deep learning algorithms have recently been employed in agricultural phenotypic research to
avoid the need for manual feature extraction. There are two types of deep learning-based object
detection algorithms: one-stage approaches and two-stage approaches. Wang et al. [16] proposed a rice
panicle detection and counting model for both offline and online. The input data is augmented and
trained in the PanicleDetect model. This model employs the YOLO5X deep learning model. During
the online stage, the input images are fed into the trained PanicleDetect model and the results are
saved. This work was only evaluated at one planting density, which is a bit higher than the normal
planting density utilized for rice production. Different one-stage and two-stage deep learning models
for detecting faulty paddy seedlings are empirically examined by Anuar et al. [17]. The DJI Phantom
4 was used to capture images of paddy seedlings with a resolution of 4000 × 3000 from a height
of 5 m. EfficientDet-D1, Faster RRCNN, SSD, ResNet50, EfficientNet, and MobileNetV2 are the
models that were tested. These models’ different combinations are examined, and it is found that
EfficientDet-D1 with EfficientNet performs better than the other combinations. A general model
for detecting panicles in many rice varieties was presented by Sun et al. [18]. These rice varieties are
grown in various ecological zones and are members of the Indica family. The proposed approach is
improved on YOLOv4 to produce better results. Experiments were conducted on three types of datasets
namely, the middle, the leaf-above-spike, and the spike-above-leaf. It is observed that the full heading
stage had a better detection result than the maturity stage. One-stage detector is characterized by their
efficient architectures, while two-stage detectors continue to outperform them in terms of accuracy.
According to Zhou et al. [19], rice panicle detection and counting could be accomplished by using
a modified region-based fully convolutional network. The proposed model has a precision score of
0.86, which is higher than the other works evaluated. The study by Yang et al. [20] presented a novel
method for estimating rice grain yield at the stage of ripening using high-resolution UAV images.
The proposed Convolutional Neural Network (CNN) architecture includes two distinct branches
for processing multispectral and RGB images. Compared to methods based on vegetative index, it
precisely predicts paddy yield. It also indicates that paddy datasets nearing harvest contain more
relevant spatial characteristics. RiceNet was proposed by Bai et al. [21] is comprised of a single feature
extractor, plant size estimator, plant location detector, and density map estimator. To extract paddy
plants from the background, an attention mechanism is used.
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3 Materials and Methods
3.1 Dataset

In this research, the paddy rice imagery dataset created by Wang et al. [22] is used. The
experimental location is situated within Hokkaido University in Japan. In August 2018, UAV images
of paddy fields were acquired at 1.2 m altitude. The configuration leads to a ground sampling distance
of 0.04 cm per pixel. The horizontal overlap ratio is 43% while the vertical overlap ratio is 70%. Kitaake
and KoKusyokuto-2 are rice varieties. The observed cultivation densities ranged from 11.46 to 16.18
plants per square meter. A commercial UAV was used to gather aerial imagery of the rice field. The
efficiency of the aforementioned technology surpasses that of a handheld data collection device. A
larger UAV can accommodate and support heavier cameras and lenses, which facilitates the capture of
images of enhanced quality. Nevertheless, rotor-induced downward wind exerts a significant force on
rice stems, resulting in image quality degradation. Hence, considering the inherent trade-offs regarding
flight altitude, image resolution, and user-friendliness, the Mavic Pro, by DJI Corporation, is used. It is
a small, lightweight drone with an integrated 1/2.3-inch Complementary Metal Oxide Semiconductor
(CMOS) sensor. From the acquired videos, frames are extracted without duplication, blurring, and
overexposure. Each frame has 4096 × 2160 resolution. It encompasses the phenotype of rice panicles
throughout the entire reproductive cycle of rice. This is during which rice witnesses the heading phase,
flowering phase, and ripening phase. A few examples are illustrated in Fig. 1. The heading stage refers
to the developmental phase during which the panicles become fully apparent. The flowering phase
begins immediately after heading when tiny white spikes emerge from the panicles. Flowering lasts
seven days. After flowering, the ripening phase lasts until harvest. At this stage, significant variations
are observed in the colour, shape, and texture of the panicles. It is observed that as rice matures, the
number of labels in each image increases constantly. Since the rice grows, it becomes impossible to
observe the panicles complete due to their overlapping. The images with the resolution 4096 × 2160
are divided into three subsets of images with the resolution 128 × 128, 256 × 256, and 512 × 512.

Figure 1: UAV paddy rice imagery dataset samples
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Due to the non-overlapping sliding windows, it is unlikely that the same panicle appears in many
images. With threshold and morphology filtering, we can refine the confidence map and obtain a
refined dataset with manually labeled annotations. There may be some missed annotations since
the annotations are manually labeled. It was, however, refined using a deep learning model with
an improvement of 40.6%. A minimized receptive area of view cannot ensure panicle completion.
Hence, in this study, a 512 × 512 subset is chosen to maintain a balance between positive and negative
annotations. The positive label refers to the panicle, while the negative label refers to the background.
The dataset consists of 7600 images. 70% of the dataset (5866) is used for training, 10% for validation
(648), and 20% for testing (1086).

3.2 Border Sensitive Knowledge Distillation

In this section, we will elucidate the proposed Border Sensitive Knowledge Distillation (BSKD)
model, as depicted in (Fig. 2). The first step involves an imitation mask. This is designed to separate
the foreground features from the background characteristics present in the provided input images.
Then, we proceed to explain the technique of feature-based distillation. This section provides a detailed
explanation of the proposed teacher network, which utilizes the ResNet50 architecture along with a
border sensitive mechanism. Additionally, the process by which the simple student model, ResNet18,
distils knowledge from the teacher network is thoroughly described. The Border Sensitive Method is
discussed in detail as an independent subsection. Finally, the overall loss calculation is shown.

Figure 2: Proposed border sensitive knowledge distillation (BSKD)

3.2.1 Imitation Mask

The high-level features f ∈ RC x H x W , which are generated in the final layer of backbones such as the
C5 level features in ResNet50 backbone, are considered. As we employ a border sensitive mechanism
at the C5 level in ResNet50, the high-level features f of each individual has strong representative
ability and gather rich information in the global context, including border features. To obtain the
vector representation f K

1 for the K instance, we compute the average of the feature vectors inside its
corresponding RoI. The RoI area of the K instance is activated using a binary mask MK ∈ {0, 1}H x W .
The formal expression for f K

1 is as follows:
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f K
1 = 1

nK

∑H

h=1

∑W

w=1
MK(h, w).f (h, w) (1)

nK =
∑H

h=1

∑W

w=1
MK(h, w) (2)

Let MK(h, w) be equal to 1 and it is only considered when RoI of K instance surpasses the values
of h and w. The entire number of feature vectors within the RoI is denoted as nK . By comparing all of
the pixel embeddings in the original features f with the class prototypes, we can create an imitation
mask Mim ∈ RH×W . After min-max normalization, we obtain final imitation mask Mim ∈ [0, 1]H×W .
The values within the imitation mask correspond to the probabilities assigned to pixel embeddings,
indicating their likelihood of being classified as foreground instances. These probabilities are crucial
for the student model to prioritise and focus on during the process of knowledge distillation. In order
to effectively disentangle pixel embeddings into foreground and background, we employ a threshold
factor ϕ within the range of [0, 1]. When ϕ = 0, all pixel embeddings are considered as foreground,
while when ϕ = 1, all pixel embeddings are considered as background. This allows us to segment the
pixel embeddings into two distinct categories: Mfg, which represents the foreground, and Mbg, which
represents the background. Mfg and Mbg is applied on features extracted by Feature Pyramid Network
(FPN). We employ the technique of interpolation to adjust the dimensions of the masks to align with
the desired feature scales.

3.2.2 Feature Based Distillation

The Knowledge distillation process involves transferring knowledge from one machine learning
model (teacher) to another (student). The teacher is a high-capacity, high-performance model, while
the student is a compact, low-capacity model. The goal of knowledge transfer is to maximize the
student’s compactness without sacrificing performance. After each training step, the teacher model
gives feedback to the student model, which is accomplished through a series of iterations. In response,
the student model adjusts its parameters. Performance is measured until the desired level is reached. It
is regarded as one of the most effective methods of model acceleration and compression. Knowledge
distillation can be categorized into logit-based distillation, feature-based distillation, and relationship-
based distillation. The feature-based distillation technique involves extracting intermediate features
from the teacher network, resulting in a higher level of information than other distillation approaches.
In the proposed border sensitive feature distillation approach, the ResNet50 architecture was adopted
as the backbone network for the teacher model. The ResNet18 architecture was selected for the student
model. The border sensitive mechanism is exclusively implemented for the teacher network at C5 level
in ResNet50 (Fig. 3) to ensure that the features extracted are highly informative, even in the border
region. The student network has the ability to reproduce the teacher’s model behaviors with regards
to the output features of the Feature Pyramid Network (FPN). To implement feature knowledge
distillation, an adaptation layer is integrated into the student network. Specifically, a 1×1 convolution
layer is selected and placed after each FPN output in the student model. This adaptation layer modifies
the features’ shape. The output features of the FPN can be represented as f T

FPN for teacher network and
f S

FPN for student network, respectively. The feature-based distillation loss is calculated as follows:

Ldist = Lmse(f T
FPN, σ(f S

FPN)).(Mfg + τ .Mbg) (3)

where Lmse denotes mean square error loss, σ denotes adaptation layer, and τ denotes a constant
that balances the significance of background and foreground distillation. Mfg represents foreground
imitation mask whereas Mbg represents background imitation mask.
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Figure 3: Teacher network–ResNet50+FPN+border sensitive method

3.2.3 Border Sensitive Method

Song et al. [23] proposed border sensitive mechanism inspired by human cortex activation
mechanism. Based on a band shape kernel, a hierarchical activation function is applied for a more
effective pooling strategy. Moreover, a further extension of strip max pooling has also been introduced
to enhance the border characterization of prominent features. The fundamental limitations of existing
activation functions necessitate implementing cortex activation in border-sensitive methods. Without
a proper learning rate, even for a large gradient, neurons will not be activated after entering the ReLu
module and altering their parameters, resulting in “neuron death”. In this study, the intrinsic advantage
of the exponential function in establishing the activation mechanism of the cortex is capitalized
on the problems of gradient vanishing. The overview of the proposed border sensitive method is
illustrated in Fig. 4, where C represents the number of channels. Strip hierarchical pooling and strip
max pooling are parallel branches, each consisting of horizontal and vertical strips. In the following
step, a one-dimensional convolutional layer with a kernel size of three is applied. The next step involves
modulating the current position by its neighboring features, which produces four strip features as a
result. The cortex hierarchical activation function is capable of extracting a wide range of information
during the process of downsampling. It can be formulated as:

X = eα.x+β (4)
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Figure 4: Border sensitive method

Here, α and β are hyperparameters and X is the cortex hierarchical activation by input X . The final
output Âh of hierarchical pooling operation can be calculated by aggregating all weighted activations
based on the kernelized neighborhood R,

Âh =
∑

i⊆R
wi ∗ ai (5)

where wi refers to weighted activation that is computed as the ratio of the hierarchical activation of
the ith cortex to the sum of all its activations in R,

wi = ai∑
j⊆R aj

(6)

In this work, we determined the hyperparameters value α = 1 and β = 0 due to the fact that deep
neural networks normalize their output using softmax functions, and even though we have an attention
operation embedded within the layer, we are not required to manually limit the active function of the
network to a particular range. The weights wi, along with the activation values ai, are implemented as
nonlinear transformations in a kernel region, in contrast to average pooling.

As the activation level increases, there is a corresponding increase in border feature dominance.
The efficacy of this activation highlighting mechanism surpasses that of the traditional direct averaging
pooling approach. The effective use of a band-shaped kernel is implemented to execute a strip pooling
operation in either the vertical or horizontal dimension. The pooling operation computes the average
value of all the feature elements within a given row or column, based on spatial dimensions of (1, W)

or (1, H). Following vertical strip pooling, the output Y W ∈ RW is:

Y W
i = 1

H

∑
0≤j≤H

Xi,j (7)
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As a result of, horizontal strip pooling, the output Y H ∈ RH is:

Y H
i = 1

W

∑
0≤j≤W

Xi,j (8)

In addition to establishing long-term dependencies between the distributed regions, the pool-
ing operation described above encapsulates the regions in a banded shape. This allows the whole
downsampling process to emphasize more on the differences between border features, rather than
preserving the overall feature information. This method encapsulates strip pooling into a border-
sensitive mechanism aimed at preventing model inflation. Strip hierarchical pooling becomes more
effective when we implement cortex hierarchical activation into strip pooling. Therefore, the kernel
size becomes (1, W) and (H, 1), accordingly. Along with the addition of strip hierarchical pooling, a
branch of strip max pooling is also introduced. This branch is to conserve texture information on the
border as much as possible to improve boundary feature extraction. The function of max pooling is
calculated as follows:

âm = maxi⊆Rai (9)

Strip max pooling and strip hierarchical pooling combine Y W and Y H to derive Y ∈ RCxHxW , which
captures more relevant global information.

Y S
c,i,j = Y H

c,i + Y W
c,j (10)

Consequently, we can combine strip hierarchical pooling and strip max pooling by performing
the following:

Y OverAll
c,i,j = Y SHP

c,i,j + Y SMP
c,i,j (11)

The final output for parallel joint pooling can be calculated as:

Output y = scale(X , σ(F(Y OverAll
c,i,j ))) (12)

Here, scale () operation refers to pixel wise multiplication, F refers 1 × 1 convolution and σ refers
to a sigmoid function. The border sensitive method is lightweight, effective, and efficient. The method
avoids a lot of computation required to establish relationships between the two locations. It is easy to
integrate this approach into a wide range of backbone networks.

3.2.4 Total Loss Function

The total training loss L is:

L = LOD + αLFDistill (13)

where LOD denotes the original training loss of object detectors, LFDistill refers to the feature distillation
loss and α is a hyperparameter which balances both detection and distillation losses.

3.3 Experimental Setup

The proposed work is implemented on Windows 11OS (CPU: AMD Ryzen 7 6800HS; RAM:
32GB; GPU: NVIDIA GeForce RTX 3050 Ti). Open-source deep learning frameworks MMdetection
[24] and PyTorch are used to implement deep learning models. ResNet50 and ResNet18 are the
backbones of teacher and student networks. The initial learning rate is set to 0.002, the weight decay
is set to 0.0001, and the momentum is adjusted to 0.9 for all experiments. The value of α is assigned
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as 5 × 10−4, whereas the parameter ϕ is adjusted to 0.6. Pre-trained weights from ImageNet are used
to initialize the backbone network.

Algorithm 1: Border Sensitive Method
Input: X ∈ RC × H × W

Output: y ∈ RC × H × W

1: Calculate vertical strip hierarchical pooling using Eq. (7) and Eq. (5).
2: Increase the dimension to X1 = H × W .
3: Calculate horizontal strip hierarchical pooling using Eq. (8) and Eq. (5).
4: Increase the dimension to X2 = H × W
5: YSHP = relu (X1 + X2)

6: Calculate vertical strip max pooling using Eq. (7) and Eq. (9)
7: Increase the dimension to X3 = H × W .
8: Calculate horizontal strip max pooling using Eq. (8) and Eq. (9)
9: Increase the dimension to X4 = H × W .
10: YSMP = relu(X3 + X4)

11: Calculate the parallel joint pooling using Eq. (11)
12: Perform element-wise multiplication using Eq. (12)
13: return Output y

4 Results and Discussion
4.1 Ablation Study

4.1.1 Hyper Parameter Sensitivity

The proposed BSKD model is subjected to a sensitivity study regarding the two most relevant
hyperparameters, α and ϕ. It is evident from the model that α impacts the imitation mask distribution.
Similarly, the value of ϕ impacts the amount of distillation loss. Therefore, distillation losses can be
controlled. In our experiments, we varied α and ϕ values from 0 to 10, and observed changes in mAP.
In Fig. 5, the results of BSKD are depicted on UAV paddy rice imagery to illustrate the detection of
panicles. In Fig. 5a, we observe that the student model gains less from knowledge distillation when
α is too low. Similarly, when the α value increases, the student’s mean average precision increases as
well. Thus, the α value has a direct impact on the mean average precision value. In contrast, when α

is excessively large (more than 8), performance suffers significantly. It could be due to the fact that a
substantial distillation loss would interfere with the training process. As we can see from Fig. 5b, we can
almost observe the same kind of ϕ pattern. There is a possibility that the reason for this could be that
background information has been highlighted to a significant extent, while panicle-related information
has been overlooked to a significant extent. It is especially true in the case of small panicles, when the
ϕ is too large.
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Figure 5: Study of α and ϕ ′s hyperparameter sensitivity (a) α′s influence (b) ϕ ′s influence

4.1.2 Impact of Various Adaptation Layers

The performance of various adaptation layer types on the UAV paddy dataset with BSKD is
shown in Table 1. There are two networks that form the backbone of the teacher and student networks:
ResNet50 and RestNet18. In this paper, we analyze four different types of adaptation layers: 1 × 1
conv +BN, 1 × 1 conv, 3 × 3 conv +BN, and 3 × 3 conv. It is made clear that “conv” stands for a
layer of convolution, while “+BN” will be used to refer to the batch normalization that goes after the
convolutional layer. According to the results of this study, the difference in mean Average Precision
(mAP) between the adverse outcome (3 × 3 conv +BN) and the highest result (1 × 1 conv) is only
1.1. This is a clear indication that the proposed BSKD is not overly dependent on the selection of the
adaptation layer.

Table 1: Result of various adaptation layers

Adaptation layer 3 × 3 conv+BN 3 × 3 conv 1 × 1 conv+BN 1 × 1 conv

mAP 75.2 75.5 75.9 76.3

4.1.3 Impact of Different Teachers and ResNet18 Student

In the context of image classification, it has been observed that the student model’s performance
tends to deteriorate when there is a significant disparity in performance between the teacher and
the student models. In this section, we assess the validity of this observation in the context of
UAV-based paddy panicle detection using the proposed BSKD model. ResNet18 is employed as the
backbone network for the student model, and knowledge distillation is performed using various
teacher sizes. Table 2 presents the findings. There exists a positive link in performance between the
teacher and the student networks. The presence of a highly effective teacher is positively correlated with
a greater improvement in performance for the respective student. This observation is different from
the image classification findings. The rationale for this observation can be attributed to the fact that
the distillation process in image classification primarily focuses on optimizing the final classification
logits. In contrast, our approach to detecting paddy panicles using drones focuses on manipulating
intermediate high-level features. When using one-hot labels as the target, the clean logits would not
adequately capture the upgraded teachers’ expanded knowledge. It may be inferred that the presence
of a highly qualified teacher is imperative for knowledge distillation implementation.
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Table 2: Result of various teachers and ResNet18 student

ResNet18 ResNet34 ResNet50 ResNet101

Teacher 72.8 75.7 80.4 82.2

Student 72.8

BSKD 74.1 75.4 76.3 76.9

4.2 Quantitative and Qualitative Detection Comparison

A quantitative comparison of the proposed detection method with various State-Of-The-Art
(SOTA) detectors is shown in Table 3. According to the results derived from the developed BSKD
algorithm, the performance of the AP50 algorithm is improved over that of the AP75 algorithm. The
results of this observation provide us with valuable insight and suggest that a threshold for IoU of
0.50 might be appropriate to use. Similarly, the Average Precision (AP) value increases as the object
size increases from small (s) to large (l). APs represents the average precision for small objects with
the size less than 322 pixels. The value of APm indicates the average precision for medium objects
with a size greater than 322 pixels but less than 962 pixels, while APl indicates the average precision
of large objects with a size greater than 962 pixels. As a result of these findings, we can conclude that
the proposed model doesn’t perform well when implemented on small panicles. It appears that the
proposed detection method is capable of exhibiting superior performance to other SOTA detectors,
including both the one-stage and two-stage models (Fig. 6). Yolov8, Yolov3 and SSD were chosen
as representatives of one-stage models, and Faster RCNN, mask RCNN and cascade RCNN were
selected as representatives of two-stage models. The two-stage models exhibited superior performance
to the one-stage SSD, yielding improved results in terms of mean average precision (mAP) values.
Yolov8 demonstrates superior performance than two-stage detectors. However, the BSKD model is
a single-stage model and shows better accuracy to other detectors. For instance, the mean average
precision (mAP) of BSKD is 76.3%. In contrast, the mAP values for Yolov8, Yolov3, SSD, Faster
RCNN, mask RCNN, and the cascaded RCNN stand at 65.3%, 64.2%, 53.7%, 54.2%, 54.5% and
63.6%, respectively. The mean average precision (mAP) of BSKD showed substantial improvements
of 11%, 12.1%, 22.6%, 22.1%, 21.8% and 12.7% when compared to Yolov8, Yolov3, SSD, Faster
RCNN, mask RCNN, and cascaded RCNN, respectively. The visualization of bounding box regression
using the proposed method and SOTA detectors cascaded RCNN and Yolov8 is presented in Fig. 7.
Cascaded RCNN is selected from other two-stage detectors and Yolov8 is selected from other one-
stage detectors for visualization based on accuracy. According to observations, other SOTA detectors
cascaded RCNN and Yolov8 cannot detect panicles around the edge. However, if the panicles are
larger, they can detect them. In addition, the proposed method demonstrates a reduced convergence
of the bounding box regression training loss compared to Yolov8 and cascaded RCNN.

It is possible that the primary reason for the outperforming results observed with the proposed
model BSKD has to do with a border sensitive approach used for identifying panicles around the
border and this in turn leads to an improvement in the total mean average precision. Considering
that the UAV rice imagery dataset included samples with different illuminations, panicle sizes, shape
distortions, partial occlusions, and complex backgrounds, the increased accuracy of the proposed
model may indicate that it is capable of resolving these problems better than SOTA detectors. The main
limitation of the proposed model is the fact that due to its border-sensitive nature; it overlooks objects
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that are located in the vicinity of the border. Thus, it is possible for other objects to be mistakenly
detected as panicles around the border, and the performance as a result will degrade.

Table 3: Comparison with the SOTA detectors

Model Type AP AP50 AP75 APs APm APl

Yolov3 One stage 38.8 62.6 39.9 26.7 44.3 50.7
SSD One stage 39.6 63.1 40.4 27.2 45.1 52.8
Yolov8 One stage 40.8 64.2 41.5 27.9 46.4 53.6
Faster RCNN Two-stage 40.2 63.4 40.9 27.4 45.3 53.1
Mask RCNN Two-stage 40.4 63.9 41.3 27.8 45.6 53.2
Cascade RCNN Two-stage 41.2 64.5 41.9 28.1 46.5 53.7
BSKD (proposed) One stage 42.7 65.2 42.4 29.5 47.2 56.4

0 0.2 0.4 0.6 0.8 1

YoloV3

SSD

YoloV8

Faster RCNN

Mask RCNN

Cascade RCNN

BSKD (proposed)

YoloV3 SSD YoloV8 Faster
RCNN

Mask
RCNN

Cascad
e

RCNN

BSKD
(propos

ed)
F1 score 0.802 0.623 0.813 0.647 0.669 0.784 0.926
Recall 0.781 0.614 0.85 0.628 0.637 0.762 0.901
Precision 0.852 0.682 0.871 0.712 0.704 0.835 0.883
mAP 0.642 0.537 0.653 0.542 0.545 0.636 0.763

F1 score

Recall

Precision

mAP

Figure 6: Overall performance comparison with the SOTA detectors
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Figure 7: Qualitative comparison of proposed BSKD with SOTA detectors (a) Ground truth (b)
Cascaded RCNN prediction (c) Yolov8 prediction (d) Proposed BSKD prediction

5 Conclusion

This study introduces a novel approach called Border Sensitive Knowledge Distillation (BSKD) to
detect rice panicles in images captured by Unmanned Aerial Vehicles (UAVs). This research focuses on
the use of panicles located along borders to improve detection capabilities. Initially, the input images
are acquired through the complicated teacher network, which consists of ResNet50, border sensitive
method (BSM), and feature pyramid network (FPN). The generation of imitation masks extracts both
foreground and background elements. These masks and intermediate features acquired by the teacher
model are distilled by the simple student model, specifically the ResNet18+FPN architecture. The
aggregate loss is determined through the summation of both detection and distillation losses. The
proposed BSKD model demonstrates improved performance compared to state-of-the-art (SOTA)
object detectors when evaluated on the UAV paddy dataset. Further research will focus on improving
precision by analyzing images taken by UAVs at high altitudes and extremely small panicles.



CMC, 2024, vol.81, no.1 841

Acknowledgement: The authors are grateful to all the editors and anonymous reviewers for their
comments and suggestions and thank all the members who have contributed to this work with us.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Anitha Ramachandran; data collection: Anitha Ramachandran; analysis and interpreta-
tion of results: Anitha Ramachandran, Sendhil Kumar K.S.; draft manuscript preparation: Anitha
Ramachandran. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are openly available
at https://zenodo.org/records/4444741 (accessed on 06 August 2024).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] N. K. Fukagawa and L. H. Ziska, “Rice: Importance for global nutrition,” J. Nutr. Sci. Vitaminol., vol. 65,

pp. S2–S3, Oct. 2019. doi: 10.3177/jnsv.65.S2.
[2] G. K. Dash, S. K. Sahoo, M. Barik, S. Parida, M. J. Baig and P. Swain, “Perspectives and challenges of

phenotyping in rice research,” in Applications of Bioinformatics in Rice Research, M. K. Gupta, L. Behera
Eds. Singapore: Springer Singapore, 2021, pp. 171–195, doi: 10.1007/978-981-16-3997-5_9.

[3] M. Ikeda et al., “Analysis of rice panicle traits and detection of QTLs using an image analyzing method,”
Breed. Sci., vol. 60, no. 1, pp. 55–64, 2010. doi: 10.1270/jsbbs.60.55.

[4] M. K. Vishal et al., “Image-based phenotyping of diverse rice (Oryza sativa L.) Genotypes,” 2020, arXiv:
2004.02498.

[5] C. A. Devia et al., “Aerial monitoring of rice crop variables using an UAV robotic system,” in
ICINCO 2019–Int. Conf. Inform. Control, Autom. Robot., Prague, Czech Republic, Jul. 29–31, 2019. doi:
10.5220/0007909900970103.

[6] A. K. Sangaiah, F. -N. Yu, Y. -B. Lin, W. -C. Shen, and A. Sharma, “UAV T-YOLO-Rice: An enhanced
tiny yolo networks for rice leaves diseases detection in paddy agronomy,” IEEE Trans. Netw. Sci. Eng., pp.
1–16, 2024. doi: 10.1109/TNSE.2024.3350640.

[7] F. -N. Yu, W. -C. Shen, A. K. Sangaiah, and Y. -B. Lin, “DSC-T-Yolo-Rice: A sand clock yolo model for
rice leaves diseases detection,” in 2024 IEEE Int. Conf. Consum. Electron. (ICCE), Las Vegas, NV, USA,
IEEE, Jan. 2024, pp. 1–6, doi: 10.1109/ICCE59016.2024.10444270.

[8] W. Wu et al., “Image analysis-based recognition and quantification of grain number per panicle in rice,”
Plant Methods, vol. 15, no. 1, Dec. 2019, Art. no. 122. doi: 10.1186/s13007-019-0510-0.

[9] W. Yang et al., “Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput
leaf scorer,” J. Exp. Bot., vol. 66, no. 18, pp. 5605–5615, Sep. 2015. doi: 10.1093/jxb/erv100.

[10] H. Li et al., “An automatic approach for detecting seedlings per hill of machine-transplanted hybrid rice
utilizing machine vision,” Comput. Electron. Agric., vol. 185, no. 06, Jun. 2021, Art. no. 106178. doi:
10.1016/j.compag.2021.106178.

[11] W. Guo, T. Fukatsu, and S. Ninomiya, “Automated characterization of flowering dynamics in rice
using field-acquired time-series RGB images,” Plant Methods, vol. 11, no. 1, Dec. 2015, Art. no. 7. doi:
10.1186/s13007-015-0047-9.

https://zenodo.org/records/4444741
https://doi.org/10.3177/jnsv.65.S2
https://doi.org/10.1007/978-981-16-3997-5_9
https://doi.org/10.1270/jsbbs.60.55
https://doi.org/10.5220/0007909900970103
https://doi.org/10.1109/TNSE.2024.3350640
https://doi.org/10.1109/ICCE59016.2024.10444270
https://doi.org/10.1186/s13007-019-0510-0
https://doi.org/10.1093/jxb/erv100
https://doi.org/10.1016/j.compag.2021.106178
https://doi.org/10.1186/s13007-015-0047-9


842 CMC, 2024, vol.81, no.1

[12] M. -D. Yang, H. -H. Tseng, Y. -C. Hsu, C. -Y. Yang, M. -H. Lai and D. -H. Wu, “A UAV open dataset
of rice paddies for deep learning practice,” Remote Sens., vol. 13, no. 7, Apr. 2021, Art. no. 1358. doi:
10.3390/rs13071358.

[13] H. -H. Tseng, M. -D. Yang, R. Saminathan, Y. -C. Hsu, C. -Y. Yang and D. -H. Wu, “Rice seedling detection
in UAV images using transfer learning and machine learning,” Remote Sens., vol. 14, no. 12, Jun. 2022, Art.
no. 2837. doi: 10.3390/rs14122837.

[14] L. Yu et al., “An integrated rice panicle phenotyping method based on X-ray and RGB scanning and deep
learning,” Crop J., vol. 9, no. 1, pp. 42–56, Feb. 2021. doi: 10.1016/j.cj.2020.06.009.

[15] Z. Qiu, H. Xiang, F. Ma, and C. Du, “Qualifications of rice growth indicators optimized at different growth
stages using unmanned aerial vehicle digital imagery,” Remote Sens., vol. 12, no. 19, Oct. 2020, Art. no.
3228. doi: 10.3390/rs12193228.

[16] X. Wang et al., “Field rice panicle detection and counting based on deep learning,” Front Plant Sci., vol.
13, Aug. 2022, Art. no. 966495. doi: 10.3389/fpls.2022.966495.

[17] M. M. Anuar, A. A. Halin, T. Perumal, and B. Kalantar, “Aerial imagery paddy seedlings inspection using
deep learning,” Remote Sens., vol. 14, no. 2, Jan. 2022, Art. no. 274. doi: 10.3390/rs14020274.

[18] B. Sun et al., “Universal detection of curved rice panicles in complex environments using aerial
images and improved YOLOv4 model,” Front Plant Sci., vol. 13, Nov. 2022, Art. no. 1021398. doi:
10.3389/fpls.2022.1021398.

[19] C. Zhou et al., “Automated counting of rice panicle by applying deep learning model to images from
unmanned aerial vehicle platform,”Sensors, vol. 19, no. 14, Jul. 2019, Art. no. 3106. doi: 10.3390/s19143106.

[20] Q. Yang, L. Shi, J. Han, Y. Zha, and P. Zhu, “Deep convolutional neural networks for rice grain yield
estimation at the ripening stage using UAV-based remotely sensed images,” Field Crops Res., vol. 235, pp.
142–153, 2019. doi: 10.1016/j.fcr.2019.02.022.

[21] X. Bai et al., “Locating and sizing method based on high-throughput UAV RGB images,” Plant Phenomics,
vol. 5, 2023, Art. no. 0020. doi: 10.34133/plantphenomics.0020.

[22] H. Wang, S. Lyu, and Y. Ren, “Paddy rice imagery dataset for panicle segmentation,” Agronomy, vol. 11,
no. 8, 2021, Art. no. 1542. doi: 10.3390/agronomy11081542.

[23] Y. Song, P. Zhang, W. Huang, Y. Zha, T. You and Y. Zhang, “Object detection based on cortex hierarchical
activation in border sensitive mechanism and classification-GIou joint representation,” Pattern Recognit.,
vol. 137, no. 2, May 2023, Art. no. 109278. doi: 10.1016/j.patcog.2022.109278.

[24] K. Chen et al., “MMDetection: Open MMLab detection toolbox and benchmark,” Jun. 17, 2019,
arXiv.1906.07155.

https://doi.org/10.3390/rs13071358
https://doi.org/10.3390/rs14122837
https://doi.org/10.1016/j.cj.2020.06.009
https://doi.org/10.3390/rs12193228
https://doi.org/10.3389/fpls.2022.966495
https://doi.org/10.3390/rs14020274
https://doi.org/10.3389/fpls.2022.1021398
https://doi.org/10.3390/s19143106
https://doi.org/10.1016/j.fcr.2019.02.022
https://doi.org/10.34133/plantphenomics.0020
https://doi.org/10.3390/agronomy11081542
https://doi.org/10.1016/j.patcog.2022.109278

	Border Sensitive Knowledge Distillation for Rice Panicle Detection in UAV Images
	1 Introduction
	2 Related Works
	3 Materials and Methods
	4 Results and Discussion
	5 Conclusion
	References


