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ABSTRACT

In the context of rapid digitization in industrial environments, how effective are advanced unsupervised learning
models, particularly hybrid autoencoder models, at detecting anomalies in industrial control system (ICS) datasets?
This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the
vast amounts of time series data generated by Internet of Things (IoT) devices, which can significantly improve the
reliability and safety of these systems. In this paper, we propose a hybrid autoencoder model, called ConvBiLSTM-
AE, which combines convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM)
to more effectively train complex temporal data patterns in anomaly detection. On the hardware-in-the-loop-
based extended industrial control system dataset, the ConvBiLSTM-AE model demonstrated remarkable anomaly
detection performance, achieving F1 scores of 0.78 and 0.41 for the first and second datasets, respectively. The
results suggest that hybrid autoencoder models are not only viable, but potentially superior alternatives for
unsupervised anomaly detection in complex industrial systems, offering a promising approach to improving their
reliability and safety.

KEYWORDS
Advanced anomaly detection; autoencoder innovations; unsupervised learning; industrial security; multivariate
time series analysis

1 Introduction

The modern industrial environment is driven by the active integration of Internet of Things
(IoT) devices that significantly enhance system pipelines [1]. Such technological advancements have
increased productivity and efficiency, driving innovative changes across industrial sectors [2]. However,
these advances are accompanied by cybersecurity challenges [3]. The use of industrial control systems
(ICS) provides increased connectivity and automation but also exposes vulnerabilities to cyberattacks
[2]. Due to the critical nature of control systems, cyberattacks on ICS can have severe impacts on
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the industrial environment, human life, the environment, and the economy due to their scale and
severity [4–6].

Therefore, given the sophisticated and ever-evolving nature of cyberattacks on ICSs, it is imper-
ative to adopt innovative perspectives and technologies to enhance cybersecurity measures and
protect these critical systems [7]. Research using machine learning models to detect attack data with
anomalous patterns is critical [8]. In particular, anomalies are rare in the ICS environment; therefore,
anomaly detection is critical in industrial environments. Detection often relies on unsupervised
anomaly detection studies that train machine learning technology models based on normal datasets
to identify anomalous data [9].

To apply machine learning algorithms for decision-making in industrial processes, a large number
of data points are required. In this context, the implementation of new technological paradigms,
such as cyber-physical systems (CPS) and IoT, in industrial environments enables the creation of
diverse data structure types, as observed in studies focused on big data analytics [10]. Accordingly,
efforts to strengthen the security of ICS have intensively used supervised machine learning to innovate
traditional approaches.

Mokhtari et al. [11] proposed a new solution, called measurement intrusion detection system,
based on the measurement data from supervisory control and data acquisition systems. In addition,
the hardware-in-the-loop (HIL)-based augmented ICS (HAI) dataset, including actual data from
power systems, was used to evaluate the system performance. The results confirmed that the random
forest algorithm exhibited successful classification performance in the fault detection process with an
accuracy of 99.76%.

Ahmed et al. [12] investigated three approaches to detect anomalies in solar power plants in India
(near Gandikota, Andhra Pradesh). The first model was based on a physical model, the second on a
support vector machine (SVM) regression model, and the third on an SVM classification model. Gray-
wolf optimization algorithms were used for hyperparameter tuning for all models. The classification
model demonstrated superior predictive capabilities with an accuracy of 97.3%, a precision of 85.71%,
and a recall of 99.21%, outperforming the reference long short-term memory (LSTM) autoencoder
model.

In addition to anomaly detection using supervised machine learning algorithms, some studies have
applied unsupervised machine learning algorithms to identify and classify clusters of anomalous data.
Yu et al. [13] proposed a cluster-based data analysis framework using recursive principal component
analysis to address anomaly detection of changes in IoT system data and redundant sensor data
aggregation. Sensor nodes were grouped into clusters, and all sensor data were transmitted to the
cluster head using this algorithm to diagnose and aggregate the data. This framework can recursively
update the parameters of the principal component analysis model in real time to adapt to changes
in the IoT system. The proposed framework aggregated sensor data with high recovery accuracy and
improved anomaly detection accuracy compared to existing algorithms.

However, these machine learning models are sometimes limited in their ability to adequately
understand complex patterns or data structures. In high-dimensional or non-linear data, machine
learning models can struggle to learn appropriate patterns. In addition, model performance can
be degraded due to data imbalance or missing labels. Deep learning can handle more complex
data structures than machine learning and has the ability to detect and interpret different types
of anomalies. In addition, deep learning works effectively with large datasets, improving model
performance. As these deep learning-based models have overcome the limitations of machine learning
to promote the development of more accurate and reliable anomaly detection systems, recent focus
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has shifted to deep learning-based models and expanded research for more sophisticated anomaly
detection and pattern recognition.

Perales Gómez et al. [14] proposed a methodology to generate reliable anomaly detection datasets
in ICS in four stages: attack selection, attack deployment, traffic capture, and feature computation.
This approach generated the Electra dataset for evaluating cybersecurity techniques in electrical
traction substations in the railway industry. Fu et al. [15] introduced masked anomaly detection, a self-
supervised masking task for anomaly detection in multivariate time series. This model can be trained
using only unlabeled data, overcoming the limitations of traditional unsupervised anomaly detection
methods. Seong et al. [16] established intrusion detection systems for multivariate time series data.
They evaluated the anomaly detection performance of the stacked gated recurrent unit (GRU) model
on the UNSW-NB15 and HAI 2.0 datasets.

Hao et al. [17] proposed a hybrid statistical-machine learning-based online model for anomaly
detection in ICS to detect and quantify the cybersecurity risks of abnormal events. The model demon-
strated a detection accuracy of 95% for nine anomalous events. Memarzadeh et al. [18] developed
an unsupervised machine learning approach based on convolutional variational autoencoders. The
approach improved and automated the identification of unknown vulnerabilities in flight operations
and detected operationally critical anomalies in high-dimensional heterogeneous aeronautical time
series. Tang et al. [19] proposed an interpretable multivariate time series anomaly detection method
based on GRUs for ICS. This method used a graph neural network to learn relationships between
sensors and used GRUs to identify anomalies. Experimental results on the Secure Water Treatment
(SWaT) and Water Distribution (WADI) datasets showed that their proposed model achieved higher
precision, recall, and area under the curve (AUC) compared to nine state-of-the-art models. In
particular, their model improved detection precision by up to 15% and recall by up to 20%.

Among deep learning models, autoencoders, which consist of encoders and decoders, have
demonstrated superior performance in anomaly detection problems. For example, Xie et al. [20]
investigated the application of autoencoders and neural networks to detect malicious activities in
ICS and evaluated the effects of a series of model structure modifications. A combination of one-
dimensional (1D) convolutional neural network (CNN) and GRU was used to learn the spatio-
temporal correlations and other dependencies between sensor and actuator parameters at each instant
in order to more accurately predict the parameter values of sensors and actuators.

Su et al. [21] proposed OmniAnomaly, a novel stochastic recurrent neural network (RNN)
for anomaly detection in multivariate time series. OmniAnomaly could provide an intuitive and
effective method to interpret the detected entity anomalies based on the reconstruction probability.
Zavrak et al. [22] analyzed the detection capabilities of autoencoder and variational autoencoder
deep learning methods alongside the one-class SVM using a semi-supervised strategy. The results,
calculated in terms of receiver operating characteristic curves and AUC metrics, indicated that the
detection rate of the variational autoencoder was superior to that of the autoencoder and the one-
class SVM. Liu et al. [23] proposed an adversarial sample attack and defense method using LSTM
encoder-decoder (LSTM-ED) for ICS. This method generated adversarial samples according to the
protocol specifications and introduced an LSTM-ED feature weight defense method (LSTM-FWED)
to improve the robustness. Experimental results showed that the attack reduced the accuracy of the
LSTM-ED model by an average of 66.26%, with a maximum generation time of 18 s. The LSTM-
FWED method improved the AUC by 21.83% compared to the state-of-the-art methods.

Yang et al. [24] proposed an unsupervised learning-based traffic anomaly detection method for
industrial cyber-physical systems. This method included a data preprocessing model, an LSTM-based
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unsupervised word segmentation model, and a 1D CNN and bi-directional encoder representations
from transformers (BERT)-based autoencoder classification model. Experimental results on the
Cyber-Physical Attack Dataset (CPAD) showed improvements in precision of 18.83%, recall of 22.3%,
and F1 score of 20.60%. Audibert et al. [25] introduced USAD, an unsupervised anomaly detection
model that combines variational autoencoders (VAEs) and GANs. The model uses the reconstruction
error as the anomaly score. On the SWaT and WADI datasets, USAD outperformed other methods,
achieving an F1 score of 0.79 and an average precision of 0.84. The performance of the model was
robust to different parameter settings, such as downsampling rates and window sizes. In addition,
USAD showed a significant reduction in training time compared to OmniAnomaly, with speed-up
factors ranging from 216 to 1331 times.

Li et al. [26] proposed an unsupervised anomaly detection method, MAD-GAN, using generative
adversarial networks (GANs) with LSTM networks as generators and discriminators. The method
handles multivariate time series data by capturing temporal correlations. Experimental results on
SWaT and WADI datasets showed that MAD-GAN achieved an F1 score of 0.23 for the SWaT dataset
and outperformed other methods in terms of recall with values above 90% across different principal
component resolutions. Specifically, the recall for the WADI dataset reached 95.34% using the second
principal component. Tuli et al. [27] developed TranAD, which focuses on learning transactional
patterns for anomaly detection using a deep learning architecture. The model uses a combination
of transformers and meta-learning to capture complex patterns. Experimental results showed that
TranAD achieved an average F1 score of 0.8802 on various datasets. It outperformed the baseline
models, especially on the SMD and MSDS datasets, with F1 scores of 0.9605 and 0.9262, respectively.
TranAD also showed significant improvements in terms of AUC, with increases of up to 11.69% over
state-of-the-art methods.

Table 1 illustrates the comparative analysis of anomaly detection methods in industrial environ-
ments, showing both previous and current research studies. The relentless evolution of ICS integrated
with IoT technologies has increased their vulnerability to sophisticated cyber threats. Given the
inherent complexity and multivariate nature of ICS data, traditional anomaly detection methods
often prove inadequate [28,29]. This reality necessitates the pursuit of novel solutions that leverage
the capabilities of hybrid autoencoder models. To delineate the advances our research brings and to
justify the necessity of our approaches, we present the following key research questions:

1. How do hybrid autoencoder models incorporating CNN, LSTM architectures improve
anomaly detection in multivariate ICS data?

2. What advances do hybrid models offer in learning efficiency and anomaly detection accuracy
for high-dimensional operational ICS data?

3. How do advanced unsupervised methods challenge and improve anomaly detection strategies
in nonlinear ICS data visualization?

In this paper, we propose ConvBiLSTM-AE, which combines CNN and BiLSTM, as a solu-
tion to the ICS anomaly detection problem. Our approach focuses on leveraging the strengths of
convolutional neural networks (CNNs) for spatial feature extraction and bidirectional long short-
term memory networks (BiLSTMs) for capturing temporal dependencies in multivariate ICS data.
This integration aims to address the challenges of traditional anomaly detection methods in handling
the complex, nonlinear, and high-dimensional nature of ICS datasets. By employing an unsupervised
training approach, ConvBiLSTM-AE can effectively learn representations without the need for labeled
data, making it adaptable to different ICS environments. We highlight the potential of this model
to improve anomaly detection accuracy and learning efficiency compared to existing technologies.
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The use of principal component analysis (PCA) to extract and visualize key features further aids in
interpreting model behavior and validating its effectiveness. The HAI dataset, which simulates thermal
and pumped storage power systems, serves as a benchmark to compare the proposed model with other
state-of-the-art anomaly detection techniques.

The main contributions of this research are summarized as follows:

• Model performance is evaluated using the latest ICS datasets, and the unsupervised anomaly
detection performance of deep learning models on the ICS dataset is analyzed to identify
effective anomaly detection models.

• By evaluating the anomaly detection performance of hybrid autoencoder models, this study
demonstrates that this hybrid modeling approach provides superior performance to other
autoencoder models.

• To interpret the proposed model and analyze the data distribution, we apply PCA to the embed-
ding features extracted from our encoder network and visualize the principal components.

This paper is organized as follows: Section 2 explains the datasets for the experiment and describes
the autoencoder-based models for evaluation. Next, Section 3 presents the experimental procedure
and results. Section 4 discusses the evaluated performance of the autoencoder-based models. Finally,
Section 5 concludes the paper.

Table 1: Comparative analysis of prior literature and current study

Authors Research focuses Datasets Methods

Mokhtari
et al. [11]

Intrusion detection HIL-based augmented ICS Random forest

Ahmed et al. [12] Anomaly detection in solar
plants

Solar plant data;
Gandikota

SVM with gray wolf
optimization

Yu et al. [13] Cluster-based data analysis NDBC-TAO; Intel lab Recursive PCA
Perales Gómez
et al. [14]

Anomaly detection datasets
for ICS

Electra data Methodology for
dataset generation

Fu et al. [15] Masked anomaly detection in
multivariate time series

Multivariate time series Self-supervised
masking task

Seong et al. [16] Intrusion detection in
multivariate time series

UNSW-NB15; HAI 2.0 Stacked GRU model

Hao et al. [17] Anomaly detection in ICS ICS-CPS Testbed Hybrid model with
SARIMA and
LSTM

Memarzadeh
et al. [18]

Anomaly detection in flight
operations

Aeronautical time series Convolutional
variational
autoencoder

Tang et al. [19] Anomaly detection in ICS SWaT; WADI GRU-based method
Xie et al. [20] Malicious activity detection in

ICS
SWaT Autoencoders, 1D

CNN and GRU
Su et al. [21] Multivariate time series

anomaly detection
Aerospace and server data Stochastic RNN

(Continued)
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Table 1 (continued)

Authors Research focuses Datasets Methods

Zavrak et al. [22] Intrusion detection using deep
learning

CICIDS2017 Autoencoder, VAE,
and One-class SVM

Liu et al. [23] Adversarial sample attack and
defense for ICS

SWaT; WADI; BATADAL LSTM-ED with
feature weight
defense

Yang et al. [24] Traffic anomaly detection in
cyber-physical systems

Cyber-Physical Attack
Data (CPAD)

LSTM, 1D CNN,
BERT-based
autoencoder

Audibert
et al. [25]

Unsupervised anomaly
detection on multivariate time
series

SWaT; WADI; SMD;
SMAP; MSL

USAD

Li et al. [26] Multivariate time series
anomaly detection

SWaT; WADI MAD-GAN

Tuli et al. [27] Learning transactional
patterns for anomaly
detection

NAB; UCR; MBA;
SMAP; MSL; SWaT;
WADI; SMD; MSDS

TranAD

Our study Anomaly detection in ICS HIL-based augmented ICS ConvBiLSTM-AE

2 Materials and Methods

This section presents the publicly available datasets for the experiments and the autoencoder-based
models used to compare the anomaly detection performance. The details of the autoencoder-based
models are also provided. Fig. 1 provides a visual summary of the overall experimental process. The
experiment performs a series of steps, from preprocessing the HAI dataset to training the autoencoder
models, followed by evaluating and comparing the model performance.

HAI dataset

Perform data preprocessing

Training set

Evaluate and compare 
the performance of the autoencoder models 

Test set

Train the autoencoder model 
with the normal training dataset

Validate the model 
with the normal validation dataset

Select the threshold that yields 
the best classification performance

Calculate the reconstruction error between 
the original test data and the reconstructed data

Extract the reconstructed data
from the decoder of the model

Figure 1: Flow chart of the experiment process



CMC, 2024, vol.81, no.1 1281

2.1 Dataset

This research uses the publicly available HAI dataset [30], developed from an ICS testbed using
a HIL simulator with devices, including sensors, to simulate thermal and pumped storage power
generation. To date, five versions of the HAI dataset have been released: 20.07, 21.03, 22.04, 23.05,
and HAIEnd23.05. This study uses the HAI 23.05 dataset, excluding the endpoint of the latest
HAI 23.05 version, which includes four types of processes: boiler process, turbine process, water
treatment process, and HIL simulation. It consists of 87 variables, including the data measurement
time (eventually corresponding to the variables in version 22.04). This dataset includes a normal
scenario (consisting only of normal system data) and an attack scenario (containing attack signals at
specific times).

The HAI dataset is particularly appropriate for this study because it represents the diversity and
complexity of ICS. In addition, a substantial body of research has used the HAI dataset as a reference
point, resulting in significant and insightful findings [31–33]. The ICS environment is characterized
by the integration of various components, including sensors, actuators, and controllers, that work
together to manage industrial processes. The HAI dataset reflects this complexity by simulating
real industrial processes, such as thermal and hydroelectric power generation, that involve multiple
interdependent systems and control strategies. By including different types of processes in the HAI
dataset (e.g., boilers, turbines, and water treatment), it provides a comprehensive range of operational
scenarios and potential anomalies, making it a robust benchmark for evaluating anomaly detection
models.

As shown in Table 2, the experimental data, consisting of 87 variables, are normal scenario data
that contain only normal signals for training and validation. These data are used to facilitate the
learning of normal patterns by the model. Attack scenario data, which includes attack signals, is
used to evaluate the performance of the trained model. Two separate evaluation datasets, measured at
different times, are used for this purpose.

Table 2: HAI 23.05 training and testing data description

Phase Training Validation Test 1 Test 2

Variables 87 87 87 87
Size 810,000 86,401 54,000 230,400
Purpose Model training Parameter tuning Model evaluation Model evaluation
Label Unlabeled (normal data) Unlabeled (normal data) Labeled Labeled
Anomaly – – 5.52% 3.65%

Fig. 2 visualizes the correlation coefficient heatmap of the HAI dataset in this study. The corre-
lation heatmap analysis shows that some variables were excluded from the heatmap. These variables
consist of only a single value across all observations and do not provide variability compared to other
variables in the dataset; therefore, they cannot be considered in statistical analyses. In reconstruction-
based models, such as autoencoders, these static variables do not help reduce reconstruction error.
Autoencoders aim to learn an efficient representation of the input data, compress the data into lower-
dimensional representations, and reconstruct data close to the original. However, variables that do
not vary in this reconstruction process are unnecessary elements for learning significant features.
Therefore, these static variables were excluded from the analysis to optimize training and reconstruc-
tion, reduce computational complexity, and reduce the risk of overfitting. This decision allows the
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autoencoder model to more effectively learn and reconstruct the essential structure of complex data,
improving its generalizability and resulting in more accurate and reliable data representations.

Figure 2: Correlation heatmap of the training dataset

2.2 Temporal Context Learning

Temporal context learning plays a critical role in modeling and understanding the temporal
relationships within data. To achieve this, variations of RNNs have been developed that can capture
and maintain long-term dependencies. Among them, LSTM is the most widely used.

2.2.1 Long Short-Term Memory

The LSTM network [34–36] is a successful algorithm for addressing vanishing or exploding
gradient problems in RNNs. The LSTM is characterized by the following features:

• A vector called the internal cell state is maintained by each LSTM recurrent unit.
• The LSTM uses a forget gate to control the number of previous data retained and employs input

and output gates to regulate the internal state.
• The LSTM controls the gates using sigmoid activation functions and hyperbolic tangent

activation functions.
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Fig. 3 represents the LSTM architecture, expressed as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (1)

ft = σ(Wxf xt + Whf ht−1 + Wcf ct−1 + bf ) (2)

gt = tanh(Wxgxt + Whght−1 + bg) (3)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (4)

ct = ft � ct−1 + it � gt (5)

ht = ot � tanh(ct) (6)

The activation of the input gate it determines how much information to add to the previous cell
state based on the current input and the previous hidden state. The activation of the forget gate ft

determines which information to omit from the previous cell state and computes the cell state candidate
gt to store new information. The activation of the output gate ot determines the current hidden state
ht based on the new cell state ct. In addition, xt represents the current input, and W and b denote
the weight matrices and bias vectors, respectively. The sigmoid activation function σ and hyperbolic
tangent activation function tanh are applied for the gate activations and transformations of the cell
and hidden states, respectively, and � represents elementwise multiplication (Hadamard product).

Figure 3: Understanding the architecture of the long short-term memory (LSTM) cell

2.2.2 Bidirectional Long Short-Term Memory

Bidirectional LSTM [37] processes the input sequence in both directions to consider more context,
enhancing performance by capturing information forward and backward in sequence data. This
method employs two independent LSTM networks: one processes the input sequence in its original
order and the other in reverse order. The formulation is expressed as follows:
−→
ht = LSTM(xt,

−→
ht−1) (7)

←−
ht = LSTM(xt,

←−
ht+1) (8)

ht =
[−→

ht ;
←−
ht

]
(9)
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The forward LSTM hidden state
−→
ht is computed based on the current input and previous hidden

state. The backward LSTM hidden state
←−
ht is calculated based on the current input and the subsequent

hidden state. Finally, the hidden state ht of the bidirectional LSTM combines the hidden states of the
forward and backward LSTMs, incorporating information from both directions.

2.3 One-Dimensional Convolutional Neural Network

The CNN in deep learning models is primarily used for image classification and computer vision
tasks. However, it has recently been effectively applied to time series data processing. One-dimensional
CNN [38,39] are extensively applied for pattern recognition and prediction in time series data and
are designed to process data with a temporal order, where the input is arranged along the time axis.
The relationship between previous and subsequent time steps is crucial. Thus, 1D CNN consider this
temporal structure to process data and are helpful in recognizing temporal patterns, as demonstrated
by the pseudo-code shown in Algorithm 1.

Algorithm 1: Time series processing via one-dimensional convolutional neural network (1D CNN)
Input:

Time series data X
Layers configuration layers_config

Output:
Processed data Y

Steps:
1. Begin
2. Initialize model.
3. For each layer in layers_config:

1. Add Conv1D layer to model with specified filters, kernel size, strides, and activation.
4. Return processed data Y .
5. End

This study exclusively applied 1D CNN to process time series data to build a model specialized
for time series. The 1D CNN can detect patterns at each time step and use this information to predict
values for the next step. In this manner, 1D CNN can be employed in various time series data fields,
such as stock price prediction, speech recognition, and signal processing [40]. Therefore, 1D CNN are
acknowledged as potent tools for time series data analysis and prediction and are used in this study to
design and implement the model architecture.

2.4 Deep Autoencoder

The deep autoencoder [41] is an unsupervised learning method used to encode and decode
input data for reconstruction. An autoencoder learns a low-dimensional representation of input
data to reconstruct the input through a neural network structure. A deep autoencoder consists of
a neural network with multiple hidden layers, mapping input data to a low-dimensional feature space
and decoding it to the original dimension to reconstruct the input data. The primary goal of an
autoencoder is to learn a low-dimensional representation that best represents the input data. This
process allows for extracting the main data features, removing noise or irrelevant information, and
compressing the data.
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Through these processes, the autoencoder learns an efficient representation of data and performs
data reconstruction. Deep autoencoders apply multiple hidden layers to learn the complex structures
of input data, extracting more complex features and more accurate reconstructions of the input data.
Therefore, deep autoencoders are used to learn high-dimensional representations of input data for
effective representation and reconstruction. This study employs a deep autoencoder to extract features
and reduce the dimensions of time series data for anomaly detection. Deep autoencoders learn the
complex structures of input data for data representation in anomaly detection, as demonstrated by
the pseudo-code shown in Algorithm 2 [42].

Algorithm 2: Data reconstruction using deep autoencoder
Input:

Input data X
Encoder layers configuration encoder_layers
Decoder layers configuration decoder_layers

Output:
Reconstructed data Ẋ

Steps:
1. Begin
2. Initialize autoencoder model.
3. For each layer in encoder_layers:

1. Add layer to encoder part of model.
4. For each layer in decoder_layers:

1. Add layer to decoder part of model.
5. Encode X to lower-dimensional representation Z.
6. Decode Z back to original dimension Ẋ .
7. Return reconstructed data Ẋ .
8. End

During the experimental phase, autoencoder models are used for unsupervised anomaly detection.
Reconstruction metrics are applied to each model of predictions to set a threshold, with values exceed-
ing this threshold considered anomalies. Models include convolutional autoencoder (CAE), LSTM
autoencoder (LSTM-AE), bidirectional LSTM autoencoder (BiLSTM-AE), and hybrid autoencoders
combining RNN-based cells and CNN, such as convolutional BiLSTM-AE (ConvBiLSTM-AE). The
detailed implementation of these methods can be found in Algorithm 3.

Algorithm 3: Anomaly detection with hybrid autoencoders
Input:

Multivariate time series data X
Number of epochs epochs
Batch size batch_size
Learning rate learning_rate
Model type model_type (ConvBiLSTM-AE)
Threshold θ

Output:
Anomalies A

(Continued)
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Algorithm 3 (continued)
Steps:

1. Begin
2. Initialize the selected model type:

1. ElseIf model_type is ConvBiLSTM-AE then
1. Initialize Convolutional and Bidirectional LSTM layer.

2. EndIf
3. For epoch in range(epochs) do

1. For batch in range(0, len(X ), batch_size) do
1. Select batch of data from X .
2. Perform forward pass appropriate to model_type:

1. If model_type includes Convolutional layer then
1. Perform forward pass through Conv1D layer.

2. EndIf
3. If model_type includes LSTM layer then

1. Perform forward pass through RNN layer (LSTM).
4. EndIf

3. Reconstruct data through decoder layers.
4. Compute reconstruction loss.
5. Perform backpropagation and update weights.

2. EndFor
4. EndFor
5. Compute reconstruction error E for each data point in X .
6. Identify anomalies A where E > θ .
7. Return anomalies A.
8. End

The BiLSTM-AE consists of BiLSTM cells. These models learn by considering the temporal
characteristics of time series data, allowing the bidirectional structure to apply information from the
past and future [43–45]. The ConvBiLSTM-AE is configured by adding a 1D CNN layer to the first
layer of the encoder and the last layer of the decoder in BiLSTM-AE. This structure better learns
complex patterns in time series data and improves the accuracy of anomaly detection. The combination
of CNN and RNN layers makes hybrid models more robust to noise and outliers in the data. The CNN
layers help extract features from vectors and reduce their dimension, while the RNN layers ensure that
the temporal sequence is modeled accurately, leading to more reliable anomaly detection [46,47].

3 Experiment

In this section, we present the results of the ablation study for the hybrid model. We analyze the
two-dimensional embedding of the test data by extracting the encoder features and performing PCA
for dimensionality reduction. We also present the results of applying a state-of-the-art unsupervised
anomaly detection model and compare its performance with the hybrid model.
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3.1 Experimental Settings

The autoencoder model experiments were conducted in the Google Collaboratory Pro environ-
ment on an NVIDIA T4 Tensor Core GPU, using the TensorFlow deep learning framework for model
training. The performance of each model was evaluated using functions from the scikit-learn library.

The training data consisted entirely of normal data, and the experiment was performed using
unsupervised learning, which restricts the choice of variables; thus, only the timestamp variable,
representing the time of measurement, was excluded from the input values. In addition, min-max
normalization is performed to ensure that when the model reconstructs the anomaly data within the
evaluation dataset, the reconstructed anomaly data are clearly highlighted:

x′ = x − min (Xtrain)

max (Xtrain) − min (Xtrain)
(10)

3.2 Evaluation Methods

This section describes the performance metrics and model hyperparameters employed to assess
the anomaly detection capabilities of each model.

Fig. 4 visualizes the overall process of calculating the reconstruction error through the autoen-
coder model. The experiment focuses on determining the timing of an anomaly based on the
reconstruction error. Accordingly, Eq. (11) is applied to calculate the reconstruction error between
the model input x and reconstructed data z, which allows for calculating each reconstruction error to
assess the discrepancy between the input data and reconstructed input data over time:

Reconstruction Error = 1
n

∑n

i=1
(zi − xi)

2 (11)

Following this process, a sequence of reconstruction error points (REt) is produced, where each
point is classified as an anomaly (1) or normal (0) based on a threshold (θ ):

ŷt =
{

1, if (REt) > θ ,
0, otherwise.

(12)

The threshold (θ ) in the experiment is set to the value that enables the best performance for each
model concerning the reconstruction error.

Figure 4: Process of calculating the reconstruction error of a deep autoencoder model
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The confusion matrix evaluates the model performance and is a visual matrix that represents
the relationship between the model predictions and actual labels, comprising the following four key
elements:

• True positives (TP): Cases where the model accurately identifies anomaly data, representing the
count of actual anomalies correctly predicted.

• False positives (FP): Cases where the model incorrectly identifies normal data as anomalies,
indicating the count of normal data predicted as anomalies.

• True negatives (TN): Cases where the model accurately identifies normal data, representing the
count of correctly predicted normal data.

• False negatives (FN): Cases where the model incorrectly identifies anomaly data as normal,
indicating the count of anomalies mistakenly predicted as normal.

Precision is calculated as the ratio of TPs to the sum of TPs and FPs, indicating how accurately
the model identifies anomaly data:

Precision = TP/(TP + FP) (13)

Recall is calculated as the ratio of TPs to the sum of TPs and FNs, representing the proportion of
identified anomalies out of all the anomalies that the model should detect:

Recall = TP/(TP + FN) (14)

The F1 score is calculated as the harmonic mean of precision and recall and is used as a
comprehensive performance metric for imbalanced class problems:

F1 score = 2 × (Precision × Recall)/(Precision + Recall) (15)

Therefore, the confusion matrix allows for a comprehensive performance evaluation. Combining
precision, recall, and the F1 score quantifies the performance of the anomaly detection model,
assessing how effectively the model detects anomalies.

3.3 Ablation Study

In this section, we presented the results of our ablation study, focusing on the impact of removing
components from the hybrid model structure, such as linear layers, CNN layers, LSTM layers, and
BiLSTM layers. We evaluated five variants: linear encoder, convolutional encoder, LSTM encoder, bi-
directional LSTM encoder, and convolutional bi-directional LSTM encoder. The linear autoencoder
(Linear-AE) served as a basic model and used simple linear layers to reconstruct the input data. This
model helped establish a basic performance metric against which more complex architectures were
evaluated. The Convolutional Autoencoder (CAE) used Conv1D layers to extract latent features from
the input data and reconstruct it based on these features. Key hyperparameters for this model included
window size, number of filters, kernel size, and strides. The Conv1D layers allowed the model to capture
spatial dependencies within the data, improving the quality of the reconstruction.

The LSTM autoencoder (LSTM-AE) used LSTM layers to capture temporal dependencies in
the data. The critical hyperparameters for this model were the number of LSTM layers and the
number of units per LSTM layer. The LSTM layers were adept at learning long-term dependencies
and patterns within time series data, making them suitable for sequential data reconstruction. The
Bidirectional LSTM autoencoder (BiLSTM-AE) extended the capabilities of the LSTM-AE by using
bidirectional LSTM layers. These layers processed the input data in both forward and backward
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directions, thereby capturing temporal dependencies more comprehensively. The hyperparameters for
this model were similar to those of the LSTM-AE, focusing on the number of layers and units per
layer. The bidirectional nature of the LSTM layers allowed the model to understand the context of
both past and future data points, improving anomaly detection performance.

The convolutional bidirectional LSTM autoencoder (ConvBiLSTM-AE) integrated Conv1D
layers with BiLSTM layers to extract spatial and temporal features simultaneously. This hybrid
approach exploited the strengths of both convolutional and recurrent layers. Critical hyperparameters
included the number of Conv1D layers, number of filters, kernel size, strides, and number of BiLSTM
layers and units. The Conv1D layers initially captured spatial features, which were then processed
by the BiLSTM layers to extract temporal patterns, resulting in a robust feature representation for
anomaly detection. Training hyperparameters for all autoencoder models included a batch size of
512, the Adam optimizer, a mean squared error (MSE) loss function, and 60 epochs. These consistent
training settings ensured a fair comparison between different model architectures. Table 3 summarizes
the hyperparameter details of each model. We used precision, recall, F1 score, accuracy, and area under
the curve (AUC-ROC) as evaluation metrics. The results are summarized in Tables 4 and 5 for two
different test scenarios.

Table 3: Hyperparameter configurations for various autoencoder models

Hyperparameter Linear-AE CAE LSTM-AE BiLSTM-AE ConvBiLSTM-AE

Conv1D filters – 128/64 – – 132
Conv1D kernel size – 48 – – 48
LSTM units – – 33/10/5 33/10/5 32
Dense layers 128, 64, 32 – – – 66
Window size 1 1 10 10 1
Threshold (Test 1) 2.0 × 10−5 8.0 × 10−4 5.91 × 10−3 3.14 × 10−3 1.6 × 10−4

Threshold (Test 2) 5.0 × 10−5 3.7 × 10−3 1.72 × 10−3 2.5 × 10−4 1.08 × 10−3

Decoder structure Symmetric

Table 4: Comparative performance of autoencoder models on Test 1

Model Accuracy Precision Recall F1 score AUC-ROC

Linear-AE 0.951 0.592 0.355 0.444 0.874
CAE 0.971 0.765 0.681 0.721 0.911
LSTM-AE 0.949 0.534 0.553 0.543 0.882
BiLSTM-AE 0.966 0.751 0.570 0.648 0.891
ConvBiLSTM-AE 0.978 0.870 0.711 0.783 0.929

The results of Test 1, shown in Table 4, demonstrated that the ConvBiLSTM-AE model achieved
the highest performance across all metrics with an F1 score of 0.783, indicating its superior ability to
detect anomalies compared to the other models. The CAE model also performed well with an F1 score
of 0.721, followed by the BiLSTM-AE model with an F1 score of 0.648. The Linear-AE and LSTM-
AE models showed comparatively lower performance with F1 scores of 0.444 and 0.543, respectively.
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In Test 2, as shown in Table 5, the ConvBiLSTM-AE model again outperformed the other models
with an F1 score of 0.414. The CAE model followed with an F1 score of 0.405. The Linear-AE model
had an F1 score of 0.388, showing a decrease in performance compared to Test 1. The LSTM-AE and
BiLSTM-AE models showed significantly lower performance in Test 2, with F1 scores of 0.065 and
0.064, respectively. The ablation study highlighted the effectiveness of hybrid models, particularly the
ConvBiLSTM-AE, in anomaly detection tasks.

Table 5: Comparative performance of autoencoder models on Test 2

Model Accuracy Precision Recall F1 score AUC-ROC

Linear-AE 0.970 0.761 0.260 0.388 0.678
CAE 0.971 0.843 0.267 0.405 0.683
LSTM-AE 0.825 0.040 0.167 0.065 0.504
BiLSTM-AE 0.747 0.037 0.238 0.064 0.700
ConvBiLSTM-AE 0.972 0.842 0.274 0.414 0.670

These results demonstrate the potential benefits of incorporating both convolutional and recur-
rent layers into autoencoder architectures to improve their performance in detecting anomalies in
complex datasets. To further illustrate the performance of the models, several visualizations are
provided, including ROC curves, precision-recall curves, model validation loss over epochs, and
confusion matrices.

Fig. 5 shows the ROC curves for Test 1 and Test 2. These curves plot the true positive rate (TPR)
against the false positive rate (FPR) for different threshold settings. In both tests, the ConvBiLSTM-
AE model has the highest AUC-ROC, demonstrating the superior performance of the hybrid model.
Fig. 6 shows the precision-recall curves for Test 1 and Test 2, providing insight into the precision-recall
trade-off for each model.

Figure 5: Receiver operating characteristic (ROC) curves. (a) Test 1; (b) Test 2. The x-axis (false positive
rate) and y-axis (true positive rate) are dimensionless ratios used to evaluate model performance, both
of which are standard metrics in ROC analysis
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Figure 6: Precision-recall curves. (a) Test 1; (b) Test 2. The x-axis (recall) and y-axis (precision) are
dimensionless ratios used to evaluate model performance, both of which are standard metrics in
precision-recall analysis

In Fig. 5a, the ConvBiLSTM-AE model has the highest AUC-ROC of 0.929, indicating its
superior performance. It is followed by the CAE model with an AUC-ROC of 0.911, BiLSTM-AE
with an AUC-ROC of 0.891, LSTM-AE with an AUC-ROC of 0.882, and Linear-AE with an AUC-
ROC of 0.874. In Fig. 5b, the BiLSTM-AE model has the highest AUC-ROC of 0.700, followed by
CAE with an AUC-ROC of 0.683, Linear-AE with an AUC-ROC of 0.678, ConvBiLSTM-AE with
an AUC-ROC of 0.670, and LSTM-AE with a significantly lower AUC-ROC of 0.504.

In Fig. 6a, the ConvBiLSTM-AE model has the highest area under the curve (AUC-PRC) of 0.806,
followed by CAE with an AUC-PRC of 0.724, BiLSTM-AE with an AUC-PRC of 0.620, Linear-AE
with an AUC-PRC of 0.491, and LSTM-AE with an AUC-PRC of 0.472. In Fig. 6b, the CAE model
has the highest AUC-PRC of 0.351, closely followed by BiLSTM-AE with an AUC-PRC of 0.340.
The ConvBiLSTM-AE model has an AUC-PRC of 0.324, Linear-AE has an AUC-PRC of 0.318, and
LSTM-AE has the lowest AUC-PRC of 0.038.

Fig. 7 shows the validation loss over epochs for each model, which is plotted to show the
training progress and convergence of the models. The validation loss is measured by the MSE.
The ConvBiLSTM-AE model achieves the lowest validation loss, indicating better generalization
compared to the other models. The CAE and BiLSTM-AE models also show good performance with
relatively low validation loss. However, the LSTM-AE model has a higher validation loss, indicating
overfitting or suboptimal training.

Fig. 8 shows the confusion matrices for the ConvBiLSTM-AE model in both Test 1 and
Test 2, providing detailed insight into the classification performance. These results further illustrate
the robustness of the ConvBiLSTM-AE model in detecting anomalies.
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Figure 7: Validation loss over epochs for each model

Figure 8: Confusion matrix results for ConvBiLSTM-AE

3.4 Comparative Analysis with State-of-the-Art Models

In this section, we compared the performance of the ConvBiLSTM-AE model with other state-
of-the-art unsupervised anomaly detection models. The models compared were USAD [25], MAD-
GAN [26], and TranAD [27]. The performance metrics used for the evaluation were accuracy,
precision, recall, F1 score, and AUC-ROC. The anomaly detection thresholds for each model were
also considered: for Test 1, the thresholds were 0.212 for USAD, 0.2 for MAD-GAN, and 3.63 × 10−3

for TranAD; for Test 2, the thresholds were 0.087 for USAD, 0.4 for MAD-GAN, and 7.97 × 10−3 for
TranAD. The results are summarized in Tables 6 and 7 for two different test scenarios.

The comparison results in Table 6 for Test 1 show that the ConvBiLSTM-AE model significantly
outperformed the other models in terms of F1 score, reaching 0.783. This indicates its superior ability
to balance precision and recall. The TranAD model also performed well with an F1 score of 0.695,
which was higher than the performance of USAD and MAD-GAN. The MAD-GAN model had the
highest recall with 0.601, but its precision was very low, resulting in a much lower F1 score of 0.121.
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In Table 7 for Test 2, the ConvBiLSTM-AE model shows high performance with a precision of
0.842 and an F1 score of 0.670. TranAD has a comparable precision of 0.829 but a lower F1 score
of 0.390 due to its lower recall. The USAD and MAD-GAN models perform poorly in Test 2, with
significantly lower F1 scores of 0.093 and 0.102, respectively.

Table 6: Performance comparison with state-of-the-art models on Test 1

Model Accuracy Precision Recall F1 score AUC-ROC

USAD 0.936 0.409 0.337 0.370 0.789
MAD-GAN 0.519 0.067 0.601 0.121 0.654
TranAD 0.970 0.807 0.611 0.695 0.873
ConvBiLSTM-AE 0.978 0.870 0.711 0.783 0.929

Table 7: Performance comparison with state-of-the-art models on Test 2

Model Accuracy Precision Recall F1 score AUC-ROC

USAD 0.720 0.052 0.391 0.093 0.571
MAD-GAN 0.935 0.102 0.102 0.102 0.601
TranAD 0.971 0.829 0.255 0.390 0.680
ConvBiLSTM-AE 0.972 0.842 0.274 0.414 0.670

The performance of ConvBiLSTM-AE in both test scenarios highlights its robustness and
effectiveness in detecting anomalies compared to other models. The inclusion of convolutional and
recurrent layers in its architecture likely contributes to its superior performance by effectively capturing
both spatial and temporal features in the data. These results further validate the effectiveness of hybrid
models in anomaly detection tasks, particularly in complex datasets where both spatial and temporal
dynamics are critical. The ConvBiLSTM-AE model, with its balanced precision, recall, and F1 score,
demonstrates a strong capability for robust anomaly detection in various scenarios.

3.5 PCA Analysis of Autoencoder Embeddings

This study evaluated the effectiveness of an autoencoder model encoder in embedding data based
on the model performance. The embeddings extracted from the encoder were analyzed using the PCA
dimension reduction algorithm to evaluate the quality of the model embeddings. During the inference
process on test data using the trained model, the embeddings were extracted from the encoder just
before they were input to the decoder. These embeddings, obtained from the low-dimensional latent
space, effectively captured the main features of the original data.

PCA was applied to the extracted embedded data for dimensionality reduction and analysis.
PCA converts high-dimensional data into two dimensions, allowing for visual interpretation. This
visualization illustrates the main structures and patterns of the data embedded by the encoder.

Figs. 9 and 10 visualize the PCA dimensionality reduction results of the feature extracted from
the encoder of the ConvBiLSTM model into two-dimensional components using the Test 1 and
Test 2 inputs.
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Figure 9: PCA visualization with labels for ConvBiLSTM encoder output on Test 1

Figure 10: PCA visualization with labels for ConvBiLSTM encoder output on Test 2

Fig. 9 shows that the embedding of the Test 1 anomaly data overlaps the distribution of the
anomaly data with the normal data, but a significant portion of the anomaly data is located on the left
side. In contrast, the embedding of the Test 2 anomaly data was less effective. The embedding of the
Test 2 anomaly data shows that some anomaly data are located in the upper right corner, but because
the distributions of most of the anomaly data and normal data overlap significantly, the detection
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performance of the model on the Test 2 dataset decreases. This result suggests that the performance
of the hybrid model may vary depending on the characteristics of the dataset.

4 Discussion

The ConvBiLSTM-AE model demonstrated superior anomaly detection performance compared
to other autoencoder-based models. In Test 1, the ConvBiLSTM-AE model achieved a precision of
0.87 and an F1 score of 0.783. Despite a drop in performance for Test 2, the ConvBiLSTM-AE model
continued to outperform other models with an F1 score of 0.414. These results suggest that the hybrid
architecture combining CNN and BiLSTM layers improves the performance of the model by capturing
complex temporal patterns and dependencies in the data.

The inclusion of convolutional layers facilitated the extraction of robust features from time series
data, which is critical for effective anomaly detection. The differences in performance between Test 1
and Test 2 can be attributed to several factors, including the complexity and diversity of the anomaly
patterns in Test 2, changes in the data distributions, and the choice of reconstruction error thresholds.
In particular, the more complex and varied anomaly patterns in Test 2 likely posed a greater challenge
to the models’ detection capabilities than those in Test 1.

The innovative aspect of the ConvBiLSTM-AE model lies in its hybrid architecture, which
integrates CNN with BiLSTM networks. This integration not only facilitates the simultaneous
acquisition of spatial and temporal features but also represents a significant advance in the refinement
of anomaly detection, surpassing the capabilities of traditional autoencoder models.

The ConvBiLSTM-AE model shows remarkable improvements in handling high-dimensional
multivariate time series data compared to existing techniques. While traditional autoencoders have
proven effective in many scenarios, they often fail to capture the complex temporal dynamics present
in industrial datasets. The ConvBiLSTM-AE model addresses these shortcomings by leveraging the
strengths of both CNNs and RNNs.

For example, CNN layers reduce the dimensionality of the input data and highlight essential
features before passing them to the bidirectional LSTM layers. This process allows the temporal layers
to operate on a more refined and representative subset of the data, improving anomaly detection
performance.

Detailed comparisons with traditional methods such as simple autoencoders, as well as recent
unsupervised anomaly detection methods, show that the hybrid model not only achieves higher
accuracy and recall rates but also demonstrates superior robustness across various test scenarios. This
robustness can be attributed to the improved ability to learn and generalize from complex and noisy
data environments commonly found in industrial control systems.

The performance comparison with the latest models demonstrates the high detection capability of
the ConvBiLSTM-AE model. In Test 1, the ConvBiLSTM-AE model achieved an F1 score of 0.783,
outperforming other models such as USAD and MAD-GAN, which had F1 scores of 0.370 and
0.121, respectively. Although all models showed reduced performance in Test 2, the ConvBiLSTM-
AE still showed relatively high performance with an F1 score of 0.414. In contrast, other models such
as TranAD, USAD, and MAD-GAN had lower F1 scores compared to the ConvBiLSTM-AE.

Building on our findings with the ConvBiLSTM-AE model, future research should explore
additional areas not addressed in our current study to increase the impact and applicability of anomaly
detection technologies in industrial systems. The following areas are important directions for future
research:
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• Building upon our findings with ConvBiLSTM-AE model, future research should investigate
additional areas not addressed in our current study to enhance the impact and applicability
of anomaly detection technologies in industrial systems. The following areas represent key
directions for future research:

• Real-time anomaly detection: Integrating on-line fault detection for dynamic industrial systems
could significantly improve the responsiveness to evolving anomaly patterns, as suggested by the
results of [48].

• Advanced dataset development: Creating more comprehensive and realistic datasets, as empha-
sized in [49], will improve model training and validation, equipping systems to handle a wider
range of anomaly scenarios.

• Feature reduction techniques: Implementing advanced techniques such as singular value
decomposition (SVD), as highlighted in [50], could refine feature selection processes and
improve model efficiency in high-dimensional industrial IoT environments.

• Distributed learning approaches: Federated learning, as discussed in [51], offers promising
advances for decentralized model training that can improve privacy and model scalability in
distributed systems.

• Hybrid intrusion detection systems (IDS): The development of hybrid IDSs that combine
multiple detection methods could provide more nuanced threat detection capabilities in cyber-
physical systems, consistent with the innovations in [52] and [53].

These focused research avenues promise to significantly advance the scope and effectiveness
of anomaly detection models, ensuring that industrial security technologies evolve in tandem with
emerging industrial challenges and technological capabilities.

5 Conclusions and Future Work

In this study, we conducted an ablation study on ConvBiLSTM-AE, an unsupervised learning-
based hybrid autoencoder model for anomaly detection, using the HAI 23.05 dataset, which mimics
industrial control systems (ICS). The results of the ablation study showed that the hybrid autoencoder
model combining CNN and BiLSTM structures outperformed single CNN, LSTM, and BiLSTM
autoencoder structures in anomaly detection performance. In addition, we extracted the autoencoder
features of the hybrid model and performed a two-dimensional PCA to analyze the distribution of the
anomaly data.

We also experimentally evaluated the detection capabilities of the ConvBiLSTM-AE model
against the latest unsupervised anomaly detection models. As a result, the ConvBiLSTM-AE model
achieved a high F1 score, demonstrating its effectiveness in learning and detecting complex temporal
anomaly patterns. Compared to the latest anomaly detection models, the ConvBiLSTM-AE model
showed superior performance. This indicates that autoencoders can more accurately learn the complex
structure of ICS data and effectively detect various anomaly patterns.

These research results contribute to the body of research on anomaly detection in ICS environ-
ments using machine learning and deep learning technologies, and enhance our understanding of how
unsupervised learning-based models can be effectively applied in environments where anomalies are
rare. This study provides important technical insights for improving the stability and security of ICS.

Future research could focus on improving the generalizability of the model across different
ICS environment datasets. Understanding the reasoning behind model predictions is critical to
gaining confidence and facilitating real-world deployment of these models in industrial environments.
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Implementing dynamic thresholding techniques, such as moving average or exponentially weighted
moving average, can further improve detection accuracy by adapting to data variability in real time.

Another promising direction for future research is to integrate these models into real-time
monitoring systems to enable continuous anomaly detection and timely response to potential security
threats. In conclusion, this study confirmed that unsupervised learning-based autoencoder models,
especially the ConvBiLSTM-AE hybrid model, are effective approaches for anomaly detection in
industrial systems. These findings are expected to advance machine learning and deep learning
technologies and contribute to the safety and efficiency of ICS environments. Continued research
in this area will further improve the accuracy, robustness, and interpretability of the models, thus
promoting the development of safer and more reliable industrial systems.
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