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ABSTRACT

The surge in connected devices and massive data aggregation has expanded the scale of the Internet of Things
(IoT) networks. The proliferation of unknown attacks and related risks, such as zero-day attacks and Distributed
Denial of Service (DDoS) attacks triggered by botnets, have resulted in information leakage and property damage.
Therefore, developing an efficient and realistic intrusion detection system (IDS) is critical for ensuring IoT network
security. In recent years, traditional machine learning techniques have struggled to learn the complex associations
between multidimensional features in network traffic, and the excellent performance of deep learning techniques,
as an advanced version of machine learning, has led to their widespread application in intrusion detection. In
this paper, we propose an Adaptive Particle Swarm Optimization Convolutional Neural Network Squeeze-and-
Excitation (APSO-CNN-SE) model for implementing IoT network intrusion detection. A 2D CNN backbone is
initially constructed to extract spatial features from network traffic. Subsequently, a squeeze-and-excitation channel
attention mechanism is introduced and embedded into the CNN to focus on critical feature channels. Lastly, the
weights and biases in the CNN-SE are extracted to initialize the population individuals of the APSO. As the number
of iterations increases, the population’s position vector is continuously updated, and the cross-entropy loss function
value is minimized to produce the ideal network architecture. We evaluated the models experimentally using binary
and multiclassification on the UNSW-NB15 and NSL-KDD datasets, comparing and analyzing the evaluation
metrics derived from each model. Compared to the base CNN model, the results demonstrate that APSO-CNN-
SE enhances the binary classification detection accuracy by 1.84% and 3.53% and the multiclassification detection
accuracy by 1.56% and 2.73% on the two datasets, respectively. Additionally, the model outperforms the existing
models like DT, KNN, LR, SVM, LSTM, etc., in terms of accuracy and fitting performance. This means that the
model can identify potential attacks or anomalies more precisely, improving the overall security and stability of the
IoT environment.
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1 Introduction

As the Internet of Things age has emerged, people, things, and people have become more inter-
connected and share data, fostering the growth of social intelligence and improving people’s quality
of life and productivity. Millions of embedded sensors and objects were integrated into the Internet
of Things (IoT) [1], primarily composed of three logical layers: perception, network, and application
[2]. The perception layer collects and converts information, the network layer performs access and
transmission functions, and the application layer processes pertinent data from the network layer
and enables human-computer interaction through the devices. IoT devices may be more vulnerable to
different types of theft due to discrete operations occurring at different levels [3]. Furthermore, a great
deal of network interconnectivity—encompassing cloud infrastructure, services, industrial networks,
smart devices, and other intelligent entities—is present in the typical Internet of Things architecture [4].
The vast IoT system and the network’s pervasive interconnected nature expose end users to complex
security challenges such as malware attacks, data leakage, and unauthorized access. According to the
International Data Corporation (IDC) report, the number of IoT devices on the Internet will exceed
41 billion in 2025 [5]. With the surge in the number of devices, massive amounts of data are constantly
pouring in, and edge nodes have insufficient memory, low processing power, and energy constraints,
leading to various types of attacks. Among them, IoT is typically vulnerable to unknown attacks like
DDoS, denial of service (DoS), and data theft [6]. For this reason, it is especially crucial to guarantee
data integrity, confidentiality, authentication, and authorization [7] and to prevent user data leakage
and property damage.

A widespread intrusion detection system and an efficient defence mechanism must be developed
since IoT network security vulnerabilities have led to several incursions and attacks. The essence of
network intrusion and attack is to access network resources and control operations. Destroying all
resources and operations will damage network data, which will have a negative impact. An intrusion
detection system is the first line of defence for computer network security, which is achieved by
gathering network data and creating effective processing algorithms for the detected attacks. The
two main categories of intrusion detection systems [8] are misuse detection and anomaly detection.
Misuse detection builds a rule base using available data, effectively identifying known attacks but not
unknown ones, and requires frequent maintenance. Anomaly detection trains abnormal traffic features
to identify known and unknown attacks. Both approaches have drawbacks, including high false alarm
rates and low detection rates. In addition, depending on the detection object, the intrusion detection
system can be separated into host-based and network-based techniques [9]. This study focuses on the
more widely used network intrusion detection system (NIDS), as opposed to host-based intrusion
detection systems (HIDS), which monitor and analyze the activities of a single host to defend it from
network attack behaviours. NIDS can detect traffic throughout the network more accurately and in
real-time.

Attackers employ sophisticated techniques to conceal their malicious intentions, making tradi-
tional IDSs slightly inadequate in dealing with evolving and complex cyber threats [10]. To address
the shortcomings of traditional IDSs, machine learning (ML) techniques and their developed variants
have been widely employed to accomplish relevant classification tasks in NIDS [11]. By enabling more
effective and accurate attack identification, lowering false alarm rates, and adapting to the constantly
changing threat landscape, machine learning improves the performance of intrusion detection systems
by enabling security systems to effectively protect networks and data from malicious activities
and unauthorized access. The principle behind this technique is to learn network attack categories
in advance by using feature extraction and feature separation. Implementing an effective feature
engineering process in NIDS helps in lowering the model’s complexity and parameter count. On the
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other hand, when the data volume is large and high dimensionality, it is straightforward to cause long
training times, poor training effects, and the need to select the data artificially [12]. Reducing the data
volume or downgrading the dimensionality may destroy the implied correlation between the data and
the omission of important information. When evaluated on a specific dataset, the hyperparameters of
ML usually have room for improvement, which can potentially result in human resource depletion [13].
Popular NIDS designs rely more on ML to achieve high-quality performance. In contrast, traditional
ML-based NIDSs require extensive feature engineering and fine-tuning to ensure superior detection
accuracy and consistent maintenance with the latest training dataset to recognize constantly updated
cyber-attacks [14].

Machine learning techniques have shown significant advantages in IDS, but their limitations are
equally obvious. Deep learning, an advanced machine learning, produces a sophisticated multilevel
structure that can efficiently handle large-scale and high-dimensional data streams by drawing inspi-
ration from the human brain’s neural network. Scientists have created several ubiquitous deep-learning
models in real-world requirements in the past few years. These models are then integrated into a variety
of platforms and underlying applications to enable the realization of complex applications like target
detection, image processing, pattern recognition, and natural language processing. Deep learning
technology is currently being successfully used in NIDS [15], which offers novel ideas and avenues
for future study to address IoT security issues and achieve certain results. Current deep learning
models, including Deep Neural Networks (DNN), CNN, Recurrent Neural Networks (RNN), Long
Short-Term Memory (LSTM), and composite models, have been developed in response to the variety
and unpredictability of malicious assaults in the Internet of Things [16]. Each of these models has
certain benefits and drawbacks. A model combining DNN and federated learning (FL) for IoT
intrusion detection was proposed [17]. FL is utilized to address the drawbacks of traditional ML/DL,
maintaining and upholding the security of local data that is no longer shared between entities and
reducing storage and power consumption. However, the model complexity is high, and it is more
difficult to verify its scalability using only a single dataset. The CNN-BiLSTM intrusion detection
model was created to address the minority class imbalance issue in the dataset [18]. It uses a focal
loss function to achieve good detection accuracy, but its long runtime causes problems for resource-
constrained nodes. Graph convolution neural networks (GCNs) were utilized to create attribute maps,
integrated CNN for classification, and feature engineering processing for intrusion detection datasets
[19]. The new model’s performance is improved compared to the baseline model, but the time cost of
the data preprocessing phase is high.

Demand determines development. Researchers have developed many model architectures based
on deep learning techniques. CNNs have been widely used in various deep-learning tasks due to their
parameter-sharing, local awareness, and robust feature extraction capabilities [20]. CNNs’ ability to
accurately capture local features in pictures for detail extraction and sophisticated target classification
makes them the most effective in image processing tasks [21]. To fully realize feature extraction and
better capture traffic features’ spatial characteristics and temporal dynamics, we convert each one-
dimensional abnormal traffic data into two-dimensional grayscale image data. Meanwhile, it is crucial
to consider both the timeliness of the model detection and the detection performance of anomalous
assaults when detecting intrusions in IoT networks [22]. This research develops a lightweight two-
dimensional convolutional neural network model to achieve spatial feature extraction and network
traffic categorization identification.

Metaheuristic algorithms are widely used in NIDS due to their adaptability and robust search
capabilities. Furthermore, it has been demonstrated that swarm-based algorithms work well to
solve various optimization issues [23]. Researchers have recently applied population intelligence
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algorithms to network intrusion detection, feature selection, imbalance detection, and hyperparameter
optimization. These operations have decreased the false alarm and false positive rates and significantly
enhanced the performance of identifying anomalous traffic. Numerous universal swarm intelligence
algorithms have been developed, among which the particle swarm algorithm is more mature. It
has low time complexity, good optimization performance, strong robustness, and stability. We are
considering employing the particle swarm algorithm to optimize the built-in convolutional neural
network, accomplish model pre-training, enhance model detection performance, and minimize time
loss. In this study, we propose a novel hybrid model for network intrusion detection called APSO-
CNN-SE. It primarily leverages CNN as its backbone and optimizes it using the channel attention
mechanism and the swarm intelligence algorithm for intrusion detection in the Internet of Things.
Among them, APSO is an adaptive particle swarm algorithm proposed in this paper to enhance the
adaptive updating performance of the algorithm on the typical PSO. The introduced channel attention
mechanism is used to learn the feature channels that are relatively important in the model and improve
the performance of detecting anomalous threats. The following are this study’s primary goals and
contributions:

• In the data preprocessing stage, character-based data is numerical, numerical data is maximum-
minimum normalized, and a data-filled image transformation method transforms sequence-
based traffic data into 2D image data.

• A novel CNN architecture is proposed to fully utilize the advantages of convolutional neural
networks in image processing. Additionally, a SE channel attention mechanism is introduced
to improve the learning and memory of significant features.

• Adaptively adjust the particle swarm algorithm’s weights and acceleration factors to improve
the algorithm’s ability to search for the space’s global optimal solution. The APSO-CNN-SE
model is created, which updates the network model’s weights and biases using APSO to provide
the best model and increase the accuracy of anomalous attack detection.

• The proposed model uses the UNSW-NB15 and NSL-KDD datasets as benchmark test data
to perform binary and multi-classification detection. Appropriate evaluation metrics have
been used for experimental evaluations and comparative analyses. The ML, constructed DL
models, and advanced research findings from recent years are compared and analyzed with the
performance metrics derived from the APSO-CNN-SE. Meanwhile, parameter sensitivity tests
are included to enhance the selection criteria of certain hyperparameters.

The rest of the paper is organized as follows. Section 2 reviews the related work on network
intrusion detection based on machine learning and deep learning techniques in the last few years;
Section 3 describes the proposed model architecture in detail; Section 4 describes the experimental
environment and related evaluation metrics and analyzes the experimental results explicitly; and
Section 5 summarizes the work of this paper as well as describes the future research directions.

2 Related Works

This section summarizes the network intrusion detection implemented using machine learning
and deep learning approaches and the research results obtained and analyzes the excellence of these
models.

The realization of network intrusion detection based on machine learning techniques can effec-
tively improve the timeliness and detection rate. The Euclidean paradigm in K-Nearest Neighbor
(KNN) was enhanced by the Shannon-Entropy algorithm in literature [24], which preserved the
contribution of low-importance features to data classification while emphasizing the influence of
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high-importance features. According to the experimental results, the algorithm also increased the
accuracy of DoS detection. The authors used a decision tree classifier for dependable intrusion
detection and the entropy decision technique for feature selection to improve the data quality [25].
The classifier achieved an accuracy of 98.80% on CICIDS 2017 and 99.42% on NSL-KDD. A genetic
algorithm was employed to pick features for data dimensionality reduction [26]. Three classifiers,
namely SVM, KNN, and XGBoost, were utilized to identify anomalous behaviors. Evaluation metrics
were used to examine the benefits of each classifier objectively. A classification and regression tree
(CART) based feature selection approach has been suggested, generating 5 out of 41 features in the
KDDCUP99 dataset, with lower computing cost and better intrusion detection performance for most
classifiers [27]. Combining a support vector machine technique and a simple Bayesian classifier, the
authors created a DLHA model that successfully classified anomalous assaults in the NSL-KDD
dataset and produced good detection performance [28]. Considering the imbalance of the dataset
and the model maintenance problem, the Random Forest (RF) classifier and XGBoost classifier
are integrated into the literature [29] to classify the normal anomalies for the network traffic, which
achieves an accuracy of 99.7% and 99.66% on two datasets, UNSW-NB15 and BoT-IoT, respectively.
A lightweight, integrated model was built using decision trees (DT), logistic regression (LR), and plain
Bayes as base classifiers and stochastic gradient descent as meta-classifiers. Feature selection from a
chi-square test was added to achieve dimensionality reduction, and binary and multi-classification
were used to assess the model’s performance. The findings showed that the model could increase
intrusion detection accuracy and lower the false positive rate (FPR) [30]. The authors used the
Synthetic Minority Oversampling Technique (SMOTE) oversampling method to solve the problem of
unbalanced data category distribution and proposed automatic machine learning to achieve automatic
hyper-parameter tuning with timeliness, obtaining 99.7% accuracy on multiclassification detection in
KDDCUP99 [31].

Deep learning algorithms outperform machine learning methods in network intrusion detection
because they handle massive amounts of high-dimensional data. A novel technique that selects features
via fusion of statistical importance using Standard Deviation and Difference of Mean and Median was
proposed, which facilitates the search for features with solid correlation and classifies and identifies the
processed traffic data using DNN. The experimental findings demonstrated that the suggested model
performs well across the three benchmark datasets [32]. On the BoT-IoT dataset, anomaly-based
network intrusion detection using CNNs yielded 92% accuracy [33]. A three-layer intrusion detection
model combining Weighted Deep Neural Network (WDNN), CNN, and LSTM was built to achieve
supervised learning of anomalous traffic data, and an Adaptive Synthetic Sampling (ADASYN)
oversampling technique was added to solve the data imbalance problem. Lastly, the NSL-KDD,
CICIDS-2017, and CIDDS 001 datasets were used to test the model’s efficacy. The results showed
that the model can recognize classifications with more than 97% accuracy [34]. The CNN-BiLSTM
model was constructed by fusing spatiotemporal techniques [35]. The data was resampled using the
NCR-SMOTE method, and feature selection was achieved through a recursive feature elimination
method based on extreme random numbers. The results indicated that while the model’s temporal
complexity may be insufficient, the individual detection indexes were comparatively more optimal.
A graph neural network (GNN) was examined in [36] for network intrusion detection. The model
exhibited good training results and strong generalization ability by utilizing edge features and a graph
topological structure in a self-supervised manner. The authors employed DNN as a classifier and
stacked autoencoder to reconstruct the relevant features. According to experimental analysis, the
model was better at identifying unknown attacks and can be modified to accommodate evolving
networks [37]. An anomaly detection model of FlowGANAnomaly was proposed for detecting
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anomaly attacks in NIDS, drawing inspiration from the application area of Generative Adversarial
Networks (GAN) in computer vision and imaging anomaly detection. The low recall problem of
anomaly detection is effectively improved by using feature mapping to a uniform feature space and
introducing a novel anomaly scoring method; validation results on four datasets demonstrate that the
proposed model can significantly improve anomaly detection performance [38]. Improved versions
of four RNNs—Bidirectional Long Short Term Memory (Bi-LSTM), LSTM, Bidirectional Gated
Recurrent Unit (Bi-GRU), and Gated Recurrent Unit (GRU)—were fused to produce the SPIDER
model. PCA is used to reduce the data’s dimensionality, and the results of the experiments demonstrate
the model’s strong robustness in intrusion detection [39].

In recent years, the manual parameter tuning approach to model optimization for ML and DL
techniques has increasingly relied on experts’ experience and deep comprehension of algorithms and
datasets. This approach is time-consuming and requires a significant investment of human resources.
Thus, to advance the technology’s automated innovation and intelligent development, researchers are
considering combining swarm intelligence algorithms with ML/DL techniques and applying them
to NIDS to achieve feature selection, parameter training, and hyper-parameter optimization. The
dimensionality of intrusion detection data was reduced using the Ant Colony Optimization (ACO)
algorithm, which enhanced data quality and reduced energy usage. After being preprocessed, the data
was trained in a DNN and tested to see whether it could outperform some of the current techniques
[40]. A Whale Optimization Algorithm (WOA) and Artificial Bee Colony Optimization Algorithm
(ABC) algorithms were fused to implement feature selection, and a CNN model was proposed to detect
classification. The proposed mechanism reduced the execution time by 76.54% on NSL-KDD [41].
A hybrid Hunger Games Search and Remora Optimization Algorithm (HGSA) has been proposed
to implement feature extraction and binary classification identification of network traffic using an
SVM algorithm with an accuracy of over 99% [42]. The authors created a novel intrusion detection
model by combining LSTM with the improved golden jackal optimization algorithm to select the
best feature subset from the IDS dataset. This model could achieve accurate classification on both
datasets, but the increased number of iterations somewhat increases the time loss [43]. A voting
gray wolf optimizer (GWO) ensemble model was proposed to implement traffic analysis and data
processing through voting techniques, feature selection, and feature extraction techniques, as well
as optimize the parameters of the ensemble model using GWO. The experimental results show that
the model has better detection performance when processing actual traffic data in IoT [44]. African
Vulture Optimization Algorithm (AVOA), presented in [45], organizes feature selection. In the data
preprocessing phase, the Deep Belief Network-Long Short Term Memory (DBN-LSTM) model was
built to distinguish between normal and abnormal packets. The outcomes demonstrated that this
model performs better than conventional techniques for network intrusion detection classification.
The Grasshopper Optimization Algorithm (GOA) was implemented in an artificial neural network
(ANN) to obtain the optimal ANN in a continuous training process. The ANN’s weights and biases
were utilized as the GOA’s position vector, and the fitness function was selected as the training
error. The experimental results demonstrated that the model correctly classified abnormal and normal
messages on the KDD and UNSW-NB15 datasets [46]. The cross-entropy loss function value of
the validation set was used as the fitness function when the adaptive inertia weighting strategy
improved particle swarm optimization was first introduced in [47]. The results demonstrated that the
model was reliable and effective in IoT network intrusion detection. A model framework for a one-
dimensional convolutional neural network (1D-CNN) was created. The model’s nine hyperparameters
were then optimized using two evolutionary techniques, PSO and Genetic Algorithm (GA), to detect
binary classification on three datasets: UNSW-NB15, CIC-IDS2017, and NSL-KDD. The authors
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were successful in getting accurate detection outcomes. The development of this model not only
advances network security research but also dramatically increases its ability for generalization and
adaptation [48].

Table 1 shows the research results achieved using ML and DL algorithms to realize network
intrusion detection for better comparative analysis. While most developed models exhibit better
detection performance, the system’s detection efficiency is significantly reduced by the longer execution
times and more complex algorithms. Additionally, some models are only tested on a single dataset,
making it challenging to represent the model’s capacity for generalization accurately. Further, more
literature fuses swarm intelligence algorithms with ML/DL models and applies them to IDS feature
selection or parameter optimization. Although the models’ detection results are more significant, they
have high computational complexity and parameter dependency. Considering the optimization ability
and adaptivity of intelligent algorithms, this paper fuses swarm intelligence algorithms and DL models
to overcome the limitations of individual models and enhance the classification effect. In addition, the
DL model’s primary construction feature is lightweight, which shortens the algorithm’s execution time
and lowers the system’s power consumption. The network environment’s scalability and adaptability
are more thoroughly validated using multiple intrusion detection data datasets from practical IoT
scenarios.

Table 1: Summary of current research techniques in intrusion detection

Refs. Year Technique Dataset Results
(Acc)

Pre-processing Weakness

[24] 2021 EM-KNN NSL-KDD 98.83% – High execution time.
[25] 2021 DTE NSL-KDD 99.42% Min-max normalization. High implementation and

execution complexity.CICIDS2017 98.80% Feature selection.
[26] 2021 SVM CIRA-CIC-

DOHBrw2020
98.94% Min-max normalization. High execution time.

KNN UNSW-NB15 98.90%
Feature selection.

XGBoost Bot-IoT 96.48%
[27] 2022 CART KDD CUP 99 96.90% Min-max normalization. Insufficient generalization

capacity.Feature selection.
[28] 2021 NB-SVM NSL-KDD 88.97% One hot encoding. Depends on the choice of

hyperparameters.Normalization.
PCA.

[29] 2023 RF-XGBoost UNSW-NB15 99.70% Normalization. High execution time.
PCA.

Bot-IoT 99.66%
SMOTE.

[30] 2023 EL KDD CUP 99 99.19% Label encoding. Imbalanced distribution of
data.Min-max normalization.

UNSW-NB15 80.96%
CIC-IDS2017 99.48%

[31] 2023 Auto-ML KDD CUP 99 99.79% Feature selection. Insufficient generalization
capacity.SMOTE.

[32] 2023 DNN NSL-KDD 99.84% One hot encoding. High execution time.
UNSW-NB15 89.03% Normalization.
CIC-IDS2017 99.80% Feature selection.

[33] 2022 CNN NID 99.51% – Limited test experiments.
BoT-IoT 92.85%

(Continued)
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Table 1 (continued)

Refs. Year Technique Dataset Results
(Acc)

Pre-processing Weakness

[34] 2023 WDNN-CNN-
LSTM-
XGBoost

NSL-KDD 97.94% ADASYN. High execution time.
CICIDS-2017 98.46%

Feature selection.
CIDDS 001 97.90%

[35] 2023 CNN-BiLSTM UNSW-NB15 84.5% Min-max normalization. High time complexity.
CSE-IC-IDS2018

NCR-SMOTE.
98.30% Feature selection.

[36] 2022 GNN NF-UNSW-
NB15-v2

98.62% Normalization. High algorithmic
complexity.

NF-CSE-CIC-
IDS2018-v2

96.86% –

[37] 2023 SAE-DNN Self-collected
datasets

97% – Imbalanced distribution of
datasets.

[38] 2024 FlowGAN
Anomaly

NSL-KDD 87.47% Normalization. High model complexity.
CIC-IDS2017 88.40%
CIC-DDoS2019 90.12%
UNSW-NB15 73.54%

[39] 2022 SPIDER NSL-KDD 82.91% Label encoding. Imbalanced distribution of
datasets.UNSW-NB15 72.14% PCA.

[40] 2022 ACO-DNN KDD CUP 99 92.9% Label encoding. Dependence on choice of
parameters.UNSW-NB15 99.5%

Min-max normalization.
Feature selection.

[41] 2022 WOA-ABC-
CNN

NSL-KDD 98% Feature selection. High time complexity.

[42] 2022 HHGS-ROA-
SVM

AWID 99.16% Normalization. Inadequate test experiments.
Feature selection.

[43] 2024 IBGJO-LSTM NSL-KDD 98.75% Min-max normalization. High time complexity.
CIC-IDS2017 99.60% Feature selection.

[44] 2024 Voting GWO
ensemble model

Bot-IoT 99.98% Feature selection. Threats to validity.
UNSW-NB15 100%

[45] 2023 AVOA-DBN-
LSTM

NSL-KDD 98.99% Min-max normalization. Inadequate test experiments.
Feature selection.

[46] 2020 GOA-MLP KDD 95.41% Normalization. Higher number of
parameters.UNSW-NB15 98.88% Feature selection.

[47] 2021 APSO-CNN Collected
datasets

96% Min-max normalization. High time complexity.

[48] 2023 GA-1D-CNN UNSW-NB15 99.31% Normalization. Computational complexity.
CIC-IDS2017 99.71% One hot encoding.
NSL-KDD 99.63%

[48] 2023 PSO-1D-CNN UNSW-NB15 99.28% Normalization. Computational complexity.
CIC-IDS2017 99.74% One hot encoding.
NSL-KDD 99.52%

3 Proposed Method

This section proposes a novel deep learning model with a convolutional neural network as the
backbone network. Fig. 1 illustrates this specific network intrusion detection framework. To explain
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the internal workings of the model better, we break this section into three subsections: data description,
data preprocessing, and specific model.

Dataset
UNSW-NB15
NSL-KDD

Data Pre-Processing

Categorical 

features

Numeric 

Features

Max-min Normalization

2D image conversion

Label encoding

Training Testing

APSO-CNN-SE Model

Binary / Multi-class Classification

Performance evaluation

Figure 1: Flowchart for classification IDS model

3.1 Datasets Description

3.1.1 UNSW-NB15

The UNSW-NB15 dataset was produced and generated by the Australian Center for Cyber
Security (ACCS) Cybersecurity Research Team [49] in 2015 using the IXIA Perfect Storm tool,
covering common cyber attacks and normal traffic. The dataset is collected in a real network
environment and is widely used in network intrusion detection with high credibility. Its creation process
is as follows: first, the TCPdump tool captures traffic data generated by artificially initiated transient
attacks and real-world normal network activities. The captured traffic data is then processed using
the Bro-IDS tool and algorithms to generate a CSV file containing 48 features. Furthermore, 44
features are extracted, and the training and test sets are divided. As shown in Table 2, UNSW-NB15
contains 42 traffic features, with 43 and 44 denoting the multiclassification and biclassification labels,
respectively. Among the 42 features, ‘proto,’ ‘service,’ and ‘state’ belong to non-numeric features, and
the remaining 39 are numeric. These features can also be categorized as Flow Features, Base Features,
Content Features, Time Features, etc.

Like other datasets, UNSW-NB15 has been divided into a training set and a test set, which contain
175,341 and 82,332 flow data, respectively. The dataset includes nine attack categories: Generic,
Exploits, Fuzzers, DoS, Reconnaissance, Analysis, Backdoors, Shellcode, Worms, and one normal
category. We exhibit the matching pie charts in Fig. 2 to help visualize the data distribution of the
UNSW-NB15 training set and test set.
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Table 2: The features of the UNSW-NB15 dataset

No. Feature Types No. Feature Types No. Feature Types

1 dur float 16 sinpkt float 31 ct_srv_src int
2 proto nominal 17 dinpkt float 32 ct_state_ttl int
3 service nominal 18 sjit float 33 ct_dst_ltm int
4 state nominal 19 djit float 34 ct_src_dport_ltm int
5 spkts int 20 swin int 35 ct_dst_sport_ltm int
6 dpkts int 21 stcpb int 36 ct_dst_src_ltm int
7 sbytes int 22 dtcpb int 37 is_ftp_login binary
8 dbytes int 23 dwin int 38 ct_ftp_cmd int
9 rate float 24 tcprtt float 39 ct_flw_http_mthd int
10 sttl int 25 synack float 40 ct_src_ltm int
11 dttl int 26 ackdat float 41 ct_srv_dst int
12 sload float 27 smean int 42 is_sm_ips_ports binary
13 dload float 28 dmean int 43 attack_cat nominal
14 sloss int 29 trans_depth int 44 label binary
15 dloss int 30 response_body_len int

Figure 2: Distribution of UNSW-NB15 training and test sets

3.1.2 NSL-KDD

The NSL-KDD dataset is a publicly available intrusion detection dataset created by Tavallaee
et al. [50] in 2009 by the National Science Laboratory, which belongs to the improved version of
KDDCUP99 and is characterized by low redundancy and balanced data volume. This dataset is
generated by simulating network traffic and contains normal traffic and various intrusion activities,
so it is closer to the actual network environment. Meanwhile, NSL-KDD is one of the most widely
used datasets in intrusion detection, which promotes the research and development of intrusion
detection algorithms. As shown in Table 3, NSL-KDD contains 43 feature attributes; the class attribute
numbered 42 is the subclasses corresponding to each traffic data, and we categorize all subclasses
into ‘Normal,’ ‘Dos,’ ‘Probe,’ ‘U2R’, and ‘R2L’ to facilitate the implementation of multi-classification
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detection. ‘protocol_type,’ ‘service,’ and ‘flag’ attributes are tag type features. The attribute numbered
43 indicates the severity of the traffic input itself, which is not helpful for categorization. It does not
play a role. Hence, it needs to be removed, and the remaining 38 attributes are numeric features.

Table 3: The features of the NSL-KDD dataset

No. Feature Types No. Feature Types

1 duration int 23 count int
2 protocol_type nominal 24 srv_count int
3 service nominal 25 serror_rate float
4 flag nominal 26 srv_serror_rate float
5 src_bytes int 27 rerror_rate float
6 dst_bytes int 28 srv_rerror_rate float
7 land int 29 same_srv_rate float
8 wrong_fragment int 30 diff_srv_rate float
9 urgent int 31 srv_diff_host_rate float
10 hot int 32 dst_host_count int
11 num_failed_logins int 33 dst_host_srv_count int
12 logged_in int 34 dst_host_same_srv_rate float
13 num_compromised int 35 dst_host_diff_srv_rate float
14 root_shell int 36 dst_host_same_src_port_rate float
15 su_attempted int 37 dst_host_srv_diff_host_rate float
16 num_root int 38 dst_host_serror_rate float
17 num_file_creations int 39 dst_host_srv_serror_rate float
18 num_shells int 40 dst_host_rerror_rate float
19 num_access_files int 41 dst_host_srv_rerror_rate float
20 num_outbound_cmds int 42 class nominal
21 is_host_logins int 43 difficulty_level int
22 is_guest_login int

Similarly, NSL-KDD is divided into training and test sets, where the training set contains 125,973
data, and the test set includes 22,544 data. As shown in Fig. 3, the distribution of the five categories
of the NSL-KDD dataset on the training set and test set is visualized, and it can be found that the
amount of data for ‘U2R’ and ‘R2L’ is relatively small, and there is an imbalance in the distribution
of data.
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Figure 3: Distribution of NSL-KDD training and test sets

3.2 Data Preprocessing

3.2.1 Label Encoding

Neural networks require transforming non-numeric data into numeric data because they cannot
handle non-numeric data. Currently, labelled encoding and one-hot encoding are popular solutions. In
one-hot encoding, a non-numeric feature’s category variables are converted into binary vectors, with
each category variable corresponding to a binary vector with one element of 1 and all other elements
of 0. The number of category variables determines the dimension of the transformed feature. To put
it briefly, the transformation involving one-hot encoding raises the energy needed to process the data
and increases the dimensionality of the feature.

Thus, this paper applies the label encoding method for encoding conversion. It is based on the
idea that every variable in a character category feature should have a distinct integer label. This way,
the dimensions of the feature remain unchanged after encoding, and the category variable of a non-
numeric feature is transformed into the corresponding numeric value. For instance, in the UNSW-
NB15 dataset, the character-based attribute ‘state’ takes values containing ‘CON,’ ‘ECO,’ ‘FIN,’ ‘INT,’
‘PAR,’ ‘REQ,’ ‘RST,’ ‘URN,’ and ‘no’ 9 types, based on the label encoding’s alphabetical order,
encoded in the range of 0–8, the feature dimensions have not been expanded. The process of encoding
the three character-based category labels in the NSL-KDD dataset is similar.

3.2.2 Max-Min Normalization

Variations in the features’ magnitudes during training will affect the model’s performance. For
example, suppose a feature has a considerable value. In that case, the model may incorrectly assign a
higher weight because it believes it to be crucial, whereas if a feature has a small value, it may mistakenly
assign it a lower weight. After all, it believes it to be unimportant. Therefore, after label encoding,
feature scaling needs to be introduced to ensure that all features in the dataset are at almost the same
scale.

In this paper, 42 feature attributes of UNSW-NB15 and 41 feature attributes of NSL-KDD are
linearly mapped to the range of [0, 1], respectively, based on the maximum-minimum normalized
feature scaling, which results in a uniform range of values and a more homogeneous distribution
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among different features. After the feature values are scaled, the gradient amplification effect in the
backpropagation process is reduced, and the model converges better. Meanwhile, when the feature
values are scaled to a smaller range, the network weights can be updated faster, effectively improving
the convergence speed of the model. The scaling law is shown in Eq. (1).

xnew = x − xmin

xmax − xmin

(1)

x denotes the feature vector corresponding to a certain attribute, xmax and xmin denote the maximum
and minimum values of this feature vector, respectively, and xnew denotes the new feature vector
obtained, which takes values ranging from 0 to 1 for each dimension.

3.2.3 2D Image Conversion

After label encoding and max-min normalization of one-dimensional traffic data, this paper
uses a data padding-based image transformation method. That is, the original 42 dimensions are
expanded to 49 dimensions by using 0 as the padding value for UNSW-NB15, and the original 41
dimensions are expanded to 49 dimensions by using 0 as the padding value for NSL-KDD, all while
maintaining all feature information in the original data samples. The built two-dimensional neural
network architecture is considered pervasive for intrusion detection datasets. Therefore, both datasets
are expanded to 49 dimensions and then evolved into a two-dimensional matrix, so each traffic data
is transformed into image data of 7 ∗ 7 size. The principle of data padding is to use the pad built-in
function in the numpy library to pad zero values on the end of the column dimension, hoping that the
length of each one-dimensional array is 7. If the length of the current one-dimensional array is not 7,
then we need to pad enough zeros to reach the length of 7. Next, the reshape function reshapes each
training sample into a 7 ∗ 7 2D image shape. After reshaping, the fill values are arranged in the image’s
edge region. The filled zeros are then used as input for the convolution or pooling operation, allowing
the convolution kernel or pooling window to cover the edge region of the image rather than simply
ignoring the edge pixels. Thus, this method saves more spatial information and somewhat lessens the
loss of edge information. The process of visualizing traffic data conversion into 2D image data is
shown in Fig. 4. This paper converts one-dimensional traffic data into two-dimensional image data to
fully utilize the benefits of convolutional neural networks in image feature extraction. This improves
the accuracy of intrusion detection by learning critical feature information more precisely.

0.000011,udp,-
,INT,2,0,496,0,90909.0902,254,0,180363632,0,0,0,0.01
1,0,0,0,0,0,0,0,0,0,0,248,0,0,0,2,2,1,1,1,2,0,0,0,1,2,0

0,tcp,ftp_data,SF,491,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2
,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,150,25,0.17,0.03,0.

17,0.00,0.00,0.00,0.05,0.00

Figure 4: 2D image conversion for two datasets
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3.3 APSO-CNN-SE

3.3.1 Backbone Network Architecture

Fig. 5 shows the CNN-SE backbone network that is suggested in this paper. A neural network
model is created by combining multiple modules. The model’s input is a 2D image that has undergone
data preprocessing. The model is then trained iteratively to produce results for both binary and
multiclassification detection.

Conv2D
Batch

Normalization2D
ReLUModule Global Pooling2D Fc ReLU Fc SigmoidSE

Module Module SE Module

Module.
.
.

.

.

.

Binary and multi

classification results

Input

Output Fully Connected Flatten Maxpooling2D

Linear ReLU Dropout

Figure 5: CNN-SE network architecture

The CNN-SE’s central module, the Module, has three layers: an activation layer, a batch normal-
ization layer, and a 2D convolutional layer. To extract the global features of the data, it is helpful to
gradually increase the number of filters in the 2D convolutional layer, which is a type of spatial feature
extractor. Following convolution, the size of the resulting feature map is less than that of the input
image, and the number of output feature maps is equal to the number of convolution kernels set. The
purpose of the batch normalization layer is to decrease the sensitivity to hyperparameters, enhance the
model’s capacity for generalization, and speed up the neural network’s training phase. For the neural
network to better fit nonlinear functions, nonlinear factors are introduced by the activation function
layer.

A channel attention mechanism called the Squeeze-and-Excitation (SE) module is introduced.
Squeeze uses global average pooling to obtain the global information of each channel, Excitation
introduces two fully connected layers to learn the inter-channel weights, and finally, the channel
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attention weights are multiplied with the original feature map to adjust the importance of each channel.
The system consists of two two-dimensional global average pooling layers, two fully connected layers,
and two distinct activation layers. The input image goes through two Module before entering the SE
module, which causes the network to focus more on the high-priority feature channels, enhancing the
model’s performance.

The maximum pooling layer is used to shrink the feature maps, which shrinks the number of
features and, to some extent, the computational complexity of the model. For the feature maps in each
channel to enter the fully connected layer, the flattened layer flattens them into a one-dimensional
vector. The primary purpose of the dropout layer, which is added to the 2D image after the fully
connected layer has passed through the activation layer, is to randomly remove some neurons from
the fully connected layer during training to keep the model from overfitting.

The specific settings of the internal hyperparameters of the CNN-SE model are shown in Table 4.
The parameters are empirically formed based on many experiments and references. They are tested and
adjusted through several iterations to ensure that the model achieves optimal performance. Among
them, the number of neurons is set to gradually increase to enable the model to capture more complex
global features and adapt to diversified feature extraction tasks; the selected step size and convolution
kernel size are small, mainly due to the small size of the input image, if the value is too large, it will
lead to a reduction in the number of feature mappings that the convolution kernel can produce, and
the critical information will be lost. The number of channels of the input image is 1, and the size is
7 ∗ 7. After entering the first Module, the number of channels is increased to 32, and the size of the
image remains unchanged; then, after entering the second Module, the number of channels is increased
to 64, and the size of the image is reduced to 6 ∗ 6; after entering the SE module, the number of channels
and the size of the image remain unchanged, but the importance of the channels will be changed; after
entering the third Module. After entering the third Module, the number of channels is still 64, and the
image size is changed to 5 ∗ 5; after entering the fourth Module, the number of channels is increased
to 128, and the image size is changed to 4 ∗ 4. After the feature map enters the maximum pooling
layer, the number of channels is 128, and the image size is reduced to 2 ∗ 2; the Flatten layer flattens
the 128 2 ∗ 2 feature maps into a one-dimensional vector with vector dimensions 128 ∗ 2 ∗ 2. Finally,
the data passes through the two fully connected layers before realizing the binary classification and
multi-classification.

Table 4: The proposed model layers and parameters settings

No. Layers Filters Size/stride Activation function

1 Conv2D 32 1/1 –
2 BN 32 – ReLU
3 Conv2D 64 2/1 –
4 BN 64 – ReLU
5 SE – – –
6 Conv2D 64 2/1 –
7 BN 64 – ReLU
8 Conv2D 128 2/1 –
9 BN 128 – ReLU
10 MaxPooling2D – 2/2 –
11 Flatten – – –

(Continued)
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Table 4 (continued)

No. Layers Filters Size/stride Activation function

12 Linear 256 – ReLU
13 Dropout – 0.5 –
14 Linear 128 – ReLU
15 Dropout – 0.5 –
16 Linear – – –

3.3.2 Adaptive Particle Swarm Optimization

The particle swarm optimization is a bionic intelligent optimization algorithm that simulates how
members of a flock of birds cooperate and exchange information to find the best solution in the given
space. As the number of iterations increases, each particle continuously converges toward the global
optimal solution in the search space. The speed and position attributes of the PSO indicate the direction
and speed of the particles, respectively.

vi (t + 1) = w × vi (t) + c1 × r1 × [pbesti (t) − xi (t)] + c2 × r2 × [gbest (t) − xi (t)] (2)

xi (t + 1) = xi (t) + vi (t + 1) (3)

Each particle carries out velocity update and position update according to Eqs. (2) and (3),
respectively. Where: t denotes the number of iterations, w is the set weight, c1 and c2 are the acceleration
factors, r1 and r2 denote the random numbers between (0, 1), pbesti is the historical optimal position
of the ith particle, gbest is the optimal position in the population, xi denotes the position of the ith
particle, and vi denotes the velocity of the ith particle.

To enhance the convergence speed and accuracy of PSO, we introduce adaptive decreasing
nonlinear inertia weights. Simultaneously, the two acceleration factors undergo adaptive changes. This
results in an enhanced particle swarm algorithm, known as the adaptive particle swarm algorithm,
further enhanced as demonstrated by Eqs. (4)–(6).

w = wmin + (wmax − wmin) · 1(
1 + t

(tmax)
0.5

)4 (4)

c1 = cmin + (cmax − cmin) · 1(
1 + t

(tmax)
0.5

)4 (5)

c2 = cmax − (cmax − cmin) · 1(
1 + t

(tmax)
0.5

)4 (6)

where wmax and wmin are the maximum and minimum values of the weights, respectively, t is the current
number of iterations, tmax is the maximum number of iterations, cmax and cmin are the maximum and
minimum values of the acceleration factor, respectively.
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3.3.3 Hybrid Model

The CNN-SE model is prepared by pre-training its weights and biases using an adaptive particle
swarm optimization. The basic idea is to go through every network level, set the cross-entropy loss
function as the objective function, and initialize the population for each particle’s position and velocity
based on the number of weights and bias parameters. The global and individual historical optimum
is determined by comparing the estimated fitness values. Using Eqs. (2), (3), the velocity and position
of each particle in APSO are updated constantly as the number of iterations grows in the hopes of
attaining progressively decreasing loss values. To explain the suggested APSO-CNN-SE model better,
Algorithm 1 displays the model’s pseudo-code.

Algorithm 1: Pseudo-Code of APSO-CNN-SE Algorithm
Input: Data, tmax, N, wmax, wmin, cmax, cmin, etc.,
Output: Globally optimal CNN-SE model, detection indicators
1 Data set numerical, normalization, 2D image transformation preprocessing process
2 Pre-built CNN-SE base model
3 Initialize xi of each individual in the population according to the number of weights and biases

in each layer of the CNN-SE model
4 Evaluate the fitness value of each particle using the cross-entropy loss function
5 Initialize gbest and pbesti

6 While t < tmax

7 Calculate c1, c2, w, according to Eqs. (4)–(6).
8 for i = 1:N
9 Using Eqs. (2) and (3) to update vi and xi

10 Convert the updated xi into the weights and biases of the CNN-SE
11 Calculate the fitness value
12 Updating gbest and pbesti

13 End for
14 t = t + 1
15 End while
16 Return the optimal weights and bias vector
17 Obtain the global optimum of the model
18 Pre-training completed for formal training of the model
19 Validation of the model using the assessment metrics in Eqs. (7)–(10)

The process of updating the particle’s position and evaluating its adaptation ends when the number
of iterations reaches the maximum value. At that point, the model’s pre-training is finished, and the
globally optimal particles—the optimal weights and bias parameters—are acquired. For the UNSW-
NB15 dataset, the model is trained 50 times more using the training and validation sets’ data, and
the NSL-KDD is trained 30 times, taking into account time loss and computational complexity.
Lastly, the test sets of the two data sets are used to realize binary classification and multi-classification
detection, respectively, to assess the performance advantage of the proposed model and to count the
relevant indexes statistically. Table 5 displays the APSO-CNN-SE model’s parameter settings following
extensive testing and tuning.
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Table 5: Algorithm parameter setting

Parameters Value

Number of populations (N) 10
Number of pre-training iterations (tmax) 5
wmax 1.2
wmin 0.4
Learning rate 0.0001
Batch 64 (UNSW-NB15)/128 (NSL-KDD)
Optimizer Adam
cmax 2.1
cmin 1.7
Loss function Cross-entropy loss function
Validation set percentage 10%

4 Experiment and Result Analysis
4.1 Experimental Environment

All operational tasks in this paper are realized using Python; the specific experimental environ-
ment is shown in Table 6.

Table 6: Experimental environment

Environment Value

Operating system Windows 10
Processor Intel(R) Core(TM) i7-10700K CPU
Main frequency 3.80 GHz
Random memory 32 GB
Programming tool Python3.8
Machine learning library torch1.8.0

4.2 Evaluation Metrics

The model’s performance in recognition and classification is assessed using a confusion matrix.
The relationship between the actual values and the model’s prediction results on the test set is evident,
as Table 7 illustrates.

True positive (TP): the number of normal categories correctly predicted as normal by the model.

True negative (TN): the number of anomaly categories correctly predicted as anomalies by the
model.

False positive (FP): the number of abnormal categories that the model incorrectly predicts as
normal categories.

False negative (FN): the number of normal categories the model incorrectly predicts as abnormal.



CMC, 2024, vol.81, no.1 585

Table 7: Confusion matrix

True Predicted

Normal Abnormal

Normal TP FN
Abnormal FP TN

This work employs four parametric metrics—accuracy, precision, recall, and F1-score—to assess
the proposed model and determine its feasibility and efficacy, as demonstrated by Eqs. (7)–(10).

Accuracy: indicates the ratio of the number of samples correctly predicted by the model to the
total number of samples.

Accuracy = TP + TN
TP + FP + TN + FN

(7)

Precision: indicates the ratio of the number of samples correctly predicted as positive cases by the
model to the number of all samples predicted as positive cases.

Precision = TP
TP + FP

(8)

Recall: indicates the ratio of the number of samples correctly predicted as positive cases by the
model to the number of all samples that are actually positive cases.

Recall = TP
TP + FN

(9)

F1-score: denotes the reconciled average of precision and recall, which is used to evaluate or
measure the comprehensive performance of the model.

F1-score = 2 × Pr ecision × Recall
Pr ecision + Recall

(10)

4.3 Experimental Procedure

All experiments are run on the same device and the same Python environment. We utilize two
datasets, UNSW-NB15 and NSL-KDD, to validate and evaluate the performance of APSO-CNN-
SE. The experimental process is divided into four phases: the first phase is to perform binary
classification experiments to test the effectiveness of the model in recognizing normal activities and
anomalous attacks; the second phase is to perform multiclassification experiments to evaluate the
model’s performance in detecting the normal categories and different attack categories; the third phase
is a parameter sensitivity analysis aimed at validating some of the set parameters; and the fourth
phase is to compare the model with the existing advanced models to demonstrate the effectiveness
and feasibility of the model. Performance parameters such as accuracy, precision, recall, and F1-score
are counted, compared, and analyzed with other models.
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4.3.1 Stage 1: Binary Classification Experiment

To test whether the proposed intrusion detection model APSO-CNN-SE is practical and feasible,
four metrics, namely Accuracy, Precision, Recall, and F1-score, are utilized for the metrics, respectively.
Regarding network security, an intrusion detection system’s ability to accurately identify attacks while
lowering the false alarm rate is essential. Based on the UNSW-NB15 and NSL-KDD datasets, we
anticipate that the higher the four metrics, the better, and the lower the obtained loss value, the better.

The study employs DT, KNN, LR, SVM, and AdaBoost as machine-learning comparison
methods. The three deep learning comparison algorithms developed are MLP, LSTM, and BiLSTM,
in that order, as indicated in Table 8. All three of these methods are built with lightweight hidden
layers, and to keep the model from overfitting, a Dropout layer has been introduced to make some of
the hidden layer neurons inactive. The ablation algorithms of APSO-CNN-SE are denoted by CNN,
CNN-SE, and APSO-CNN, respectively. Based on the CNN model, CNN-SE and APSO-CNN signify
adding the channel attention mechanism and adaptive particle swarm algorithm boards, respectively.
Each model is trained on the training set and evaluated on the test set in UNSW-NB15 and NSL-KDD
since they both have well-divided training and test sets.

Table 8: Specific model architecture for deep learning comparison algorithms

MLP LSTM BiLSTM

Input Input Input
Linear (42/41, 64) LSTM (42/41, 32) BiLSTM (42/41, 32)
ReLU Dropout (0.3) Dropout (0.3)
Dropout (0.5) LSTM (32, 64) BiLSTM (32, 64)
Linear (64, 32) Dropout (0.3) Dropout (0.3)
ReLU LSTM (64, 64) Flatten
Dropout (0.4) Dropout (0.3) Linear (128, 64)
Linear (32, 16) Flatten ReLU
ReLU Linear (64, 64) Dropout (0.5)
Dropout (0.5) ReLU Linear (64, 32)
Linear (16, 2/10/5) Dropout (0.5) ReLU

Linear (64, 32) Dropout (0.5)
ReLU Linear (32, 2/10/5)
Dropout (0.4)
Linear (32, 2/10/5)

We count the binary confusion matrixes of the UNSW-NB15 and NSL-KDD datasets in the
APSO-CNN-SE model, as shown in Fig. 6. The heat map’s colour depth allows us to assess the model’s
effectiveness in classification and recognition; the darker the colour, the more data is counted under
the corresponding conditions. The UNSW-NB15 dataset can accurately identify 44,469 out of 45,332
abnormal flows, which indicates that the model is more sensitive to identifying abnormal flows and has
a better TN value. On the NSL-KDD dataset, the model correctly identifies 9241 out of 9711 normal
flows with better identification performance, while the classification performance for abnormal flows
needs to be improved.
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Figure 6: Confusion matrix of the binary classification model. (a) UNSW-NB15; (b) NSL-KDD

In this paper, the cross-entropy loss function is used to calculate the loss value between the actual
and predicted values and to optimize the classification ability of the model by minimizing the loss
function. The test loss values obtained by seven deep learning algorithms on two datasets are shown in
Fig. 7, with the expectation that the smaller the loss value, the better. The smallest loss value tested on
APSO-CNN-SE for the UNSW-NB15 dataset is approximately 0.24. This indicates that the model fits
the training data better, with a slight deviation from the actual value and reasonably good classification
ability. Comparing the NSL-KDD dataset to the CNN, CNN-SE, and APSO-CNN ablation models—
which fit better—it ranks fourth in terms of loss value among the several comparative algorithms, with
a loss value of roughly 1.2.

Figure 7: Test loss of the binary classification model

Table 9 displays the statistical results of the binary classification performance evaluation using
deep learning and machine learning models for network intrusion detection. With 86.43% accuracy,
87.26% precision, 86.34% recall, and 86.10% F1-score for UNSW-NB15, decision trees have the
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highest classification impact out of the five machine learning algorithms; nonetheless, these results
are all less than those of APSO-CNN-SE. As the hidden layers in the setup have fewer neurons
than the total number of neurons, the created MLP, LSTM, and BiLSTM models cannot learn the
essential features of the traffic data adequately. Therefore, compared to the proposed model for binary
classification detection, there is still a numerical difference in the accuracy produced by the three,
ranging from 3.96% to 6.54%. Compared to the CNN base model, the accuracy can be increased
by 0.92% and 1.38%, respectively, with the independent addition of the APSO algorithm and the SE
module. According to statistics, APSO-CNN-SE’s classification accuracy, precision, recall, and F1-
score are 88.73%, 89.92%, 88.73%, and 88.53%, respectively. The model outperforms the list of other
compared algorithms in all four measures. Meanwhile, this paper also counts the total time required
for training and testing the four models, CNN, CNN-SE, APSO-CNN, and APSO-CNN-SE, which
are 1567, 1652, 1560, and 1631 s, respectively. It can be learned that the model can obtain a better
detection performance by spending only about 64 s more time based on CNN.

Table 9: Results of the binary classification experiment

Datasets Method Accuracy (%) Precision (%) Recall (%) F1-score (%)

UNSW-NB15

DT 86.34 87.26 86.34 86.10
KNN 84.32 85.72 84.32 83.95
LR 80.13 83.46 80.13 79.17
SVM 81.45 85.76 81.45 80.43
AdaBoost 85.09 87.08 85.09 84.65
MLP 84.77 87.66 84.77 84.19
LSTM 82.28 85.09 82.28 81.57
BiLSTM 83.21 85.73 83.21 82.60
CNN 87.13 88.79 87.13 86.82
CNN-SE 87.52 89.12 87.52 87.23
APSO-CNN 87.92 88.93 87.92 87.72
APSO-CNN-SE 88.73 89.92 88.73 88.53

NSL-KDD

DT 79.65 82.72 79.65 79.66
KNN 77.60 83.92 77.60 77.30
LR 75.43 80.67 75.43 75.19
SVM 78.69 84.48 78.69 78.46
AdaBoost 74.78 79.88 74.78 74.54
MLP 77.46 83.66 77.46 77.16
LSTM 77.64 83.70 77.64 77.36
BiLSTM 79.95 84.65 79.95 79.83
CNN 79.51 84.50 79.51 79.36
CNN-SE 81.76 85.75 81.76 81.72
APSO-CNN 80.57 84.86 80.57 80.49
APSO-CNN-SE 82.32 85.39 82.32 82.33
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For NSL-KDD, although DT slightly outperforms other machine learning algorithms with an
accuracy of 79.65% and an F1-score of 79.66%, its competitiveness is not strong compared to the
APSO-CNN-SE model. BiLSTM obtains a higher detection rate on the deep learning model than
MLP and LSTM, but there is still a gap of 2.37% compared to the proposed model. Except for the
accuracy, which is slightly lower than CNN-SE, compared to CNN, CNN-SE, and APSO-CNN, the
accuracy rate of this model is improved by 3.53%, 0.68%, and 2.17%, respectively. The total time
required to count the four models is 990, 701, 831, and 814 s, respectively, indicating that the overall
time loss is low while APSO-CNN-SE obtains optimization. In summary, in binary classification,
APSO-CNN-SE has better detection performance and consumes less time cost than other compared
algorithms. Figs. 8 and 9 are visualizations of the results of the binary classification experiments on
the two datasets.
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Figure 8: Comparison of binary classification performance of different models on UNSW-NB15
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Figure 9: Comparison of binary classification performance of different models on NSL-KDD
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4.3.2 Stage 2: Multi-Classification Experiment

The plotted confusion matrix for multiclassification detection is shown in Fig. 10; for UNSW-
NB15, 0–9 denote ‘ Analysis,’ ‘Backdoor,’ ‘DoS, ‘‘Exploits,’ ‘Fuzzers,’ ‘Generic,’ ‘ Normal,’ ‘Recon-
naissance,’ ‘Shellcode,’ ‘Worms.’ For NSL-KDD, 0–4 denote ‘DoS,’ ‘Normal,’ ‘Probe,’ ‘R2L ‘, and
‘U2R’.

Figure 10: Confusion matrix of the multi-classification model. (a) UNSW-NB15; (b) NSL-KDD

Fig. 11 displays the test loss values produced by different multiclassification detection models.
When the UNSW-NB15 dataset is used to evaluate the deep learning comparative models, APSO-
CNN-SE produces the lowest test loss value, around 0.53. The model’s test loss value for the NSL-
KDD dataset was about 1.83, indicating that there is still room for improvement in the model’s ability
to match the data.

Figure 11: Test loss of the multi-classification model
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Table 10 presents the evaluation of parameters, fully statistically, that are acquired by using
different models to achieve multi-classification detection. For the UNSW-NB15 dataset, the APSO-
CNN-SE model’s overall assessment performs better than the machine learning model, increasing the
values corresponding to each result. Among the ablation models, the proposed model outperforms
the other three metrics, except for the CNN and CNN-SE accuracy rates, which are slightly higher.
The time cost of the four models to complete the multi-classification detection is 1512, 1627, 1463,
and 1604 s, respectively, which shows that the addition of the APSO pre-trained model can effectively
reduce the time loss of the model. At the same time, the attention mechanism brings good performance
along with the elevated time complexity.

Table 10: Results of multiclassification experiments

Datasets Method Accuracy (%) Precision (%) Recall (%) F1-score (%)

UNSW-NB15

DT 73.29 80.62 73.29 76.13
KNN 70.80 78.44 70.80 73.66
LR 66.71 75.81 66.71 68.09
SVM 69.23 80.67 69.23 70.09
AdaBoost 48.55 61.71 48.55 52.44
MLP 70.37 78.16 70.37 71.10
LSTM 66.64 77.39 66.64 67.89
BiLSTM 69.67 78.21 69.67 70.39
CNN 77.15 81.99 77.15 77.37
CNN-SE 77.44 82.20 77.44 77.42
APSO-CNN 77.59 81.21 77.59 77.17
APSO-CNN-SE 78.35 81.79 78.35 77.65

NSL-KDD

DT 76.09 80.68 76.09 72.82
KNN 75.64 80.90 75.64 71.38
LR 76.20 76.79 76.20 71.38
SVM 75.99 74.31 75.99 71.01
AdaBoost 69.00 69.45 69.00 66.35
MLP 74.09 68.24 74.09 69.19
LSTM 74.61 68.59 74.61 69.71
BiLSTM 74.94 70.94 74.94 70.08
CNN 75.56 80.28 75.56 72.77
CNN-SE 76.62 81.37 76.62 73.70
APSO-CNN 77.18 81.32 77.18 74.44
APSO-CNN-SE 77.62 82.08 77.62 75.05

For the NSL-KDD dataset, the evaluation metrics on APSO-CNN-SE are all improved, especially
in the accuracy rate, which is nearly 10% higher than MLP, LSTM, and BiLSTM, and the accuracy
and F1-score are enhanced by 2.73% and 3.13%, respectively, compared to the base CNN model. The
time consumed by the CNN, CNN-SE, APSO-CNN, and APSO-CNN-SE models consume 598, 648,
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620, and 777 s, respectively, to complete the multiclassification detection, indicating that only about
3 min of additional time is needed to obtain better detection performance. In summary, on multi-
classification detection, when using UNSW-NB15 to verify the performance of the APSO-CNN-SE
model, the detection rate performance is higher than that of other algorithms, which reflects the better
fitting effect of the model from the test-loss comparison results; on the NSL-KDD dataset, the model
still achieves a good detection effect, which indicates that the model’s generalization ability is strong.
Figs. 12 and 13 are visualizations of the results of the multi-classification experiments on both datasets.
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Figure 12: Comparison of multi-classification performance of different models on UNSW-NB15
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Figure 13: Comparison of multi-classification performance of different models on NSL-KDD

4.3.3 Stage 3: Parameter Sensitivity Experiment

(1) Selection of weights, acceleration factors

We use UNSW-NB15 and NSL-KDD to test the APSO-CNN-SE model multi-classification
performance with different selections of weights and acceleration factors and statistically test the loss,
accuracy, F1-score, and runtime to further elaborate on the selection factors of some parameters.
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As shown in Table 11, for UNSW-NB15, under the condition that the maximum value of the
acceleration factor cmax is taken as 2.1 and the minimum value of cmin is taken as 1.7, wmin is fixed as 0.4 at
first, and wmax is taken as upward and downward, respectively, and wmax is statistically selected to be 1.2,
which results in the model with the highest accuracy and precision rate, good fitting performance, and
relatively low time consumption. Then, wmax is determined to be 1.2, and the value of wmin is changed,
and the loss value is lowest when wmin is 0.4, and the time loss is only about 1 min higher, so the detection
performance is good. Secondly, wmax and wmin are fixed to 1.2 and 0.4, respectively, to control the range
of values of cmax and cmin, respectively, the experimental results show that when wmax and wmin are fixed
to 2.1, cmax and cmin are fixed to 1.7, the performance of APSO-CNN-SE is better.

Table 11: Parameter sensitivity testing experiments modeled on UNSW-NB15

wmax wmin Test loss Accuracy (%) F1-score (%) Total time (s)

1.4 0.4 0.532 77.35 77.15 1643.85
1.3 0.4 0.548 76.97 76.65 1592.45
1.2 0.4 0.530 78.35 77.65 1603.72
1.1 0.4 0.541 77.59 77.18 1540.04
1 0.4 0.541 76.79 76.42 1643.86
1.2 0.6 0.544 77.47 77.14 1602.91
1.2 0.5 0.550 77.44 77.03 1589.18
1.2 0.4 0.530 78.35 77.65 1603.72
1.2 0.3 0.548 78.12 77.42 1566.10
1.2 0.2 0.546 77.49 77.23 1585.36

cmax cmin Test loss Accuracy (%) F1-score (%) Total time (s)

2.3 1.7 0.539 78.17 77.55 1642.18
2.2 1.7 0.533 77.71 77.24 1633.40
2.1 1.7 0.530 78.35 77.65 1603.72
2 1.7 0.534 77.38 77.01 1632.33
1.9 1.7 0.530 77.40 77.07 1661.98
2.1 1.9 0.548 76.44 76.26 1630.62
2.1 1.8 0.531 78.10 77.4 1636.28
2.1 1.7 0.530 78.35 77.65 1603.72
2.1 1.6 0.537 77.89 77.54 1609.57
2.1 1.5 0.537 78.09 77.41 1641.15

As shown in Table 12, for NSL-KDD, similar to the analysis of the above dataset, the same control
variables method was used to validate the selection factors of the model hyperparameters to make
further additions and clarifications. Although two other sets of parameters exhibit lower test loss
values, the overall experimental results show that the proposed model has some advantages in terms
of detection performance and time loss with cmax of 2.1, cmin of 1.7, and wmax and wmin of 1.2 and 0.4,
respectively.
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Table 12: Parameter sensitivity test experiments modeled on NSL-KDD

wmax wmin Test loss Accuracy (%) F1-score (%) Total time (s)

1.4 0.4 1.830 77.00 74.03 850.94
1.3 0.4 1.924 75.12 70.97 870.80
1.2 0.4 1.830 77.62 75.05 776.92
1.1 0.4 1.824 75.23 70.90 796.03
1 0.4 2.107 75.01 70.58 813.86
1.2 0.6 1.838 76.16 72.64 817.19
1.2 0.5 2.192 74.47 70.43 725.51
1.2 0.4 1.830 77.62 75.05 776.92
1.2 0.3 2.046 74.67 70.05 720.29
1.2 0.2 2.055 76.44 73.36 729.71

cmax cmin Test loss Accuracy (%) F1-score (%) Total time (s)

2.3 1.7 2.01 76.20 72.92 793.27
2.2 1.7 1.99 74.58 70.51 728.29
2.1 1.7 1.83 77.62 75.05 776.92
2 1.7 2.44 74.61 70.87 774.40
1.9 1.7 2.44 77.10 73.92 816.51
2.1 1.9 1.59 77.31 74.61 819.22
2.1 1.8 2.29 73.28 69.01 796.23
2.1 1.7 1.83 77.62 75.05 776.92
2.1 1.6 2.26 76.31 72.98 792.00
2.1 1.5 2.15 75.75 72.91 800.22

(2) Batch selection

The APSO-CNN-SE model is evaluated under the UNSW-NB15 and NSL-KDD datasets to
compare the impact of different batch selections on the model performance. As shown in Table 13,
for UNSW-NB15, compared with the case where the batch is 64, the accuracy is relatively lower by
3.4%, although the runtime is shortest when the batch is selected as 256; the runtime and loss values are
relatively higher for batches 32 and 128, so the batch chosen in this paper for this data is 64. For NSL-
KDD, compared with other batch selections, when the batch is 32, the time loss is higher by about
300 s; the time loss is lowest when the batch is 64, but the accuracy is relatively low. The difference
in the time loss between the batch of 128 and 256 is not significant, but the accuracy of the latter is
relatively low, and thus, the batch size selected for this data is 128.
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Table 13: Selection of different batches

Datasets Batch Accuracy (%) Total time (s) Test loss

UNSW-NB15

32 77.43 2617.08 0.558
64 78.35 1603.72 0.530
128 77.25 1630.36 0.543
256 74.95 1519.08 0.560

NSL-KDD

32 76.54 1087.15 3.034
64 76.28 703.76 2.403
128 77.62 776.92 1.830
256 77.11 784.20 1.800

4.3.4 Stage 4: Comparison with Other Literature

As shown in Table 14, when comparing the previously studied models with APSO-CNN-SE,
the detection accuracies of binary and multiclassification are utilized to measure the performance
advantages of the models. From the statistical data, for the UNSW-NB15 dataset, the detection
performance of APSO-CNN-SE is comparable to the performance of the FFDNN model from the
literature [51] in addition to the detection effectiveness comparison of its algorithm in the first place.

Table 14: Comparison with previous studies

Datasets Study Method Binary accuracy (%) Multiclass accuracy (%)

UNSW-NB15

[39] SPIDER 82.46 72.14
[51] FFDNN 87.10 77.16
[52] ANN 84.39 77.51
[53] ROULETTE – 76.40
[54] LSTM-XGBoost 85.08 73.01
Ours APSO-CNN-SE 88.73 78.35

NSL-KDD

[55] CNN-RSA 77.81 76.11
[56] GRU 79.10 –
[57] DNN-6 80.56 75.99
[58] MCA-LSTM 80.52 –
[51] KNN 78.42 74.38
Ours APSO-CNN-SE 82.32 77.62

For the NSL-KDD dataset, compared with other algorithms, the model’s binary classification
detection accuracy is higher by about 1.76%–4.51%, and the multi-classification accuracy is higher
by more than 1.52%. Overall, the proposed model has relatively better binary classification and multi-
classification results, further illustrating that the model can detect whether an attack exists in intrusion
detection scenarios. At the same time, it can also more accurately determine which category of attack
exists, which improves the overall performance of the intrusion detection system.
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4.4 Discussion

In IoT network intrusion detection, the APSO-CNN-SE model presented in this paper has
produced significant results, primarily in the following areas. First, from the standpoint of two-
dimensional image processing, one-dimensional traffic data is converted into two-dimensional image
data to better capture the spatial characteristics of traffic features. A lightweight APSO-CNN-SE
model is constructed by combining the Squeeze-and-Excitation channel attention mechanism with the
adaptive particle swarm algorithm, and the detection performance received on both the UNSW-NB15
and NSL-KDD datasets is superior to that of conventional machine models and other deep learning
models. As demonstrated by the experimental results, the built model is feasible and effective, offering
a critical security guarantee for the secure operation of IoT networks. Second, the created APSO-
CNN-SE is lightweight due to the particle swarm algorithm’s lower temporal complexity and CNN’s
comparatively smaller convolutional kernels and fewer layers. Meanwhile, the number of training
iterations set by the model on the two datasets are 50 and 30, respectively, corresponding to a runtime
of 1603.72 and 776.92 s, which means that the model can process and detect the traffic data in the
network in the shortest possible time. Ultimately, the CNN-SE backbone and the APSO pre-training
idea work together to quickly find the optimal model weights and bias parameters, raising detection
accuracy and efficiency. Adding two datasets for training further demonstrates the model’s strong
generalization ability, and the slight loss values found also point to the model’s generally good fitting
performance.

In which the model is scalable. Suppose the intrusion detection dataset’s feature dimension is near
49. In that case, preprocessing the traffic data into 7 ∗ 7 two-dimensional image data is required before
entering it into the model for testing and training. The model must then be further adjusted based
on the evaluation results. On the one hand, we can choose to use the feature selection technique to
realize the dimensionality reduction processing if the preprocessed or source datasets have large feature
dimensions; on the other hand, we can pre-adjust some hyperparameters in the model framework and
then fine-tune the model based on the feedback evaluation information. Due to the study’s limitation
to two datasets may require particular studies to validate the detection results on additional datasets.

Despite its accomplishments, the APSO-CNN-SE model has some limitations. While it has a
higher detection accuracy than some conventional machine learning models and basic deep learning
models, there is still much room for improvement. On the other hand, UNSW-NB15 and NSL-KDD
encounter an imbalance in data distribution. While achieving a higher overall accuracy rate, their
performance in identifying certain anomalous attack categories with smaller sample sizes is lower. This
is primarily because the model may use attack types with more data to optimize its parameters during
training. In contrast, attack types with less data may not provide the model with enough training
signals, making it harder for the model to identify these attack types and subsequently affecting the
detection performance of the model.

In the following work, we will take two steps to address the drawbacks of the above model.
First, we will look into using the swarm intelligence-based feature selection algorithm in the data
preprocessing stage to select more relevant features and remove some redundant features to save
the model running time. Additionally, we will consider adjusting the model structure and parameter
settings in the model optimization phase, such as by adding LSTM, GRU, and other time-series
processing techniques, which can capture the temporal features of network traffic. Meanwhile, to
improve the performance of identifying anomalous traffic with a low number of samples, we will
consider using the SMOTE oversampling approach to equalize the number of samples to address
the imbalance problem of the intrusion detection dataset. The validity and feasibility of the model
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may be shown because the dataset utilized in this work can represent real-world IoT scenarios. We will
then integrate the aforementioned ideas for improvement to create an intrusion detection model that
performs better and test it in actual IoT scenarios, enabling accurate monitoring of anomalous attacks.
In short, our goal is to develop a solid and trustworthy model that will enhance the performance of
abnormal traffic and reduce the time cost, thus guaranteeing the safe operation of IoT.

5 Conclusions

This paper proposes an enhanced deep-learning model for IoT environment intrusion detection.
Convolutional neural networks are used as the backbone network in the constructed model, which
also incorporates a Squeeze-and-Excitation channel attention mechanism and an adaptive particle
swarm algorithm for pre-training the model’s weights and biases, resulting in the overall APSO-CNN-
SE architecture. We use the openly feasible UNSW-NB15 and NSL-KDD datasets and perform label
encoding, max-min normalization, and 2D image transformation preprocessing steps on them, respec-
tively. These two datasets are commonly employed in network intrusion detection and can accurately
depict real-time attacks within the IoT. The experimental design is based on two different perspectives:
binary classification and multi-classification, and four metrics, namely, accuracy, precision, recall,
and F1-score, are used to show the performance of the model objectively. The experimental results
demonstrate the proposed model’s excellent classification and recognition performance, with lower
loss values obtained and higher binary and multiclassification detection accuracies than several other
more sophisticated classes of models in the field and several traditional classifiers. Generally, the
suggested model provides an innovative approach to advancing IoT security, with superior detection
capabilities, comparatively minimal time spending, and strong generalizability. However, there is still
room for improvement in the detection accuracy, and the issue of data distribution imbalance still
needs to be solved. At the same time, further experimental investigation is required to determine the
model’s portability.
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