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ABSTRACT

The world produces vast quantities of high-dimensional multi-semantic data. However, extracting valuable infor-
mation from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.
Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating
redundant and irrelevant features. The ant colony optimization algorithm has demonstrated encouraging outcomes
in multi-label feature selection, because of its simplicity, efficiency, and similarity to reinforcement learning.
Nevertheless, existing methods do not consider crucial correlation information, such as dynamic redundancy and
label correlation. To tackle these concerns, the paper proposes a multi-label feature selection technique based on
ant colony optimization algorithm (MFACO), focusing on dynamic redundancy and label correlation. Initially,
the dynamic redundancy is assessed between the selected feature subset and potential features. Meanwhile, the ant
colony optimization algorithm extracts label correlation from the label set, which is then combined into the heuristic
factor as label weights. Experimental results demonstrate that our proposed strategies can effectively enhance the
optimal search ability of ant colony, outperforming the other algorithms involved in the paper.
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Multi-label feature selection; ant colony optimization algorithm; dynamic redundancy; high-dimensional data;
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1 Introduction

Multi-label datasets often involve intricate scenarios and learning tasks that fall outside the realm
of single-label learning, thus presenting a new obstacle in machine learning. In this case, multi-label
learning has been developed, expanding the association pattern from one instance corresponding
to one label in single-label learning to one instance corresponding to a collection of labels [1]. This
broadens the application scenarios of single-label learning and enhances the accuracy and efficiency
in predicting complex multi-semantic information. Another characteristic of multi-label data is its
high feature dimensionality. The discriminative features in high-dimensional data [2] are strongly
correlated with numerous labels. However, the features that affect multi-label classification occupy
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only a portion, or even a small portion, of the feature set, while the remaining feature set is inundated
with numerous redundant and irrelevant features. These redundant or irrelevant features not only
increase the computational cost of machine learning algorithms but also waste valuable computing
resources. Additionally, they consume significant storage space and increase storage requirements.

Feature selection is the direct removal of redundant and irrelevant features from the original
feature set, thereby achieving a reduction of the feature set. The technique preserves the original
features, leading to an improved understanding of data and better performance of learning algorithms
[3]. Feature selection is widely used in supervised machine-learning paradigms [4–8]. In feature
selection, it is crucial to obtain the optimal feature subset by finding those highly correlated with
labels and non-redundant. Therefore, it is essential to consider both of these factors simultaneously to
ensure that the selected features have a high predictive power and some interpretability. For example,
Yang et al. [9] proposed a multi-strategy assisted multi-objective WOA (MSMOWOA) to address
feature selection. Ye et al. [10] proposed a novel ensemble framework for intrusion detection. It used an
improved Hybrid Breeding Optimization (HBO) to address the cruse of dimensionality and improve
the Intrusion Detection System (IDS) performance. More and more evolution computation or swarm-
intelligence based optimization algorithms are applied for feature selection.

Common swarm intelligence optimization algorithms include Particle Swarm Optimization (PSO)
[11], Grey Wolf Optimizer (GWO) [12], Ant Colony Optimization (ACO) [13], Whale Optimiza-
tion Algorithms (WOA) [14], and Chimp Optimization Algorithm [15]. Compared to other swarm
intelligence optimization algorithms that require a combination of learning algorithms to find the
optimal feature subset, ACO can transform the feature selection process into a graph search where
ants navigate through nodes representing features, thus offering greater flexibility. When dealing with
high-dimensional data, filtered methods using only the internal structural information of the data are
more efficient and do not require a combination of learning algorithms. Furthermore, these methods
can be integrated into the heuristic factors of the ACO algorithm [16,17] to enhance search efficiency.
Additionally, ACO can directly optimize filtered methods for multi-label feature selection [18–20]. The
ACO algorithm demonstrates commendable efficiency when optimizing filtered multi-label feature
selection techniques. Nevertheless, it does not fully capitalize on the correlational information between
features and labels, along with that between labels. For filtered methods, fully utilizing the information
inherent in the data is crucial for identifying the optimal subset of features [21]. At the same time, the
ACO algorithm struggles to pinpoint the ideal solution when dealing with high-dimensional problems.
Consequently, it is worth further investigating how to augment the search optimization ability of ant
colonies, which could, in turn, enhance the performance of multi-label feature selection.

Some practice and research have been done, for example, Paniri et al. proposed a filtered
technique, denominated as a multi-label feature selection algorithm based on ant colony optimization
(MLACO) [18]. This method marked the pioneering application of a filter approach to enhance
multi-label feature selection using the ACO algorithm. It conducts a search within the feature space,
iteratively identifying the most pertinent features with minimal redundancy in relation to class
labels. After the introduction of MLACO, Paniri et al. advanced an innovative approach termed
Ant Colony Optimization plus Temporal Difference Reinforcement Learning (ANT-TD) [19], which
converted the inherent heuristic search process of an ant colony into a Markov chain framework.
The conversion utilized temporal difference reinforcement learning, thereby facilitating a continuous
learning paradigm of ants throughout the search process. Concurrent with these developments,
Hatami et al. embarked on the creation of a weighted feature map predicated on mutual information
[20]. This endeavor utilized mutual information as the cornerstone for designing an innovative adaptive
function tailored to the pheromone update process, thereby enhancing the efficacy of the feature
selection process. Kakarash et al. developed a KNN Graph to meticulously portray all features along
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with the interconnections between them [22]. Subsequently, density peak clustering is used to group
similar features into one cluster. To identify the least redundant features, the probability of the ant
colony staying in one cluster during the search process is lower than jumping into another cluster.

Based on the previous foundation, in the paper, the ACO algorithm is used to construct a search
space based on relevance information. The feature selection process is converted into the search
procedures of ACO to obtain the optimal subset of features containing discriminative features. This
enhancement is designed to augment the dimensionality reduction capabilities for high-dimensional
data within multi-label scenarios and to increase the efficiency of multi-label learning. The main
contributions of the proposed method are as follows:

1) The proposed method is an improvement upon ACO-based multi-label feature selection that
incorporates dynamic redundancy and label correlation. The existing multi-label feature selection
methods based on ACO have achieved a certain effect, they ignore the dynamic redundancy between
the feature subset and the selected feature in the optimization process and also ignore a feature
of multi-label data: label correlation. Unlike existing methods, which primarily focus on the static
redundancy among features, our approach addresses the dynamic redundancy that emerges as ant
colonies navigate and it accounts for a key aspect of multi-label data, namely label correlation. The
paper uses ACO to search for correlations among labels. Then these correlations are transformed into
label weights and incorporated into heuristic factors. By embracing dynamic redundancy and label
correlation, our enhancement strategy significantly improves the performance of multi-label feature
selection using ACO.

2) Experiments are performed on seven benchmark datasets from multiple fields, including text
categorization and image annotation. Our method performance is evaluated using four criteria,
including Hamming loss (HL), Average-precision (AP), One-error loss (0–1), and Micro-F1. These
assessments demonstrate that our method outperforms other feature selection methods.

The rest of the paper is organized as follows: Section 2 introduces the multi-label feature selection,
elaborating on their integration to address the multi-label classification problem. Section 3 describes
the primary ACO, highlighting the principles of dynamic redundancy and label correlation. Section 4
offers a comprehensive explanation of the proposed method entire process. Section 5 summarizes
the experimental outcomes achieved with the proposed method across seven datasets, as well as a
comparative analysis with existing techniques. Finally, Section 6 outlines potential directions for future
research endeavors.

2 Related Work

This section delineates an overview of multi-label classification and multi-label feature selection
along with a discussion of two widely used methods for tackling challenges in multi-label classification
challenges.

2.1 Overview of Multi-Label Classification

There are generally two approaches for addressing multi-label classification issues: problem trans-
formation and algorithmic adaptation. Problem transformation involves converting the multi-label
classification task into multiple single-label classification tasks, allowing the use of established, robust
single-label classification algorithms. For instance, the Binary Relevance (BR) method transforms the
multi-label problem into a series of binary classification tasks [23]. The BR algorithm uses the entire
dataset and trains a binary classifier for each label. When training a classifier for a specific label, only
the information pertinent to that label is considered, and other labels are ignored. This approach,
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however, has a notable disadvantage: it overlooks label correlation. Consequently, label combinations
that are dependent on one another may not be predicted in certain datasets. In contrast, the Classifier
Chains (CC) algorithm mitigates these issues, delivering improved classification performance with the
added benefit of a low time complexity of the BR algorithm [24]. The CC algorithm enhances the BR
algorithm by transitioning from individually training binary classifiers to a sequential training process.
However, a notable limitation of this method is the difficulty and complexity involved in detecting
such correlations, rendering them non-trivial to ascertain. The algorithm adaptation method diverges
from the problem transformation approach in its fundamental premise: rather than altering the multi-
label classification problems or data, it enhances existing single-label classification algorithms to
accommodate and resolve multi-label classification issues directly. The advantage of this strategy is
that it circumvents the potential loss of information that can occur during the transformation process.
Multi-Label Learning-K-Nearest Neighbor (ML-KNN), which is a multi-label iteration of the K-
Nearest Neighbor (KNN) [25], serves as an example of this approach.

2.2 Multi-Label Feature Selection

Feature selection [3] is one of the most important techniques used in machine learning to
preprocess data, aimed at curating a subset of the most pertinent features from a vast pool to
facilitate accurate classification. Essentially, feature selection can be regarded as a combinatorial
optimization problem. It has been applied in different fields, including traveling thief problems
[26], text feature selection [27], cancer classification [28], and network traffic identification [29].
Meanwhile, feature selection can be combined with different intelligent optimization algorithms to
solve practical problems, such as the Greylag Goose Optimization Algorithm [30], the Hybrid Sine-
Cosine Chimp Optimization Algorithm [31] and the WOA [32]. For multi-label data, the filtered
subset of features enables the classifier to assign multiple labels to individual instances effectively. In
feature selection, it is crucial to identify the optimal subset of features by finding those that are both
highly correlated with labels and non-redundant. For example, Asilian Bidgoli et al. [33] proposed an
enhanced iteration of the super-multi-objective binary Non-Dominated Sorting Genetic Algorithm-III
(NSGA-III) algorithm, which optimized the Hamming loss, feature subset size, feature label relevance,
and computational complexity of features concurrently. Hashemi et al. [34] introduced the Multi-
label Graph-based Feature Selection (MGFS). They first calculated the correlation distance between
features and each class label, creating the Correlation Distance Matrix (CDM). They constructed
a complete weighted feature map using the Euclidean distance applied to the CDM. Finally, the
importance of the graph nodes was determined using the weighted PageRank algorithm of mean.
Gonzalez-Lopez et al. [35] utilized two techniques, Euclidean Paradigm Maximization and Geometric
Mean Maximization, to select features. The experiments affirmed that the proposed distributed
approach effectively selected features with maximum relevance and minimum redundancy, while fully
respecting predefined time constraints.

3 Preliminaries

In this section, the implementation of the ACO algorithm in the realm of feature selection is
succinctly elucidated.

3.1 Ant Colony Optimization Algorithm for Feature Selection

The ACO algorithm is a widely used optimization technique that imitates the foraging pattern
of real-life ants. These ants maintain specific search patterns through a special chemical substance
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called pheromones. In recent years, this algorithm has seen an increased application in the realm
of multi-label feature selection. Ants are a common sight in nature and follow specific patterns
when searching for food. They maintain these patterns through the use of a special chemical called
pheromones. In nature, ants aim to take the shortest path between their nest and their food source. As
they travel, they deposit pheromones on the path, which gradually evaporate, leading to a decrease in
their concentration along all pathways. Volatilization is a crucial process that aids in overcoming the
challenge of being trapped in local minima and enhances exploration of the search space. Therefore,
the concentration of pheromones can significantly influence the path that ants follow, making them
more likely to choose paths with higher pheromone concentrations. As a result, ants gradually
tend to traverse the shortest path. ACO algorithms frequently convert feature selection processes
into the process of an ant colony wandering through a graph. The graph is generally composed
of the correlation between features and labels, as well as the redundancy between features. The
wandering process of the ant colony is primarily impacted by the pheromone update rule and the
state transfer rule.

3.2 Dynamic Redundancy and Label Correlation

In the feature selection process of ACO, the choice of the subsequent feature usually hinges on
the redundancy between it and the previous one. However, this static redundancy strategy will result
in poor prediction accuracy for certain datasets.

To evaluate the redundancy of previously chosen features and potential ones, a dynamic compu-
tational strategy is proposed as in Eq. (1). Suppose that k−th an ant currently selects a feature set with
feature number:

avgsim
(
Fj

) = m − 1∑
Fz∈Fk

m−1

sim
(
Fj, Fz

) , Fj ∈ X − Fk
m−1 (1)

where Fj consists of unreachable features to be selected, X is the original set of features, (m − 1) denotes
the number of elements in the set Fk

m−1, and sim
(
Fj, Fz

)
represents the similarity between two elements,

Fj and Fz. Eq. (1) illustrates the average redundancy between the candidate features and the selected
features, which will vary throughout the wandering process.

Label relevance is paramount in multi-label learning. To improve the performance of multi-label
learning through feature selection, the impact of label correlation needs to be considered. For filtered
methods, information theory techniques are often utilized to measure label correlation. The pairwise
correlations between labels are computed using symmetric uncertainty in information theory. The
formula for symmetric uncertainty is given as Eq. (2):

SU = MI (X ; Y)

H (X) + H (Y)
(2)

H (X) = −
n∑

i=1

p (xi) lg p (xi) (3)

H (X |Y) = −
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i=1

m∑
j=1

p
(
xi, yj

)
lg

(
xi|yj

)
(4)

MI (X ; Y) = H (X) − H (X |Y) (5)
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Eq. (2) calculates the pairwise correlation between labels, serving as a heuristic factor for ACO.
Here, H (x) defines the entropy definition of the random variable X . H (X |Y) denotes the conditional
entropy, which measures the residual uncertainty of random variable X given Y and MI (X ; Y),
quantifies the information that one variable receives from the other and indicates the amount of
information shared by the variables X and Y . The term p (xi) represents the probability of xi. p

(
xi, yj

)
is the joint probability of xi and yj.

The state transition rule is employed during runtime to construct ant paths:

Pk
i (t) =

⎧⎪⎨
⎪⎩

[τi (t)]
[
η

(
Li, Lj

)]β

∑
u∈Nk

i
[τi (t)] [η (Li, Lu)]

β
, ∀i ∈ Nk

i , if g > g0

0, otherwise

(6)

j = argmax
u∈N

{
[τi (t)] [η1 (Li, Lu)]

β
}

, if g < g0 (7)

where τi (t) is the pheromone at time t, η
(
Li, Lj

)
is a heuristic factor which generally consists of the

correlation of features, η
(
Li, Lj

) = SU
(
Li, Lj

)
, Nk

i is the set of unvisited labels of ant k, g0 is a constant
used to balance exploration and exploitation, g is a random value. The parameter β distributed in
[0, 1] controls the trade-off between the pheromone value and the heuristic information. If β = 0, the
influence of the heuristic information is ignored. And the ant’s path selection process is only related to
the pheromone, making decisions based only on the previous action. And the pheromone is updated
according to Eq. (8):

τi (t + 1) = (1 − ρ) τ t
i + LC (i)∑q

j=1 LC (j)
(8)

where q is the number of raw tag, τt
i and τi (t + 1) are the pheromone values of tag i at t and

(t + 1) moments. Respectively, ρ is the pheromone evaporation parameter, and LC (i) is the counter
corresponding to the tag i. The weight vector for label lb is attained at the conclusion of ant colony
iteration, as demonstrated in Eq. (9):

lb = τ (9)

Algorithm 1: Optimization of label correlation based on ACO algorithm
Input: Y: Tag set.
nAnt: number of ants.
nCycle: the maximum number of iterations that the algorithm repeated.
NF: number of features that each Ant should be selected on each cycle.
Output: lb: Label weight
Compute the symmetric uncertainty matrix SU ∈ Rq×q according to Eq. (2)
Initialize the pheromone vector as a constant
FC [i] = 0, ∀C [i] = 0, ∀i = 1, K, m
Randomly place nAnt ants on tags
for c = 1: nCycle do

for ant = 1: nAnt do
for k = 1: NF do
Choose the nest unvisited tag F according to the state transition rule, Eqs. (6) and (7)
Increase the corresponding value of l in LC, LC [l] = LC [l] + 1

(Continued)
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Algorithm 1 (continued)
endfor

endfor
Update the pheromone vector by applying LC according to Eq. (8)

endfor
return lb = τ

4 The Proposed Method

The paper proposes a multi-label feature selection based on improved ACO by dynamic redun-
dancy and label correlation. The essence of this approach is to explore the correlation between labels
using an improved ACO, convert the correlation into label weights, and integrate them into heuristic
factors.

4.1 Relevancy Calculation

In this subsection, feature relevancy and feature label relevancy are computed separately, and then
the label relevancy obtained from the ACO algorithm is integrated into the feature label relevancy.
Cosine similarity and Pearson correlation coefficient are used in calculating the correlations. Cosine
similarity is a mathematical measure, as shown in Eq. (10):

cos ine (A, B) = cos (θ) = A · B
||A|| ∗ ||B|| (10)

where θ is the angle between the nonzero vectors A and B, ‖A‖ and ‖B‖ are their respective magnitude.

The Pearson correlation coefficient is one of the most popular similarity measures, calculated as
shown in Eq. (11):

correlation (A, B) =

∣∣∣∣∣∣∣∣

∑n

i=1

(
Ai − A

) (
Bi − B

)
(√∑n

i=1

(
Ai − A

)2
) (√∑n

i=1

(
Bi − B

)2
)

∣∣∣∣∣∣∣∣
(11)

where A and B are two n-dimensional (number of instances) features vectors, A and B are the average
of the feature in the entire dataset. If they are linearly correlated, the value of the correlation coefficient
will be closer to one, otherwise if they are independent then the value is zero.

To separately evaluate the redundancy between features and the correlation between features
and class labels, the redundancy matrix fCorr and the incidence matrix fCorr for m × m and m × q
dimensions are computed. Additionally, the label correlations obtained from ACO in the previous
section are integrated into the correlation matrix. The integration process illustrated in Eq. (12):

flCorr = flCorr ∗ lb (12)

The proposed approach weights the relevance between each feature and all class labels through
labels, preserving and incorporating all feature-label relevance.

4.2 Subset Construction

The construction of the subset is also the process of information accumulation, feedback, and
iteration. The coding method used pheromones as feature weights, that is, it obtains feature ordering
by sorting the pheromone values, thus obtaining the feature subset. During the process of wandering
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of ant colony, the characteristics of the next visit are determined by state transition rules, which
encompass two strategies, a probabilistic transfer strategy, and a greedy transfer strategy:

Pk
i (t) =
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⎪⎩
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g0 = (gs − ge) ×
(

1 − k
NF

)r

+ ge (17)

where Nk
i is the set of features that have not been visited by the ant k; τi (t) is the value of the pheromone

of the feature i related to the pheromone in the t − th generation; the parameter g is a random variable
uniformly distributed in [0, 1], and g0 ∈ [0, 1] is an adaptive value with iteration; NF is the number of
features that need to be selected by the ant in each iteration; r is the parameter controlling the decay
rate. Through the probabilistic transfer rule defined in Eq. (13), the ant has the probability to select
any feature that has not yet been visited; through the greedy rule in Eq. (14), the ant can select the
feature with the lowest static redundancy and dynamic redundancy among unvisited features, as well
as the highest feature-label relevance. The frequency with which an ant visits a feature will be stored in
a vector called a feature counter (FC). Each time the ant traverses a feature, it adds one to the FC value
corresponding to that feature. At the end of each iteration, Eq. (18) updates the amount of pheromone
for each feature.

τi (t + 1) = (1 − ρ) τ t
i + FC (i)∑m

j=1 FC (j)
(18)

where m is the number of features, τt
i and τi (t + 1) are the pheromone values of tag i at t and

(t + 1) moments. Respectively, ρ is the pheromone evaporation parameter, and FC (i) is the counter
corresponding to the tag i.

The ant colony selects features and accumulates pheromone values using the aforementioned
strategy. The values in the pheromone correspond to the weights of the features. Algorithm 2 provides
a detailed description of the proposed method. The specific flow chart is shown in Fig. 1. The
computational complexity of the proposed method is analyzed. Firstly, the label weight lb is obtained
by Algorithm 1. The computational complexity of uncertainty matrix SU is O

(
q2

)
, and the main

cycle is O (nCycle ∗ nAnt ∗ NF). Then, the feature label correlation matrix flCorr is obtained with
computational complexity O

(
m2 + mq

)
. Therefore, the total computational complexity of algorithm

2 is O
(
q2 + m2 + mq + nCycle ∗ nAnt ∗ NF

)
.

Algorithm 2: Dynamic redundancy and label correlation ACO algorithms for multi-label feature
selection
Input: D: Training multi-label dataset
nAnt: number of ants

(Continued)
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Algorithm 2 (continued)
nCycle: the maximum number of iterations that the algorithm repeated
NF: number of features that each Ant should be selected on each cycle
Output: FK: Ranked features Frank
Using ACO to obtain label weights for representative label correlation lb
Compute m × m redundancy matrix fCorr between features according to Eq. (11)
Compute m × q correlation matrix fCorr between features and labels according to Eq. (11)
Obtain a feature label correlation matrix flCorr that integrates label correlations Eq. (12)
Initialize the pheromone vector according Eq. (10)
FC [i] = 0, ∀C [i] = 0, ∀i = 1, K, m
Randomly place nAnt ants on features
for c = 1: nCycle do

for ant = 1: nAnt do
for k = 1: NF do

Choose the nest unvisited feature F according to the state transition rule,
Eqs. (13) and (14)

Increment the FC for feature f , FC [F ] = FC [F ] + 1
end for

end for
Update the pheromone vector by applying FC according to Eq. (18)
end for
Obtain FK by descending sorting based on corresponding features in the pheromone vector

Start

Initialize parameters

Compute redundancy matrix and correlation matrix by Eq.(11) 
Obtain a feature label correlation matrix flCorr by Eq.(12) 

Initialize the pheromone vector by Eq.(10) 

Choose the nest unvisited feature by Eq.(13) and 
Eq.(14) and increment the feature counter for feature

Update the pheromone vector by Eq.(18)

Is the maximum number of iterations 
reached?

End

Obtain the ranked features

Use ACO to obtain label weights for representative label correlation 

No

Yes

Figure 1: Algorithm 2 flow chart

5 Experiment Results and Discussions

In this section the efficacy of the proposed method is rigorously evaluated across seven multi-label
datasets with five filter methods. Subsequently, a thorough presentation of the results is provided,
complemented by an extensive analysis and interpretation of the findings.
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5.1 Datasets

In this work, comprehensive experiments are carried out on authentic public datasets from various
domains, including images, text, and biology, as shown in Table 1. It illustrates the number of instances,
the number of features, the number of labels, cardinality (average number of labels for per instance),
density, and domains for each data set.

Table 1: Multiple domain datasets

Dataset Instances Features Labels Cardinality Density Domain

Scene 2407 294 6 1.074 0.234 Image
Enron 1702 1001 53 3.378 0.442 Text
Flags 194 19 7 3.392 0.442 Image
Emotions 593 72 6 1.868 0.422 Music
Chess 1657 585 227 2.411 0.644 Text
Image 2000 284 5 1.236 0.625 Image
Yeast 2417 103 14 4,237 0.082 Biology

5.2 Experimental Settings

The study presents an analysis and discussion of the seven publicly accessible multi-label datasets
that were utilized, as well as the five filter methods that were compared, while the performance of
all methods is evaluated using four multi-label categorical evaluation metrics. The paper compares
the proposed method with MLACO [18], MCLS [36], ELA-Chi [37], PPT-Chi [37], and PPT-
MI [37]. MLACO is based on the graph frame and adopts ACO. MCLS uses popular learning
transformation and constraints on label space. PPT-CHI, PPT-MI, and ELA-Chi are classic problem-
based transformation methods based on mutual information.

The parameters for the comparison methods have been specified. In the MLACO [18] algorithm,
the maximum number of iterations is set to 40 (nCycle = 40), with a pheromone decay rate of
0.1 (ρ = 0.1) and the number of ants fixed at 25 (nAnt = 25). The quantity of features selected

by each ant in every iteration is defined as half the original number of features NF = m
2

. g0 the

power parameters for the start value, termination value, and polynomial decay rate are configured
as 1, 0, and 0.7, and the parameter β is established at 1. The settings of the proposed method
are consistent with MLACO. The number of unique parameter neighbors in the Manifold-based
Constraint Laplacian Score (MCLS) [36] is set to 5. The pruning threshold for Pruned Problem
Transformation-Chi (PPT-Chi) [37] and Pruned Problem Transformation for Multi-Label (PPT-MI)
[37] is set to 6. Entropy-based Label Assignment-Chi (ELA-Chi) [37] does not require to have a
parameter set. The classifier of the experiment utilizes lazy learning-based ML-KNN [25] which is
often used to access the performance of multi-label feature selection methods, with the number of
neighbors set to 10. Four multi-label evaluation metrics are used: Hamming loss, One-error, Average-
precision, and Micro-F1. Smaller values for Hamming loss and One-error are better, and larger values
for Average-precision and Micro-F1 are better. For each dataset and algorithm, the average of 20
independent runs of these evaluation metrics is computed for all graphs and tables. Additionally,
the dataset is partitioned using 5-fold cross-validation. The feature subset is obtained by sorting the
features obtained by all methods. In order to evaluate the efficiency of feature selection methods,
we first select the most representative d features through each method as the final feature subset,
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where d ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. And then we classify these selected feature subsets.
Since the feature dimension of the datasets Flags and Emotions are less than 100, we set them as
d ∈ {2, 4, 6, 8, 10, 12, 16, 18} and d ∈ {10, 20, 30, 40, 50, 60, 70} respectively on these two datasets. In
order to further analyze the performance of each method, the first 30 features of each method are
selected as the feature subset of multi-label learning.

5.3 Results and Discussion

Figs. 2–5 illustrate the performance variance of all methods on seven datasets with different
sizes of feature subsets. Based on the results, the following observation can be deduced: From the
results shown in Fig. 2a, it can be seen that the proposed method outperforms all other methods,
achieving the best results. Furthermore, with an increasing number of features, the proposed method
exhibits remarkable stability and consistently surpass the compared algorithms. It is observed from
Fig. 2b highlights that the performance metrics, particularly one-error and average-precision, exhibit
stability with the incremental increase in features. Despite the observed fluctuations and a decline
in performance concerning hamming loss and micro-F1 measures, the proposed method consistently
maintains a considerable superiority to comparative approaches. The observations from Fig. 3a reveal
that all methods exhibit their highest variability on the Flags dataset, which can be attributed to its
inherently low feature dimensionality. Additionally, it is discernible that an increase in the number of
features does not consistently enhance the classification performance of algorithms. Analysis across
the four evaluative metrics indicates that the performance of the proposed method falls short of the
benchmark set by comparative methodologies exclusively when dealing with subsets of features with
the limited size. Fig. 3b presents the results on the Emotions dataset. The overall trend is the same
as the performance on the Scene dataset, with the difference being that the gap between the other
methods and the proposed method is more pronounced, especially in hamming loss measures.
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Figure 2: Results of four evaluation indicators on Scene and Enron datasets



1168 CMC, 2024, vol.81, no.1
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Figure 3: Results of four evaluation indicators on Flags and Emotions datasets
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Figure 4: Results of four evaluation indicators on Chess and Yeast datasets
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Figure 5: Results of four evaluation indicators on Image dataset

As depicted in Fig. 4a, the performance of the proposed method is observed to be inferior to that
of PPT-MI for feature counts less than 60. Beyond the threshold of 60 features, the proposed method
asserts its unequivocal superiority across various evaluation metrics. This observation underscores the
nuanced efficacy of the proposed method in relation to feature quantity and its comparative advantage
over a spectrum of evaluative criteria. According to the results in Fig. 4b, it displays that the proposed
method does not match the MCLS in terms of one-error rate and average-precision. Nevertheless,
it remains competitive relative to other evaluated methods, such as MLACO. Moreover, for most
other evaluation metrics, the proposed method outperforms all compared counterparts. The noticeable
decrease in the effectiveness of the proposed method, especially in the Yeast dataset, can likely be
attributed to the minimal correlation between labels within the dataset. From the Fig. 5, it can be seen
that the performance of the proposed method is monotonically improved with a relatively small feature
subset size. Although it is not as stable as the other methods as the feature subset size increases, but
remains highly competitive in terms of classification error rate and accuracy. From the overall trend,
it can be seen that with the increasing size of feature subset, the classification error of the proposed
method consistently decreases, the classification accuracy continues to rise. This improvement sets the
proposed method apart from the compared methods, demonstrating its superior performance.

To further demonstrate the effectiveness of the proposed method, quantitative analysis is
employed to demonstrate its performance. This involves the use of a feature subset composed of
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the top 30 features derived from the feature ranking outcomes. The rankings of each method on
various datasets are presented in the Tables 2–5 with AvgRank signifying the mean ranking of the
performance of each method on all datasets. The boldface in the table indicates the best performance,
and the numbers in parentheses indicate the relative ranking of the six algorithms on each evaluation
metric for each dataset. In the analysis presented across four tables, the proposed method consistently
ranks the top position, with the only exception being its position on the Chess dataset. However, on
other data sets, the proposed method significantly performs better than other methods. Additionally,
the proposed method attains the highest AvgRank, which is an aggregate performance measure across
all metrics. On the four evaluation metrics across the seven datasets, the method achieves average
improvements of 6.81%, 18.01%, 6.33%, and 25.14%, respectively, in comparison to MLACO. These
improvements indicates that dynamic redundancy and label correlation significantly enhances the
search capabilities of the ACO algorithm. Therefore, the proposed method achieves highly competitive
performance compared with all the comparing methods.

Table 2: Hamming loss for 6 filtering methods on datasets

Dataset

Method MFACO MLACO MCLS ELA-Chi PPT-Chi PPT-MI

Scene 0.1182(1) 0.1220(2) 0.1681(4) 0.1698(6) 0.1691(5) 0.1577(3)
Enron 0.0535(1) 0.0567(4) 0.0595(5) 0.0602(6) 0.0563(3) 0.0558(2)
Flags 0.2820(1) 0.3130(3) 0.3135(4) 0.3080(2) 0.3432(6) 0.3395(5)
Emotions 0.2103(1) 0.2368(3)(3) 0.2424(6) 0.2374(4) 0.2399(5) 0.2254(2)
Chess 0.0090(2) 0.0099(3) 0.0101(4) 0.0103(5) 0.0105(6) 0.0071(1)
Yeast 0.2021(1) 0.2071(3) 0.2093(4) 0.2112(6) 0.2110(5) 0.2047(2)
Image 0.1875(1) 0.2015(2) 0.2328(6) 0.2271(5) 0.2250(4) 0.2250(3)
Avg Rank 1.14 2.86 4.71 4.86 4.86 2.57

Table 3: One-error for 6 filtering methods on datasets

Dataset

Method MFACO MLACO MCLS ELA-Chi PPT-Chi PPT-MI

Scene 0.3339(1) 0.3481(2) 0.5675(6) 0.5491(5) 0.5392(4) 0.5052(3)
Enron 0.2851(1) 0.3578(3) 0.3985(5) 0.4029(6) 0.3647(4) 0.3103(2)
Flags 0.1711(1) 0.2982(5) 0.2632(4) 0.1842(2) 0.2368(3) 0.3158(6)
Emotions 0.2532(1) 0.3264(3) 0.3407(6) 0.3293(4) 0.3327(5) 0.3063(2)
Chess 0.4779(2) 0.6209(3) 0.6552(4) 0.7256(5) 0.7391(6) 0.3238(1)
Yeast 0.2277(1) 0.2426(5) 0.2340(3) 0.2443(6) 0.2422(4) 0.2298(2)
Image 0.3750(1) 0.4054(2) 0.5189(6) 0.4933(5) 0.4814(3) 0.4816(4)
Avg Rank 1.14 3.29 4.86 4.71 4.14 2.86
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Table 4: Average-precision for 6 filtering methods on datasets

Dataset

Method MFACO MLACO MCLS ELA-Chi PPT-Chi PPT-MI

Scene 0.8000(1) 0.7913(2) 0.6326(6) 0.6418(5) 0.6540(4) 0.6844(3)
Enron 0.6383(1) 0.6029(3) 0.5806(4) 0.5485(6) 0.5769(5) 0.6105(2)
Flags 0.8158(1) 0.7797(5) 0.7887(3) 0.8110(2) 0.7883(4) 0.7595(6)
Emotions 0.8087(1) 0.7620(3) 0.7534(5) 0.7579(4) 0.7533(6) 0.7742(2)
Chess 0.3863(2) 0.3149(3) 0.3076(4) 0.2562(5) 0.2323(6) 0.4989(1)
Yeast 0.7580(1) 0.7455(4) 0.7518(2) 0.7402(5) 0.7354(6) 0.7488(3)
Image 0.7554(1) 0.7385(2) 0.6601(6) 0.6818(5) 0.6870(4) 0.6940(3)
Avg Rank 1.14 3.14 4.29 4.57 5.00 2.86

Table 5: Micro-F1 for 6 filtering methods on datasets

Dataset

Method MFACO MLACO MCLS ELA-Chi PPT-Chi PPT-MI

Scene 0.6084(1) 0.5873(2) 0.2281(6) 0.2376(5) 0.2730(4) 0.3422(3)
Enron 0.4886(1) 0.4022(4) 0.3331(6) 0.3384(5) 0.4226(3) 0.4235(2)
Flags 0.7206(1) 0.6786(2) 0.6653(3) 0.6570(5) 0.6263(6) 0.6617(4)
Emotions 0.5918(1) 0.5271(4) 0.5096(6) 0.5315(3) 0.5256(5) 0.5617(2)
Chess 0.2645(2) 0.1210(3) 0.0845(4) 0.0709(5) 0.0050(6) 0.4989(1)
Yeast 0.6262(1) 0.6084(4) 0.6068(5) 0.5873(6) 0.6102(3) 0.6131(2)
Image 0.5033(1) 0.4536(2) 0.2772(6) 0.3135(5) 0.3343(3) 0.3190(4)
Avg Rank 1.14 3.00 5.14 4.86 4.29 2.57

5.4 Statistical Verification

Based on the previous experimental results, the aim is to compare and analyze the performance
of the implemented multi-label feature selection methods. The superiority of the proposed methods
is further evaluated. In this subsection, two statistical tests commonly used for multi-label feature
selection, namely Friedman test and Posterior Nemenyi test, are used to verify the significance of the
variances among the methods.

Initially, the proposed method is tested to obtain multi-label feature selection. If the calculated
value Friedman statistic FF is greater than the critical value, the assumption that all methods perform
equally is rejected at the significance level a. During this testing phase, the critical value of 2.534 is set
and found. Subsequently, the Friedman statistic and critical value for the four evaluation indexes are
obtained, as presented in Table 6.
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Table 6: Friedman statistics and critical values for four evaluation metrics

Evaluation metrics FF Critical value (α = 0.05)

Hamming loss 13.0556

2.534
One-error 7.5395
Average-precision 8.2127
Micro-F1 12.5072

The results from Table 6 indicate that the Friedman statistics for all four evaluation indicators
are significantly higher than the critical value, thus rejecting the null hypothesis made. The statistical
differences between the methods are also compared visually using the post-hoc test Nemenyi test. The
smaller the mean ranking is the better the characterization performance. The mean ranking difference
between two methods is compared with the critical distance, if the mean ranking difference is greater
than the critical distance then there is a significant difference between the two. The critical distance is
indicated by a solid red line. CD (Critical Difference) is calculated as shown in Eq. (19):

CD = qa

√
k (k + 1)

6N
(19)

where qa = 3.031 is the parameter at significance level a of 0.05, then the critical distance CD = 2.850
is calculated.

From Fig. 6, it can be seen that the performance difference between the implemented method and
MCLS, ELA-CHI, and PPT-Chi is the most significant. Although the difference between PPT-MI
and MLACO is not significant, within a critical distance, the proposed method evaluates first in the
ranking, while MLACO is ranked back on average. Taken together, the proposed method has strong
competitiveness and gains some performance improvement compared with MLACO. This verifies the
effectiveness of incorporating dynamic redundancy and label correlation as correlation information.

(a) Hamming loss (b) One-error

(c) Average-precision (d) Micro-F1

Figure 6: CD map of the four evaluation indicators
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6 Conclusion

In the paper, a multi-label feature selection method is implemented that enhances ACO through
the incorporation of dynamic redundancy and label correlation. Firstly, a concept of dynamic
redundancy is proposed to ensure that the ant colony pays attention to the change of the redundancy
of the selected feature subset at the same time as it wanders around, aiming to yield the lowest possible
redundancy in the selected feature set. Secondly, the label relevance matrix is optimized individually by
the ant colony to obtain the label weights, and then the label weights are integrated into the feature label
relevance, which both incorporates the label relevance and retains all the feature label relevance. The
above two strategies enhance the optimization ability of the ant colony, which enables the ant colony to
capture discriminative features to obtain the optimal feature subset. The proposed method is compared
with filtered methods, other state-of-the-art methods and classical methods that are also used for ACO.
It demonstrates superior performance across four evaluation metrics on seven datasets, testifying that
search efficacy of ACO has been enhanced and that it successfully pinpoints discriminative features.
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