
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.055180

ARTICLE

KubeFuzzer: Automating RESTful API Vulnerability Detection in Kubernetes

Tao Zheng1, Rui Tang1,2,3, Xingshu Chen1,2,3,* and Changxiang Shen1

1School of Cyber Science and Engineering, Sichuan University, Chengdu, 610065, China
2Cyber Science Research Institute, Sichuan University, Chengdu, 610065, China
3Key Laboratory of Data Protection and Intelligent Management (Sichuan University), Ministry of Education,
Chengdu, 610065, China

*Corresponding Author: Xingshu Chen. Email: chenxsh@scu.edu.cn

Received: 19 June 2024 Accepted: 14 September 2024 Published: 15 October 2024

ABSTRACT

RESTful API fuzzing is a promising method for automated vulnerability detection in Kubernetes platforms. Existing
tools struggle with generating lengthy, high-semantic request sequences that can pass Kubernetes API gateway
checks. To address this, we propose KubeFuzzer, a black-box fuzzing tool designed for Kubernetes RESTful APIs.
KubeFuzzer utilizes Natural Language Processing (NLP) to extract and integrate semantic information from API
specifications and response messages, guiding the generation of more effective request sequences. Our evaluation
of KubeFuzzer on various Kubernetes clusters shows that it improves code coverage by 7.86% to 36.34%, increases
the successful response rate by 6.7% to 83.33%, and detects 16.7% to 133.3% more bugs compared to three leading
techniques. KubeFuzzer identified over 1000 service crashes, which were narrowed down to 7 unique bugs. We
tested these bugs on 10 real-world Kubernetes projects, including major providers like AWS (EKS), Microsoft Azure
(AKS), and Alibaba Cloud (ACK), and confirmed that these issues could trigger service crashes. We have reported
and confirmed these bugs with the Kubernetes community, and they have been addressed.

KEYWORDS
Kubernetes; RESTful APIs; API fuzzing; black-box fuzzing

1 Introduction

Kubernetes, also known as K8s, is an open-source software system hosted by the Cloud Native
Computing Foundation (CNCF) for managing containerized applications across multiple hosts [1]. It
provides the primary mechanism for application deployment, maintenance, and scaling. Kubernetes is
frequently used in real-world container cloud platforms, as it can dramatically accelerate deployments
by removing the burden of manual, repetitive operations during container deployment. According to
the survey [2], organizations such as the US Department of Defense use Kubernetes to manage their
application deployments, reducing their release time from 3–8 months to one week for 37 projects,
saving more than 100 years.

Due to the massive adoption of Kubernetes, it has become a significant target for hackers carrying
out cloud attacks in recent years [3]. From the official CVE website, it can be found that of the 179

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.055180
https://www.techscience.com/doi/10.32604/cmc.2024.055180
mailto:chenxsh@scu.edu.cn


1596 CMC, 2024, vol.81, no.1

existing Kubernetes-related CVEs, 40 are caused by API design vulnerabilities. Among the 24,995
issues related to bugs in the official Kubernetes community, 4666 bugs were caused by the API [4].
Consequently, the security issues stemming from the Kubernetes API design are growing more critical,
necessitating a prompt solution in the form of an automated API fuzzing tool specifically tailored for
Kubernetes. This tool would identify inherent design flaws within the Kubernetes API. Current API
testing tools face efficiency challenges when applied to REST API vulnerability mining for Kubernetes.
More specifically, these tools first take the OpenAPI specification or API blueprint as test input,
use various strategies to generate random test cases to execute the API endpoints defined in the
document, and then determine whether unexpected errors are triggered to uncover problems in the
API design with the returned response information. However, these tools randomly select the value of
each parameter when generating a request, making it almost impossible to generate valid test cases that
pass the syntax and semantic checks of the Kubernetes API gateway. For example, RESTler [5] first
parses the input OpenAPI document and infers producer-consumer dependencies between operations.
It then uses a search-based algorithm to random generate a request sequence that matches the test
dependencies for testing. However, because RESTler randomly picks values from the dictionary to
render the request sequence with parameters, the request sequence it constructs is not semantic and
cannot pass the Kubernetes API server. Due to insufficient semantic information, current RESTful
API fuzzing tools are unable to generate high-quality requests for Kubernetes.

During the testing process, we observed that the return information from failed REST API request
sequences often contains rich semantic details that could significantly enhance our testing tools. For
instance, a failed request with a 400 status code and a return message including terms such as bad
request or content reveals the underlying cause of the failure. Specific phrases like content-length or
invalid-param in the content-type header can directly pinpoint the nature of the error. By leveraging
this information, our testing tools could be guided to generate more semantically informed request
sequences. However, relying on either manual or syntax rule parsing tools makes it difficult to deal
with the huge number of API return data values. In addition, the problem of constructing valid request
sequences in an oriented manner while extracting API data also needs to be addressed.

In contrast to other studies, our work focuses on generating REST API requests specifically
designed to bypass the Kubernetes API gateway and efficiently detect API vulnerabilities. How to
extract useful semantic information values from the return values of failed request sequences so as
to pass the inspection of the API gateway is the critical issue to be addressed in this research. To fill
this gap, we propose KubeFuzzer, a comprehensive RESTful API fuzzing tool based on CoreNLP
(an open-source NLP framework designed by Stanford) for Kubernetes API testing scenarios. The
workflow of KubeFuzzer comprises three key procedures. Firstly, it acquires API specification doc-
uments and gathers pertinent information about API test responses. Secondly, leveraging CoreNLP,
KubeFuzzer extracts valid values from the specification documents and response information that
conform to the syntax and semantics. Lastly, it dynamically incorporates these valid values into
test cases to generate well-crafted requests. To evaluate the vulnerability detection performance of
KubeFuzzer, we selected three state-of-the-art API testing tools (RESTler [5], Resttestgen [6], RESTest
[7]) to compare with it. Meanwhile, we locally built two different versions of Kubernetes clusters (stable
Kubernetes cluster V1.18.5 and the popular version of Kubernetes cluster V1.25.3) and executed API
fuzzing on these clusters using KubeFuzzer. The results show that KubeFuzzer found 901 and 1252
service crashes, respectively. All bugs were categorized, de-duplicated and responsibly submitted to the
Kubernetes community, where they were confirmed and fixed by community staff. In summary, our
contributions are as follows:



CMC, 2024, vol.81, no.1 1597

1. An automated vulnerability fuzzing tool for Kubernetes REST APIs is proposed that utilizes
NLP techniques to solve the parameter semantics problem, which can improve the efficiency
of vulnerability detection.

2. The performance of KubeFuzzer is fully evaluated. Experiments prove that it outperforms the
state-of-the-art in terms of the number of valid requests generated, code coverage, and the
number of bug found.

3. A large-scale empirical evaluation experiment was conducted. Multiple types of REST API
vulnerabilities were discovered in a large number of real Kubernetes services using KubeFuzzer,
all of which have been identified and fixed by the vendor.

2 Related Work
2.1 REST API Fuzzing

Black-box testing methods do not require access to source code and are therefore more useful in
practical testing scenarios. Several black-box RESTful API tools have been proposed to generate the
meaningful RESTful API requests sequence. RESTler [5] builds the API call sequences with a bottom-
up approach which starts with single operation call sequences and gradually extend the call sequences
by appending more operations after trial and error. RESTTESTGEN [6] generates the API call
sequences with Operation Dependency Graphs (ODGs) to model RESTful services and build the call
sequence with graph traversal. Compared to the above approaches, RESTest [7] supports automated
management of inter-parameter dependencies and supports deeper and faster evaluation of APIs by
systematically generating combinations of valid and invalid inputs. White-box testing approaches
for RESTful APIs are not common in the literature [8]. Morest [9] builds the call sequences with
RESTful-service Property Graph (RPG) and can enjoy both high-level guidance and the flexibility
of dynamic adjustments to achieve better performance. Pythia [10] for RESTler uses grammar-based
syntax fuzzing, where each property is filled with fixed value types, such as strings or numbers. These
values are sourced from user dictionaries or API specifications and remain unchanged over time,
lacking any prioritization. This approach does not address which requests or request parts should
mutate, nor does it determine the extent of mutation required. Some black-box tools [11] proposed to
analyze the output returned by the service after similar requests. When inconsistencies between these
outputs were detected, they managed to find errors, e.g., the API returned more data when filters were
used than when filters were not applied. Other tools [12–14] have also been subsequently improved
for invalid input, extracting attribute values from historically valid responses to populate subsequent
attribute inputs, and adding additional security checkers to check for fixed errors.

2.2 Kubernetes Security

The security of Kubernetes clusters is increasingly gaining attention from researchers [15]. For
example, researcher studied cluster resource management and scheduling [16]. Shamim [17] studied the
current status and future perspectives of machine learning applications to clusters, and also studied
the recent practice of knowledge-based security for Kubernetes clusters. Zhang et al. [18] presented
a method for generating recommended configuration policies for clusters, and Viktorsson et al. [19]
deploied three runtimes in the same Kubernetes cluster, the security focused Kata and gVisor, as well
as the default Kubernetes runtime runC to understand the current state of the technology in order
to make the right decision in the selection, operation and/or design of platforms—and to scholars
to illustrate how these technologies evolved over time. In addition, there are researchers who utilize
graph mining [20] and deep learning methods to study the detection methods of cluster insecure



1598 CMC, 2024, vol.81, no.1

policies [21]. In terms of dynamic risk detection, Yang et al. [22] proposed for the first time a cluster
takeover method based on excessive privileges, Zeng et al. [23] studied on full-stack vulnerability of
the cloud-native platform, and He et al. [24] proposed a cluster attack method using ebpf, which is
capable of realizing cross-cloud attacks on clusters. Li et al. [25] systematically studied the container
security defense mechanism based on Kubernetes. Lyu et al. [26] used a deep learning algorithm
to collect response data from historical valid request sequences, while Pan et al. [27] developed an
efficient API vulnerability detection tool for data exposure vulnerabilities. Previous methods reveal
two critical aspects for effective API vulnerability detection in Kubernetes: (i) bypassing API gateway
authentication, and (ii) constructing highly semantic requests.

3 Design and Implementation of KubeFuzzer
3.1 Challenges and Overview

To achieve efficient automated vulnerability detection for Kubernetes’ REST APIs, we have the
following key challenges (C1–C3):

C1: Enhancing parameter semantics. How to generate parameters with semantics that populate the
request sequence, which in turn is semantically checked by Kubernetes’ API gateway is the primary
challenge for KubeFuzzer.

C2: Generating valid request sequences. Another key challenge for KubeFuzzer is to render
effective request sequence templates in order to detect as many deep vulnerabilities as possible under
complex API operations.

C3: Optimizing response analysis. How to automate the analysis of valid information in request
responses to dynamically feedback to parameter semantic enhancement tasks is a key challenge for
KubeFuzzer.

The proposed KubeFuzzer is illustrated in Fig. 1. During the semantic extraction phase, Kube-
Fuzzer uses NLP technology to extract semantic information from the OpenAPI specification
document. This information is then utilized in the test case generation phase to create a new OpenAPI
specification and a fuzz dictionary, which are used to generate high-quality request sequence test
cases. These test cases are sent to the API server for testing, and KubeFuzzer collects and analyzes
the response messages. Detected errors are reported for bug analysis. Additionally, 4XX responses are
filtered and fed back into the semantic extraction phase to extract enhancements from these responses,
which are then used to refine and generate higher-quality test cases.

Figure 1: The workflow of KubeFuzzer



CMC, 2024, vol.81, no.1 1599

3.2 Semantic Extract with NLP

To address Challenge 1, this module initially gathers description information from the OpenAPI
specification documents and message values from the request responses. It subsequently extracts
semantic information associated with the API request parameters from the collected sequence of
information. Therefore, this module encompasses two primary sub-modules: Information Collection
and Semantic Extraction.

Specifically, 1) Information collection module collects the description fields corresponding to all
parameters in the specification document and the message fields in the returned test case responses. 2)
Semantic extraction module extracts the semantic information from the original information collected
in sub-module Information collection. More specifically, inspired by Wong et al. [16], we introduced
the NLP function uses the word tokenization model, part-of-speech model and dependency parsing
model to extract semantic information. The description and message fields are processed by the
NLP dependency parsing module to produce a dependency syntax tree consisting of dependency
relationships, as shown in Fig. 2. A dependency relationship connects two words: head word, dependent
word, and from head word to dependent word.

Figure 2: Parameter and semantic information dependence analysis

When we extract the semantic information of a parameter, we take the parameter as the head word
and the semantic information as the set of dependent words that depend on the head word. But owing
to format inconsistencies, the semantic information of certain parameters may not exhibit a direct
correspondence with their respective description or message fields. To elaborate, in Fig. 2, the message
field manifests the presence of the “dryRun” parameter and the recommended parameter “All”. We
use “dryRun” as the head word and the “All” should be his dependent word. Nonetheless, it has been
noted that the value of the “All” parameter does not overtly rely on the “dryRun” parameter, but rather
interfaces with it via the “values” field. Given this premise, we define the set of semantic information
M as follows:

M = {x|ε ≤ 2} (1)

where x represents the semantic information that satisfies the condition and ε represents the depen-
dency distance between the parameter and the semantic information. When extracting, it is determined
that the dependent words with a distance of less than or equal to 2 from the head word are the semantic
information of the head word. Once ε more than 2, more words can be included but there is a loss
of accuracy. By the definition, we can extract the set of semantic information about the parameter
“dryRun”:[“value”,“values”,“stringfuzzstring”,“All”].

Our selection of Stanford CoreNLP was driven by key considerations. Firstly, CoreNLP excels
in syntactic parsing and semantic role labeling, crucial for accurately interpreting complex natural
language instructions in our study. Its holistic approach to semantic understanding aligns well with
our requirements, surpassing other frameworks that may offer specialized functionalities. Secondly,



1600 CMC, 2024, vol.81, no.1

CoreNLP’s extensive library of pre-trained models, refined over years, ensures stability and efficiency,
especially with large datasets. While alternative frameworks may have similar features, their per-
formance in our specific context may not be as robust. Lastly, CoreNLP’s clean and intuitive API
facilitated seamless integration with our Kubernetes API testing environment, reducing development
costs and complexity during implementation.

As shown in Algorithm 1, KubeFuzzer extract first defines mess_list and para_list. mess_list is used
to store the description field collected by the collection function and the contents of the message field in
the response message. para_list stores the values of the parameters involved in the API documentation,
then defines the list of dependency relations to filter, noMeaningRels, including det, cc, punct. Next,
word separation, lexical inference and dependency inference are performed on each message. The id,
value, pos, head of each word in the message is obtained according to the inferred result. Iterate through
each word in the message, and if the current word matches the element in the para_list, the current word
is taken as the root node, and the id of that node is taken as the root_id. Again, iterate through each
word in the message, determine if the root word id with distance less than or equal to 2 is the same
as root_id and the deprel does not exist in the noMeaningRels, if the condition is satisfied, the word is
considered as possibly containing semantic information and extracted.

Algorithm 1: Extract the semantic message with NLP
Input: Responses file with 4XX, Description value in API Specification
Output: Semantic enhanced information
1: para_list ← ∅

2: noMeaningRels ←
[
“cc

‘‘

, “det

‘‘

, “punct

‘‘]

3: mess_list ← ∅

4: for message in mess_list do
5: text_result ← nlp.word_tokenize (message)
6: pos_result ← nlp.pos_tag (message)
7: deprel_result ← nlp.dependency_parse (message)
8: word_dir ←{}
9: word_list ← ∅

10: for id in range (len(text_result)) do
11: word_dir ← {“id”, “value”,“pos”,“head”}
12: word_list.append (word_dir)
13: for para in para_list do
14: for word in word_list do
15: if word equal para then root_id ← word [‘id’]
16: for word in word_list do
17: if word [‘deprel’] in noMeaningRels then continue
18: else if word [‘head’] equal root_id then return word [‘value’]
19: else if result_list [word [‘head’] − 1] [‘head’] equal root_id then
20: return word [‘value’]

3.3 Test Cases Generation

To address Challenge 2, similarly, as is shown in Algorithm 2, this module contains two main sub-
modules: Request Sequence Generation and Request Sequence Tendering. KubeFuzzer first generates



CMC, 2024, vol.81, no.1 1601

the request sequence template based on the dependencies defined in the RESTler [5] by parsing the
OpenAPI specification. After that, it renders each request in the template respectively.

Request Sequences Generation. This sub-module first iterates through req_seqs and req_list to get
the current request sequence template (seq) and the Kubernetes API request (req), and then determines
if the req matches the dependency with seq. If it does, req is added to seq, then a new request sequence
template is assembled. The specific parameter value of each request in the request sequence template
is replaced with a placeholder and waits for the request_sequences_render function to render it. Upon
successful rendering, the request sequence collection adds the newly constructed request sequence to
complete this process.

Request Sequences Render. This sub-module renders each request in the API request sequence,
replacing the attribute value placeholders of each request in the request sequence with specific
parameter values. Inspired by [3], we introduce a dynamic feedback dictionary and a document-
based approach to populating parameter values. The dynamic feedback dictionary stores semantic
information about the parameters extracted from the extraction module of the parameter composition
mapping dictionary. During request rendering, the specific values of the parameters are populated
by matching the same parameters in the request against the dynamic feedback dictionary. Since
the Swagger documentation supports the ability to specify default values for input parameters and
examples of values to be used, and if these values are specified, test operations can be attempted.
Therefore, the document-based approach also makes use of the semantic information extracted by the
Extract module and, based on the semantic information, modifies the default values of the response
parameters and provides example values for the parameters as a way of constructing a new OpenAPI
specification document to be parsed again and thus populated with the default values during the
rendering process. Iterate through each parameter in the request, and if the parameter has a sample
value in the specification, KubeFuzzer will use the sample value to render it. If there is a mapped value
in the dynamic feedback dictionary, KubeFuzzer uses the mapped value to fill, if there is none, it uses
the random value to fill.

Algorithm 2: Test cases generation
Input: K8s OpenAPI Specification
Output: Request Sequence
1: req_list ← Analysis (K8s_Spec)
2: req_seqs ← {}
3: def request_seq_generate(req_seqs, req_list):
4: for seq in req_seqs do
5: for seq in req_seqs do
6: if seq is empty then
7: new_seq ← concat (seq, req)
8: request_seq_render (new_seq)
9: req_seqs.append (new_seq)
10: else if consums (req) ∈ produces (req) then
11: new_seq ← concat (seq, req)
12: request_seq_render (new_seq)
13: req_seqs.append (new_seq)
14: def request_seq_render(seq):
15: for req in seq do

(Continued)



1602 CMC, 2024, vol.81, no.1

Algorithm 2 (continued)
16: for para in spec do
17: if para in spec then
18: put example value in req
19: else if para in dict then
20: put dict value in req
21: else
22: put fuzzing value in req

3.4 Response Message Filter

To address Challenge 3, this module first reads all the responses generated by the test cases
from the log file. It then matches all responses starting with the message about “HTTP/1.1 4XX” by
constructing regular matching rules. Finally, the successful matches are written to a file and returned to
the Extract module. More specifically, for all the responses returned by the test cases with status code
2XX, we consider that all the parameters in the request meet the semantic requirements of Kubernetes.
For the response with a status code of 500, we consider that the parameters in the request may be the
specific cause of the error, and even if they do not meet the semantic requirements of Kubernetes, we
need to retain their specified values in order to analyse the cause of the error. Therefore, responses
with status codes 2XX and 500 are not targeted for collection. The 4XX responses often contain
information about Kubernetes’ semantic requirements for the parameters.

4 Experiment

We have implemented KubeFuzzer based on Python 3.9.0 and conducted experiments to evaluate
the bug detection performance of KubeFuzzer. We select Restler [5], RESTTESTGEN [6], and
RESTest [7] as baseline tools. We design several experiments and try to answer the following questions
to validate our contributions in different aspects:

RQ1 (Coverage): How is the code coverage and successful response rate capability of KubeFuzzer
compared with baselines?

RQ2 (Bug Detection): How is the bug detection capability of KubeFuzzer compared to the
baselines?

RQ3 (Ablation Study): How do input guidance and response feedback affect the performance of
KubeFuzzer separately?

4.1 Evaluation Settings

Evaluation Criteria. We use the following three criteria to evaluate KubeFuzzer and the baselines:
(1) Code Coverage. Since line coverage is the most refined performance metric for black-box testing
tools, we use line coverage to reflect the state space exploration capability of KubeFuzzer. We combine
SonarQube (A Code coverage tool for GO) with integration test method (Test Coverage of Go Services
during Integration Tests) to test code coverage. (2) Successful Response Rate (SRR). We applied SRR
to reflect whether KubeFuzzer can generate valid requests to test the deeper code logic of the RESTful
service, and valid requests are partly the result of correct call sequences. When a request returns a status
code of 2XX, we define it as a successful request. As the number of request cases generated by each
tool varies, we use the ratio of the number of successful requests to the number of request cases as an



CMC, 2024, vol.81, no.1 1603

SRR indicator. (3) Bug Number. The number of unique bugs found is the most important measure of
a black-box testing tool. If an API request is detected and a 5XX status code is returned, we assume
that the API request is causing a service failure. In our experiments, we manually classify errors as
unique bugs based on the response body, server logs, etc.

Kubernetes Cluster. We found that the Kubernetes versions involved in the services that are
orchestrated using the Kubernetes native API, provided by the well-known cloud service providers
are in the range of 1.18–1.25. Therefore, we set up the evaluation benchmark with the stable and the
popular Kubernetes cluster (V1.18.5 and V1.25.3). We hosted these two clusters on a local machine and
ran each technique with three time budgets—8, 16 and 24 h. Each evaluation lasts for 48 h on a docker
container configured with 8 CPU cores, 20 GB RAM, Python3.8.2, and the OS of Ubuntu16.04 LTS.

4.2 Coverage (RQ1)

4.2.1 Code Coverage

To comprehensively compare the performance of KuberFuzzer with the baselines in terms of code
coverage, we ran this experiment 10 times of 8, 16, and 24 h on each tool to measure the code coverage
of two different versions of kubernetes, and took the average value to represent the code coverage of
each tool. Fig. 3, Tables 1 and 2 depict the code coverage of the four tools, due to space limitations,
Table 2 only shows the results of 10 run times of the four tools, each time for 24 h. We define α as the
average code coverage of KubeFuzzer, and β as the average code coverage of baseline technology. We
calculate the average increased code coverage number (ρ) by:

ρ = α − β

β
× 100% (2)

Figure 3: Code coverage under stable (Left) and popular Kubernetes versions (Right)



1604 CMC, 2024, vol.81, no.1

Table 1: Compare KubeFuzzer and baseline code coverage over 8, 16, and 24 h in V1.18.5. KF:
KubeFuzzer, RL: RESTler, RT: RESTest, RG: RESTTESTGEN

Loc-8 h Loc-16 h Loc-24 h

KF RL RT RG KF RL RT RG KF RL RT RG

44 35 33 41 45 36 34 43 45 35 33 44
45 35 32 41 46 35 33 43 46 33 33 44
45 34 33 41 45 37 34 42 46 36 34 43
44 35 32 42 46 37 36 43 46 35 34 43
44 34 33 42 47 36 34 42 45 36 35 42
45 35 32 42 47 37 35 44 46 34 34 41
44 35 33 40 47 38 35 44 45 35 35 42
45 34 32 41 47 36 34 43 46 36 34 42
44 35 32 41 46 36 35 43 45 35 33 41
44 35 32 41 47 36 34 44 46 36 34 42

Table 2: Compare KubeFuzzer and baseline code coverage over 8, 16, and 24 h in V1.25.3. KF:
KubeFuzzer, RL: RESTler, RT: RESTest, RG: RESTTESTGEN

Loc-8 h Loc-16 h Loc-24 h

KF RL RT RG KF RL RT RG KF RL RT RG

46 35 34 43 46 36 33 42 46 37 32 42
46 35 34 44 46 36 34 42 46 37 32 43
46 36 35 42 46 35 35 43 47 37 32 43
46 35 34 42 47 36 34 42 47 37 33 42
46 36 35 43 47 37 35 43 46 37 33 43
46 35 35 43 46 36 36 42 46 37 32 43
46 36 34 43 46 36 35 42 46 37 33 43
46 35 34 43 47 35 36 42 46 36 33 44
46 35 35 43 46 37 34 43 46 37 32 43
46 35 34 42 44 37 35 42 46 37 33 42

From Tables 1 and 2, we observed that KubeFuzzer outperformed the baseline tool in terms of
code coverage, but all tools did not achieve high coverage in general. By observing test cases, we
identified the key factors responsible for these low coverage rates. In addition, because the baseline
tools use dictionary and random generation methods to generate parameter values, in the absence
of semantic information to guide them, they generate many invalid requests that are rejected by the
Kubernetes API Server. In most cases, this is the case when parameters have specified restrictions on
value and format. For example, for the “dryRun” parameter, Kubernetes only allows null and All as
parameter values. The baselines waste a lot of time trying to pass this check and still fail.



CMC, 2024, vol.81, no.1 1605

4.2.2 SRR

In Tables 3 and 4, we have tested the Request Cases (rc), Successful Requests (sr) and their ratio
SRR (srr) of the four tools at 1, 4, 8, 16 and 24 h, respectively. Firstly, analysing the three baseline
tools, we find that the Request Cases generated by RESTest are much smaller than RESTler and
RESTTESTGEN, but the SRR is higher than RESTler and RESTTESTGEN. By analysing the test
cases, we found that the reason for this result is that RESTler and RESTTESTGEN generate request
sequences based on dependencies between dependent operations, and construct request sequences by
adding a new request template at the end of the current request template to construct a new sequence.

Table 3: Successful request operation of different Tool in V1.18.5. KF: KubeFuzzer, RL: RESTler,
RT: RESTest, RG: RESTTESTGEN

Tools 1 h 4 h 8 h 16 h 24 h

KF rc 32,864 87,892 157,912 196,489 211,942
sr 821 1560 2002 2002 2002
srr 2.50 1.77 1.27 1.02 0.94

RL rc 8896 16,888 29,894 38,878 40,839
sr 32 40 55 55 55
srr 0.36 0.24 0.18 0.14 0.13

RT rc 2687 6879 8488 9968 10,564
sr 26 46 55 61 61
srr 0.97 0.67 0.65 0.64 0.61

RG rc 695 1302 1521 1564 1684
sr 56 102 117 117 117
srr 8.06 7.83 7.69 7.48 6.95

On the one hand, if the last request in the sequence template fails Kubernetes’ syntactic semantic
check, it will infer that the sequence template currently in use is invalid, interrupt the sequence
expansion process, and discard this sequence. Thus, in the absence of semantic information to guide
them, RESTler and RESTTESTGEN will generate a large number of invalid test cases, causing the
request at the beginning of the sequence to be an invalid request. Other requests that depend on this
request cannot be constructed, resulting in some operations in some API documents that are not
covered. On the other hand, RESTest generates test cases based on individual API operations, enabling
it to cover a broader range of operations and increasing the likelihood of successful requests. Similarly,
RESTTESTGEN produces a smaller total number of requests, with a higher proportion of legitimate
ones, contributing to its higher SRR compared to RESTler.



1606 CMC, 2024, vol.81, no.1

Table 4: Successful request operation of different tool in V1.25.3. KF: KubeFuzzer, RL: RESTler, RT:
RESTest, RG: RESTTESTGEN

Tools 1 h 4 h 8 h 16 h 24 h

KF rc 33,453 88,962 166,527 198,452 333,014
sr 876 1596 1952 2014 4996
srr 2.62 1.79 1.17 1.01 1.15

RL rc 8642 17,866 24,561 33,561 36,100
sr 30 58 67 67 67
srr 0.35 0.32 0.27 0.20 0.18

RT rc 5689 15,879 27,891 30,564 32,487
sr 68 147 208 221 221
srr 1.19 0.92 0.75 0.72 0.68

RG rc 615 921 1279 1360 1483
sr 47 69 95 95 95
srr 7.64 7.56 7.43 6.99 6.41

As is shown in the Formula (3), we define SR as the successful requests, and SR_I as the increased
degree of successful requests:

SR_I = SR(24 h) − SR(1 h)

SR(1 h)
× 100% (3)

Therefore, we can obtain the SRR by:

SRR = SR_I(KubeFuzzer) − SR_I(baseline)
SR_I(baseline)

× 100% (4)

We collected code coverage and SRR data for KubeFuzzer and the benchmark tools over 10 time
periods. To evaluate the superiority and stability of KubeFuzzer, we conducted independent samples
t-tests comparing its code coverage and SRR against RESTler, RESTest, and RESTTESTGEN.
Using Python’s scipy.stats package, we calculated the p-values for each comparison, resulting in (0.03,
0.04), (0.02, 0.03), and (0.04, 0.04), respectively. These results indicate that KubeFuzzer significantly
outperforms the benchmark tools in both code coverage and SRR.

Based on these results, we can answer RQ1 as: Compared to the baselines, the code coverage of
KubeFuzzer improved by 7.86%–36.34%, 7.78%–43.13%, and the SRR improved by 6.7%–83.33% and
108.89%–360.78% on the two clustered versions, respectively.

4.3 Bug Detection (RQ2)

4.3.1 Bug Detection in Local K8s Cluster

We analyse the bug detection capabilities of KubeFuzzer in this section. Table 5 shows the number
and type of bugs detected by KubeFuzzer and baseline tools in the two versions of Kubernetes cluster.



CMC, 2024, vol.81, no.1 1607

Table 5: Number and type of bugs detected by KubeFuzzer and baselines

K8s version Tool Number Type

V1.18.5 KubeFuzzer 901 7
RESTler 18 5
RESTest 189 6
RESTTESTGEN 27 3

V1.25.3 KubeFuzzer 1113 7
RESTler 1 1
RESTest 192 6
RESTTESTGEN 168 2

We define N(x) as the bug number found by KubeFuzzer and the baseline tools, as is shown
in Formula (5), our calculations indicate that KubeFuzzer can detect 16.7% to 133.3% more bugs on
the stable version of Kubernetes clusters and 16.7% to 600% more on the popular version.

ω = N(KubeFuzzer) − N(baseline)
N(baseline)

× 100% (5)

We can conclude that all three baseline tools were able to find bugs on both two Kubernetes
clusters, but the number and type of bugs found differed. The bugs found by RESTest are better
than RESTler and RESTTESTGEN in terms of number and type. More specifically, as analysed in
RQ1, when extending a request sequence, it can only be added to the RESTler and RESTTESTGEN
request sequences if the current request is a valid request, but due to the lack of semantic information
in the generated requests, most requests fail Kubernetes’ semantic checks and are simply discarded.
RESTest is based on a single API request rather than building sequences for testing, which is usually
not a disadvantage, but when testing Kubernetes, RESTestest can trigger more bugs because a single
API request can cover most of the operations in the API documentation. KubeFuzzer uses the Extract
module to extract a large amount of semantic information from the request built sequences that can
effectively pass the Kubernetes API server’s semantic checks, so it detects a much larger number and
type of bugs than baselines.

4.3.2 Bug Detection in Real-World K8s Service

The experimental validation is conducted on a set of RESTful APIs. However, considering that
test cases are supposed to exploit a security vulnerability, it would not be ethical to test publicly
cloud services that are orchestrated using the Kubernetes native API, since their integrity could be
compromised by a successful attack. Hence, we opted for case studies that we can download or run in a
controlled environment. With these considerations in mind, to explore the bug detection capabilities of
KubeFuzzer in real-world project, we constructed 7 API requests that contained unique bugs found by
KubeFuzzer, first, we constructed a controlled experimental environment in 6 real-world cloud service
projects (as shown in Table 6), and then used the 7 API requests unobtrusively to continuously access
the Kubernetes cluster in a controlled container environment, and then we looked for open-source
projects hosted on GitHub, so that we can compile and install them locally. We found that these API
requests also triggered bugs in these 4 real-world projects.



1608 CMC, 2024, vol.81, no.1

Table 6: Bug detection in real-world projects that are orchestrated using the K8s native API

Case study Version Type Bug status

Amazon EKS 1.18.5 1.25.3 1,2,3,6,7 Fixed
Azure AKS 1.18.5 1.25.3 1,2,4,6,7 Fixed
Alibaba ACK 1.25.3 1,2,5,6,7 Fixed
Google GKE 1.18.5 1,2,4,6,7 Fixed
Tencent TKE 1.18.5 1.25.3 1,2,3,6,7 Fixed
Oracle OKE 1.18.5 1.25.3 1,2,3,6,7 Fixed

Kubeflow 1.18.5 1,2,6,7 Confirmed
KubeVirt 1.18.5 1.25.3 1,2,7 Fixed
KubeMQ 1.25.3 1,2 Fixed
KubeArmor 1.18.5 1.25.3 1,2,5,6,7 Fixed

Thus, we can conclude RQ2 by stating that KubeFuzzer detects 16.7% to 133.3% (and up to 600%)
more unique bugs compared to the three baseline tools. Moreover, these bugs can be validated on real-
world projects orchestrated using the Kubernetes native API.

4.4 Ablation Study (RQ3)

We implemented three variants of KuberFuzzer to evaluate the contribution of semantic infor-
mation in the API specification document and the response message:

(1) KubeFuzzer-1: No-Input version by removing the extraction of semantic information from
the API specification document in the Extract module.

(2) KubeFuzzer-2: No-Output version by removing the extraction of semantic information from
the response message in the Extract module.

(3) KubeFuzzer-3: No-All version by directly removing the Extract module.

The results are averaged using five runs (with time budget 24 h) to avoid the statistics bias. For
better visualisation and understanding, we divided the SRR of the three variant tools by the SRR of
KubeFuzzer as the normalised SRR value (π).

π = π(variant tools)
π(KubeFuzzer)

× 100% (6)

Table 7 and Fig. 4 display the normalized SRR of KubeFuzzer and its variants across differ-
ent Kubernetes versions. KubeFuzzer-1 and KubeFuzzer-2 outperformed KubeFuzzer-3 but lagged
behind KubeFuzzer. Integrating Kubernetes semantic information into API specs and responses
improves detection efficiency, highlighting the need for comprehensive inclusion. KubeFuzzer-2’s
weaker performance compared to KubeFuzzer-1 is attributed to less semantic information in input
documents vs. output responses.



CMC, 2024, vol.81, no.1 1609

Table 7: Number of bugs in the three variants of KubeFzzer

K8s version KubeFuzzer KubeFuzzer-1 KubeFuzzer-2 KubeFuzzer-3

V1.18.5 901 368 850 18
V1.25.3 1252 496 1113 11

Figure 4: Normalized SRR for three variants of KubeFzzer under different K8s version

From these findings, we can address RQ3 as follows: Overall, semantic details in both API
specification documents and response messages impact KuberFuzzer’s performance. While both play
a role, the richness of semantic content in response messages notably influences KuberFuzzer’s
effectiveness. Optimal performance is attained when all semantic information is fully integrated.

5 Discussion

Unlike traditional RESTful API testing solutions that typically identify vulnerabilities 5XX error
codes in Table 8 [4,14,26,27], KubeFuzzer does not focus on this approach. In practice, RESTful API
vulnerabilities often lead to exploit attacks, particularly DoS attacks, due to data mishandling on the
server side. Our goal is to automate the discovery of RESTful vulnerabilities on Kubernetes without
manual analysis or exploit development. In future work, we will focus on the challenges we may face
when identifying and responding to RESTful API vulnerabilities during Kubernetes migrations, as well
as possible resolution strategies. This will include insights into potential security threats, vulnerability
detection methods in complex environments, and technical means to improve system robustness in real-
world applications. In addition, we will also investigate vulnerability-oriented REST API vulnerability
mining methods in K8s in conjunction with LLM.

Table 8: Comparison of API testing studies in the last two years

Fuzzer Conference Testing approach Para Generation

NAUTILUS [4] USENIX SEC 23 Black-box Dictionary-based
NLPtoREST [14] ISSTA 2023 Black-box Dictionary-based

(Continued)



1610 CMC, 2024, vol.81, no.1

Table 8 (continued)

Fuzzer Conference Testing approach Para Generation

Miner [26] USENIX SEC 23 Black-box DNN
EDEFuzz [27] ICSE 2024 Black-box Dictionary-based

6 Conclusion

In this paper, we propose KubeFuzzer to automate detect the REST API vulnerabilities in
Kubernetes. Experiments conducted on both local and real-world Kubernetes clusters demonstrate
that KubeFuzzer leverages NLP to effectively enhance the semantics of request sequences, allowing
them to pass Kubernetes API gateway inspections and significantly improving vulnerability detection
performance. Future work will focus on developing effective Kubernetes testing approaches based on
RESTful API vulnerabilities.

Acknowledgement: We thank the anonymous reviewers for their useful comments.

Funding Statement: This work was supported by the National Natural Science Foundation of China
(No. 62202320), the Fundamental Research Funds for the Central Universities (Nos. SCU2023D008,
2023SCU12129), the Natural Science Foundation of Sichuan Province (No. 2024NSFSC1449),
the Science and Engineering Connotation Development Project of Sichuan University (No.
2020SCUNG129), and the Key Laboratory of Data Protection and Intelligent Management (Sichuan
University), Ministry of Education.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Tao Zheng; data collection: Rui Tang; analysis and interpretation of results: Xingshu Chen;
draft manuscript preparation: Changxiang Shen. All authors reviewed the results and approved the
final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from
the corresponding author, Xingshu Chen, upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] A. Rahman, S. I. Shamim, D. B. Bose, and R. Pandita, “Security misconfigurations in open source

kubernetes manifests: An empirical study,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 4, pp. 1–36,
2023. doi: 10.1145/3607179.

[2] C. Carrión, “Kubernetes scheduling: Taxonomy, ongoing issues and challenges,” ACM Comput. Surv., vol.
55, no. 7, pp. 1–37, 2022. doi: 10.1145/3539606.

[3] P. Godefroid, B. Y. Huang, and M. Polishchuk, “Intelligent REST API data fuzzing,” in Proc. 28th ACM
ESEC/FSE, USA, 2020, pp. 725–736. doi: 10.1145/3368089.3409719.

https://doi.org/10.1145/3607179
https://doi.org/10.1145/3539606
https://doi.org/10.1145/3368089.3409719


CMC, 2024, vol.81, no.1 1611

[4] G. L. Deng et al., “NAUTILUS: Automated RESTful API vulnerability detection,” in Proc. USENIX Secur.
23, Anaheim, CA, USA, 2023, pp. 5593–5609. doi: 10.5555/3620237.3620550.

[5] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful REST API fuzzing,” in Proc. 41th
IEEE/ACM ICSE, Montreal, QC, Canada, 2019, pp. 748–758. doi: 10.1109/ICSE.2019.00083.

[6] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “RestTestGen: An extensible framework for
automated black-box testing of restful apis,” in Proc. 38th IEEE ICSME, Limassol, Cyprus, 2022, pp.
504–508. doi: 10.1109/ICSME55016.2022.00068.

[7] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Automated black-box testing of RESTful web
APIs,” in Proc. 30th ACM ISSTA, Denmark, 2021, pp. 682–685. doi: 10.1145/3460319.3469082.

[8] A. Arcuri, “RESTful API automated test case generation with EvoMaster,” ACM Trans. Softw. Eng.
Methodol., vol. 28, no. 1, pp. 1–37, 2019. doi: 10.1145/3293455.

[9] Y. Liu et al., “Morest: Model-based RESTful API testing with execution feedback,” in Proc. 44th
IEEE/ACM ICSE, Pittsburgh, PA, USA, 2022, pp. 1406–1417. doi: 10.1145/3510003.3510133.

[10] V. Atlidakis, R. Geambasu, P. Godefroid, M. Polishchuk, and B. Ray, “Pythia: Grammar-based fuzzing of
rest apis with coverage-guided feedback and learning-based mutations,” 2020, arXiv:2005.11498.

[11] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Checking security properties of cloud service REST APIs,”
in Proc. 13th IEEE ICST , Porto, Portugal, 2020, pp. 387–397. doi: 10.1109/ICST46399.2020.00046.

[12] H. Ed-Douibi, J. L. Cánovas Izquierdo, and J. Cabot, “Automatic generation of test cases for REST
APIs: A specification-based approach,” in 22nd EDOC, Stockholm, Sweden, 2018, pp. 181–190. doi:
10.1109/EDOC.2018.00031.

[13] S. Karlsson, A. Čaušević, and D. Sundmark, “QuickREST: Property-based test generation of
OpenAPI-described RESTful APIs,” in Proc. 13th ICST , Porto, Portugal, 2020, pp. 131–141. doi:
10.1109/ICST46399.2020.00023.

[14] M. Kim et al., “Enhancing REST API testing with NLP techniques,” in Proc. 32nd ACM ISSTA, Seattle,
WA, USA, 2023, pp. 1232–1243. doi: 10.1145/3597926.3598131.

[15] C. C. Chang, S. R. Yang, E. H. Yeh, P. Lin, and J. Y. Jeng, “A kubernetes-based monitoring platform
for dynamic cloud resource provisioning,” in GLOBECOM 2017—2017 IEEE Global Commun. Conf.,
Singapore, 2017, pp. 1–6. doi: 10.1109/GLOCOM.2017.8254046.

[16] A. Y. Wong, E. G. Chekole, M. Ochoa, and J. Y. Zhou, “On the security of containers: Threat mod-
eling, attack analysis, and mitigation strategies,” Comput. Secur., vol. 128, 2023, Art. no. 103140. doi:
10.1016/j.cose.2023.103140.

[17] S. I. Shamim, “Mitigating security attacks in kubernetes manifests for security best practices violation,” in
Proc. 28th ACM ESEC/FSE, 2021, pp. 1689–1690. doi: 10.1145/3468264.3473495.

[18] Y. Zhang, R. Meredith, W. Reeves, J. Coriolano, M. A. Babar and A. Rahman, “Does generative AI generate
smells related to container orchestration?” in Proc. IEEE/ACM 21st MSR, Lisbon, Portugal, 2024, pp. 192–
196. doi: 10.1145/3643991.3645079.

[19] W. Viktorsson, C. Klein, and J. Tordsson, “Security-performance trade-offs of kubernetes container
runtimes,” in Proc. 28th IEEE MASCOTS, 2020, pp. 1–4. doi: 10.1109/MASCOTS50786.2020.9285946.

[20] Ł. Wojciechowski et al., “NetMARKS: Network metrics-aware kubernetes scheduler powered by service
mesh,” in Proc. IEEE INFOCOM, 2021, pp. 1–9. doi: 10.1109/INFOCOM42981.2021.9488670.

[21] T. Goethals, F. De Turck, and B. Volckaert, “Extending kubernetes clusters to low-resource edge
devices using virtual kubelets,” IEEE Trans. Cloud Comput., vol. 10, no. 4, pp. 2623–2636, 2020. doi:
10.1109/TCC.2020.3033807.

[22] N. Z. Yang, W. B. Shen, J. K. Li, X. Q. Liu, X. Guo and J. F. Ma, “Take over the whole cluster: Attacking
kubernetes via excessive permissions of third-party applications,” in Proc. ACM SIGSAC Conf. Comput.
Communicati. Security, Copenhagen, Denmark, 2023, pp. 3048–3062. doi: 10.1145/3576915.3623121.

[23] Q. Zeng, M. Kavousi, Y. Luo, L. Jin, and Y. Chen, “Full-stack vulnerability analysis of the cloud-native
platform,” Comput. Secur., vol. 129, no. 5, 2023, Art. no. 103173. doi: 10.1016/j.cose.2023.103173.

[24] Y. He et al., “Cross container attacks: The bewildered eBPF on clouds,” in Proc. USENIX Secur. 23,
Anaheim, CA, USA, 2023, pp. 5971–5988. doi: 10.5555/3620237.3620571.

https://doi.org/10.5555/3620237.3620550
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/ICSME55016.2022.00068
https://doi.org/10.1145/3460319.3469082
https://doi.org/10.1145/3293455
https://doi.org/10.1145/3510003.3510133
https://doi.org/10.1109/ICST46399.2020.00046
https://doi.org/10.1109/EDOC.2018.00031
https://doi.org/10.1109/ICST46399.2020.00023
https://doi.org/10.1145/3597926.3598131
https://doi.org/10.1109/GLOCOM.2017.8254046
https://doi.org/10.1016/j.cose.2023.103140
https://doi.org/10.1145/3468264.3473495
https://doi.org/10.1145/3643991.3645079
https://doi.org/10.1109/MASCOTS50786.2020.9285946
https://doi.org/10.1109/INFOCOM42981.2021.9488670
https://doi.org/10.1109/TCC.2020.3033807
https://doi.org/10.1145/3576915.3623121
https://doi.org/10.1016/j.cose.2023.103173
https://doi.org/10.5555/3620237.3620571


1612 CMC, 2024, vol.81, no.1

[25] Z. Li et al., “Lost along the way: Understanding and mitigating path-misresolution threats to container iso-
lation,” in Proc. ACM CCS, Copenhagen, Denmark, 2023, pp. 3063–3077. doi: 10.1145/3576915.3623154.

[26] C. Lyu et al., “MINER: A hybrid data-driven approach for REST API fuzzing,” in Proc. USENIX Secur.
23, Anaheim, CA, USA, 2023, pp. 4517–4534.

[27] L. Pan, S. Cohney, T. Murray, and V. T. Pham, “EDEFuzz: A web API fuzzer for excessive data exposures,”
in Proc. IEEE/ACM ICSE, Lisbon, Portugal, 2024, pp. 1–12. doi: 10.1145/3597503.3608133.

https://doi.org/10.1145/3576915.3623154
https://doi.org/10.1145/3597503.3608133

	KubeFuzzer: Automating RESTful API Vulnerability Detection in Kubernetes
	1 Introduction
	2 Related Work
	3 Design and Implementation of KubeFuzzer
	4 Experiment
	5 Discussion
	6 Conclusion
	References


