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ABSTRACT

In recent years, sensor technology has been widely used in the defense and control of sensitive areas in cities, or
in various scenarios such as early warning of forest fires, monitoring of forest pests and diseases, and protection of
endangered animals. Deploying sensors to collect data and then utilizing unmanned aerial vehicle (UAV) to collect
the data stored in the sensors has replaced traditional manual data collection as the dominant method. The current
strategies for efficient data collection in above scenarios are still imperfect, and the low quality of the collected
data and the excessive energy consumed by UAV flights are still the main problems faced in data collection. With
regards this, this paper proposes a multi-UAV mission planning method for self-organized sensor data acquisition
by comprehensively utilizing the techniques of self-organized sensor clustering, multi-UAV mission area allocation,
and sub-area data acquisition scheme optimization. The improved α-hop clustering method utilizes the average
transmission distance to reduce the size of the collection sensors, and the K-Dimensional method is used to
form a multi-UAV cooperative workspace, and then, the genetic algorithm is used to trade-off the speed with the
age of information (AoI) of the collected information and the energy consumption to form the multi-UAV data
collection operation scheme. The combined optimization scheme in paper improves the performance by 95.56%
and 58.21%, respectively, compared to the traditional baseline model. In order to verify the excellent generalization
and applicability of the proposed method in real scenarios, the simulation test is conducted by introducing the
digital elevation model data of the real terrain, and the results show that the relative error values of the proposed
method and the performance test of the actual flight of the UAV are within the error interval of ±10%. Then,
the advantages and disadvantages of the present method with the existing mainstream schemes are tested, and the
results show that the present method has a huge advantage in terms of space and time complexity, and at the same
time, the accuracy for data extraction is relatively improved by 10.46% and 12.71%. Finally, by eliminating the
clustering process and the subtask assignment process, the AoI performance decreases by 3.46× and 4.45×, and
the energy performance decreases by 3.52× and 4.47×. This paper presents a comprehensive and detailed proactive
optimization of the existing challenges faced in the field of data acquisition by means of a series of combinatorial
optimizations.
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1 Introduction

In consequence of the accelerated evolution of sensor technology in recent years, the deployment
of a multitude of sensors with self-organizing characteristics has become a principal method of
data acquisition. This is undertaken with a view to obtaining pertinent data within the designated
operational range in a variety of fields, including forest fire early warning, forest pest and disease
monitoring, and wildlife protection [1–4]. The timely collection of monitoring data from sensors is
a crucial element in ensuring the effective functioning of the scenario in question. The conventional
method of gathering sensor data through manual patrol is both costly and inefficient. The use of
ground-based autonomous aerial vehicle (AAV) to collect sensors in some agricultural production
environments is also not applicable to complex field environments [5]. As an airborne carrier of
data collection methods, UAV have gradually become an important part of efficient data collection
in conjunction with ground-based self-organizing sensors due to their advantages, including high
collection efficiency and freedom from terrain constraints [6]. However, relying on UAVs as the sole
means of data collection is not a comprehensive solution. When employing UAVs for data collection
in the aforementioned scenarios, several critical issues must be considered, including:

• The large number of sensors deployed poses a challenge to UAV data acquisition, and it is
often difficult for a single UAV to accomplish the task of acquiring data from a large number of
sensors in one go within its energy consumption constraints. The use of a single UAV for data
acquisition from each sensor also underutilizes features such as self-organized data transfer
between ground sensors.

• Multi-UAV collaborative data collection has become a solution for data collection in multi-
sensor deployment scenarios, but in application scenarios with complex environments, collab-
orative UAVs need to avoid overlapping task areas and other issues when assigning tasks to
prevent collisions due to scrambling to collect the same sensors when UAVs collect data.

• For each UAV acquisition task in multi-UAV collaboration, it is still necessary to comprehen-
sively consider information such as sensor position, UAV flight and data acquisition energy
consumption, and the AoI of sensor data, etc., and one-sided pursuit of AoI or energy
consumption path planning are not applicable to the data acquisition work in the above
scenarios [7,8].

In response to the limitations of a single UAV’s energy consumption and the inefficiencies
associated with ground sensor monitoring data collection, this paper presents a multi-UAV mission
planning method for self-organized sensor data acquisition. This method employs a comprehensive
approach, integrating techniques such as clustering, classification, and cooperative optimization. The
method begins with the optimization of ground sensor data collection. This is achieved through the
exploitation of the self-organized communication characteristics between sensors, whereby key sensors
are designated as cluster head (CH) nodes. These CH nodes receive data from surrounding sensors,
summarize and back up monitoring data from surrounding sensors, and communicate with UAVs
during UAV patrols. This approach ensures that the UAVs only collect sensor monitoring data through



CMC, 2024, vol.81, no.1 1531

the CH nodes, thereby reducing the scale of UAV communication sensors. Then, starting from the
optimization of the aerial data collection mode, relying on the advantages of multi-UAV collaborative
and efficient data collection, the K-Dimensional classification method is applied to construct the UAV
collection task allocation to ensure that the different UAV collection task areas do not overlap and
maximize the effectiveness of the collaborative task. Finally, focusing on the needs of single UAV data
collection work when multi-UAV collaborate, the objective function and constraints applicable to data
collection operations with different sensor scales are designed by taking the AoI and UAV flight energy
consumption as important indicators for assessing the efficiency of the collected data.

The main contributions of the methodology proposed in this paper are as follows:

• Aiming at the data collection scenario with multiple ground sensors and multi-UAVs collabo-
rating, a data collection operation method combining self-organized downsizing of sensors and
multi-UAV task area division is proposed to improve the efficiency of data collection work.

• The work of data collection is accomplished using UAVs in a collaborative manner, and this
paper gives the choice of K-Dimensional division of data collection task areas for each UAV to
clarify the division of labor for the task, and at the same time, taking into account the weighting
of the AoI and the energy consumption in the process of the task, the use of the Simple Full
Permutation Algorithm to plan the optimal data collection operation scheme for each task area.

• The proposed method is not only suitable for large-scale monitoring data collection scenarios
where the energy consumption of UAVs is limited, but also has better generalization in
national forest parks, national nature reserves, and key monitoring areas of urban environments.
Furthermore, it has the potential for application in the fields of fire monitoring, animal
protection, and analysis of the effects of environmental governance.

The rest of the paper is organized as follows: in Section 2, the current research status of sensor
clustering, multi-UAV task assignment, and single UAV data acquisition path planning related work
involved in the proposed method is presented. In Section 3, the general framework of the proposed
method and the sensor self-organization method, multi-UAV task area allocation, and data acquisition
operation planning method for sub-task areas are introduced. Section 4 observes the experimental
results of feasibility analysis experiments and comparative ablation analysis experiments in order to
verify the scientific and efficient nature of the method. Sections 5 and 6 provide a discussion looking
forward to the follow-up work and a summary of the work in this paper, respectively.

2 Related Works

Focusing on the research work carried out in this paper and the typical problems encountered in
data collection, it is proposed to put forward solutions from the perspectives of reducing the scale of
UAV communication sensor data and multi-UAV collaborative data collection, etc., and the related
ground self-organizing sensors clustering, multi-UAV collaborative task allocation, single UAV data
collection operation planning, and problem solving of the methods proposed in this paper in the
relevant application scenarios are summarized as follows.

2.1 Clustering Method for Ground-Based Self-Organizing Sensors

To address the problem of collecting monitoring data from a large number of self-organizing sen-
sors deployed on the ground, clustering algorithms can be used to reduce the size of the sensors [9,10].

Sensor clustering is the process of dividing the full domain into sub-domains, combining sensors
within the same sub-domain into a cluster, and selecting a CH sensor from each cluster to be
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responsible for integrating all data in the cluster [11,12]. Current sensor clustering algorithms are
classified as Deterministic CH Selection Algorithms [13], Random CH Selection Algorithms [14],
Adaptive CH Selection Algorithms [15], Distributed Clustering Algorithms [16], Hybrid Clustering
Algorithms [17] and Centralized Clustering Algorithms [18]. These clustering algorithms do not
comprehensively take into account the energy consumption of subsequent UAVs when collecting data
and cannot be directly used in practical scenarios of large-scale data collection.

α-hop is a clustering algorithm that reduces communication loss by decreasing the number of
communication hops, the algorithm uses the average distance of the sensors in the clustered area to
the rest of the sensors as a weight, and the shortest distance sensor is selected as the CH. Existing
α-hop based sensor clustering methods are usually used in smart city scenarios, where sensors are
clustered through a two-dimensional mesh without considering issues such as sensors being blocked
by buildings. In complex data collection scenarios, it is necessary to improve the α-hop method and
construct a backup scheme for critical data to overcome the problems of communication blocking and
single-point failure after sensor clustering that may result from complex field scenarios.

2.2 Tasking Method for Collaborative Data Collection by Multi-UAV

Limited by the energy consumption constraints of a single UAV, the use of multi-UAVs to collab-
orate on data collection tasks is the main means to improve the efficiency of data collection [19,20].

Multi-UAV collaborative data collection focuses on the problem of collaborative UAV path
planning and the problem of multi-UAV task allocation. For the former, common solutions include
graph-theoretic based algorithms containing pure graph-theoretic class methods, optimization class
methods, and hybrid class and intelligent optimization methods. Among them, purely graph-theoretic
methods include V-shaped Rono Diagrams, Probabilistic Road Maps, and Hilbert Curves [21].
Algorithms based on optimization theory include Dynamic Programming and Branch Bounding
[22,23]. Other hybrid and intelligent optimization class methods include the use of Efficient Cutting
Plane Method [24], Ant Colony Optimization Algorithms [25], etc. The above UAV path planning
method for data collection simply assumes that the energy source of the UAV is always sufficient,
which reduces the applicability of the method when the number of ground sensors to be communicated
is high and the energy consumption of a single UAV is limited. When conducting coordinated multi-
UAV data collection, the existing ground sensors to be collected need to be divided to form a task area
with a moderate amount of UAV collection tasks that do not spatially overlap each other.

In order to meet the needs of task allocation, the multi-UAV collaborative data task allocation
method can be optimized based on K-Dimensional [26,27]. K-Dimensional is supposed to be a K-
Dimensional spatial data indexing optimization method that uses a division method in constructing
the tree that divides the ground nodes according to their distance distribution. In the process of task
allocation, the attribution of nodes in the tree can be controlled to ensure that the number of nodes
in each region is approximately the same, so as to obtain the set of sensors with the nearest-neighbor
relationship, and the sub-tasks after the division are similar in size and do not overlap, which can help
to take advantage of the high-efficiency data collection by multi-UAVs.

2.3 Operational Planning Method for Data Collection by Single UAV

In a single UAV data collection mission, the planning of UAV data collection operations within
the mission area needs to be addressed.

AoI is used as an important metric to measure the latency of UAV data collection [28,29], which
is defined as the time difference between the generation of information and the time up to the current
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moment. Considering that some scenarios, such as forest fire prevention and pest monitoring, both
have high requirements for monitoring data quality, existing research results propose UAV path
planning methods to solve data collection problems in different fields based on the AoI of the data.

Energy consumption is also another important factor in determining UAV path planning [30–
32]. The energy consumption of UAV primarily consists of flight propulsion energy, communication
energy, and other forms of energy consumption. Since the propulsion energy consumption of the UAV
in a single UAV data acquisition mission is much larger than the communication energy consumption
transferred between sensors, the rest of the energy consumption excluding the UAV propulsion energy
is negligible [33,34]. Existing research results have constructed energy derivation equations based on
patrol needs, from the perspective of different flight modes [35].

2.4 Prospects for UAV Application in Data Collection Scenarios in Related Fields

UAVs collecting sensor data or UAVs carrying their own data collection equipment have a
wide range of application scenarios in many fields. Behavioral recognition of rare wild animals in
field environments is a popular field, and common schemes are utilizing the improved YOLOv5s
based model including Mobile Bottleneck Block module and improved StemBlock to reduce the
computational cost, using Focal-EIoU as a loss function, and adopting BiFPN-based neck to improve
the accuracy of predicting the bounding box, deriving the WildARe-YOLO lightweight framework
model, deep learning and convolutional neural network automation for analyzing a large amount of
data and identifying features on a limited animal dataset, and improving the ability to process and
analyze animal behaviors [36,37]. Alternatively, feature enhancement and feature extraction can be
carried out by monitoring the animal’s habits through the collection of life traces left by the animal, for
example, by using non-invasive footprint recognition techniques to develop classification algorithms
based on data extracted from captive northeastern tiger footprints [38]. The algorithms use cross-
validated discriminant analysis to determine the distances between the centroids of the footprint
pairs, and then use Ward’s hierarchical clustering technique to classify the footprints into clusters
that minimize the internal variance. For the above scenarios, UAVs are able to track and observe the
behavioral image data of wildlife in close proximity, or use sensors to monitor the animal’s habits over
time in order to obtain the animal’s time-series data, and then use multi-UAVs to collect the data within
the sensors at regular intervals in order to get a quick and accurate picture of the animal’s behavior as
well as its habitat range [39].

The above research results provide reference programs for this paper to solve the UAV data collec-
tion operation planning problem of data collection in different scenarios from the perspectives of AoI
and energy consumption constraints. Based on the research work of ground sensor clustering method
and multi-UAV cooperative task, the UAV energy and AoI should be comprehensively considered to
construct the weight acquisition method to reasonably determine the energy consumption and AoI
as well as the optimal data collection operation plan for UAVs. Examples of the applicable scenario
domains of the method are also given to reflect the applicability of the proposed method in different
domains for efficient problem solving.

3 Materials and Methods

Facing the problems of limited energy consumption of a single UAV and the freshness of large-
scale ground sensor monitoring data collection, this paper proposes a multi-UAV mission planning
method for self-organized sensor data collection. The method proposes a sensor clustering method
and a multi-UAV collaborative task area allocation as well as a single UAV data collection operation
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planning scheme within a sub-task area from the perspective of ground sensor scale optimization
and airborne multi-UAV task allocation and path planning. The method flow framework is shown
in Fig. 1.
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Figure 1: Methodological process framework diagram

Stage 1: Sensor Clustering. Sensor clustering employs the self-organizing attributes of ground
sensors in the monitoring domain, integrating ground terrain variables, selecting cluster head nodes
for data aggregation and communication with UAVs through an enhanced three-dimensional (3D)
grid and α-hop algorithm, and according to the CH nodes. The data transmission mode within the
grid is determined through the Huffman tree, while consideration is given to the potential single-point
failure of CH nodes in field scenarios. Through the implementation of a backup strategy for collected
data, the redundant storage of key monitoring data and the main and backup switching of CH nodes
are achieved. A detailed account of Stage 1 is provided in Section 3.1.

Stage 2: Multi-UAV Tasking and Sub-tasking Single UAV Operations Planning. The multi-UAV
task allocation method synthesizes the number of task areas and the near-neighbor information of CH
sensors after clustering, forms a single UAV data collection area with non-crossing task areas based
on the improved K-Dimensional division, solves the problem of collision when collecting data from
multi-UAVs, and at the same time, based on the sub-task areas and the starting point of the UAV flights
after the division, determines the first UAV’s data collection CH. The single UAV operation planning
method for a sub-task area applies the Simple Full Permutation Algorithm to confirm the shortest
paths for UAV flights under different task areas based on the CH sensors of the data to be collected
in the sub-tasks, and then, by combining the weight assignments of the AoI of data and the UAV’s
propulsive energy consumption, as well as the UAV’s flight speed and other elements, determines the
actual operation scheme for the actual UAVs to collect the data. Multi-UAV tasking and sub-tasking
single UAV operation planning methods are described in Sections 3.2 and 3.3.
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3.1 Sensor Clustering

The sensor clustering process specifically consists of three parts: 3D homogeneous mesh delin-
eation, CH selection based on α-hop algorithm and monitoring data backup based on Huffman tree.

3.1.1 3D Meshing

To improve the 2D homogeneous mesh partitioning method for sensor clustering in smart cities
in response to the sensor communication blockage problem that may be caused by the terrain in the
monitoring scenario, different 3D mesh partitioning methods are established for the environments
with mountainous blockage and terrain platform environments.

For environments separated by a mountain, two ninety-degree straight lines extending from the
center of the mountain are used as the boundary lines of the 3D homogeneous mesh to ensure that the
ground sensors assigned to the same 3D mesh are not separated by the terrain. Taking the simulated
terrain map with three peaks as an example, the three peaks are used as the boundary line of the
3D mesh to ensure that the sensors divided in the same mesh can communicate directly, laying the
foundation for the selection of the CH sensors in the mesh, as shown in Fig. 2.

Topographic
Abstraction

: Peak Barrier Extension
: Blocked Sensor Nodes

Terrain Obstruction Area

Figure 2: Schematic diagram of sensor clustering preprocessing blocked by terrain

For areas where the terrain is flat and there is no communication hindrance, a homogeneous mesh
is used to preprocess the sensors to be clustered and delineate the clustered areas. Homogeneous mesh
processing means that the area to be processed is divided into several homogeneous meshes using cubes
with different locations but the same parameters for the rest of the 3D planes.

In practical application scenarios, the mesh division granularity can be determined independently
according to the number of deployed sensors and data collection capabilities, and the appropriate mesh
granularity determines a small difference in the number of sensors in each mesh, avoiding problems
such as difficult selection of aggregation and CH nodes due to the imbalance in the number of sensors
in different meshes.

3.1.2 CH Selection Based on α-hop Algorithm

According to the self-organization characteristics of the ground sensors in the grid, after dividing
the 3D grid, the CH sensors are selected using the α-hop clustering algorithm, which is used to collect
the monitoring data from the other sensors in the grid and communicate with the UAV to send the
data to the UAV [40].
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Analyzing the energy consumption of ground sensor data sending and receiving to determine the
basis of CH selection for the α-hop algorithm.

Sensor Transmission Data Energy Consumption: the energy consumed to transmit k-bits of
information over a distance d is given by the following equation:

ETx = Eelec × k + εamp × k × d2 (1)

where Eelec is the energy cost per bit to run the transceiver circuit, εamp is the efficiency of the amplifier,
and ETx is the total energy consumed to transmit k-bits of information.

Sensor receiving data energy consumption: energy equation for receiving k-bits messages to
calculate the energy consumption.

ERx = Eelec × k (2)

where ERx is the total energy consumed to receive k-bits of information.

Sensors within the same 3D grid monitor data using single-hop communication to reduce data
transmission energy consumption. Meanwhile, combining Eqs. (1) and (2), the energy consumption of
inter-sensor communication to monitor data is positively proportional to the distance between sensors.

AvgNBDisti =
∑NBi

j=1 dist
(
i, nbj

)
NBi

(3)

where AvgNBDisti is the total distance between sensor i and all its surrounding single-hop sensors nbj,
and NBi is the number of sensor neighbors.

Based on Eq. (3), the pseudo-code of the algorithm for selecting CHs from all 3D meshes in the
region using the α-hop clustering method is as follows:

Algorithm 1: Clustering head selection method based on α-hop
Input: Set of sensors N in different grids, neighbor table NB, Hop count of each cluster α

Output: Cluster head list CH, Set of sensors in cluster m Clusterm

1: Candidate ← N
2: CH ← Ø
3: m ← 0
4: Calculate weight AvgNBDisti for all sensors based on Eq. (3)
5: Sort Candidate in descending order according to AvgNBDisti
6: while Candidate is not empty do
7: Pop the first node in the Candidate and add it into CH
8: Add the first node and its α-hop neighbors from the neighbor table nb into Clusterm
9: Remove all nodes in the Clusterm from Candidate
10: m ← m + 1
11: end while

The idea of Algorithm 1: First, each sensor i in the 3D grid is considered as a candidate CH. Then,
the sensor distance weight AvgNBDisti is calculated according to Eq. (3). Finally, all the candidate CHs
are sorted according to the weights, and the sensor with the highest weight is selected as the CH, or if
there are sensors with the same highest weight, one sensor is randomly selected as the CH.
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3.1.3 Monitoring Data Active-Standby Strategy

CH nodes need to be selected to further aggregate other data in the grid into the CH nodes,
according to the single-hop sensor transmission data needs, the CH sensor selected by the α-hop
clustering algorithm as the root node of the tree for transmitting the data, and the relationship between
the nodes is abstracted as a heat map of the neighboring table with distance weights, and through
the Huffman tree method, to build a tree structure for the transmission of data from the sensors to
ensure that the parent sensors in the tree will store the data of child sensors and finally converge all
the monitoring data in the grid to the CH sensor which is the root of the tree [41,42]. Considering
the problem of single-point failure in the CH stage, in order to ensure the integrity and security of
monitoring data, we draw on the strategy of “high availability” of distributed data storage to construct
a master and backup strategy for monitoring data. Using the α-hop clustering algorithm, the sensor
with the smallest average distance weight outside the current CH sensor is selected as the alternate CH
node. In the spare CH sensor, monitoring data from the CH sensor is stored redundantly at regular
intervals, and the remaining sensors redundantly store monitoring data that has been sent to the parent
sensor before the UAV successfully collects data from the CH sensor. When the CH sensor fails due
to internal or external reasons, etc., the Huffman tree of sensor communication data is reconstructed
according to the weights of Eq. (3), and the data collected by the failed CH sensor is recovered based on
the redundantly stored data in the standby CH sensor, which aggregates the data in the other sensors
and communicates with the UAV. As shown in Fig. 3.
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Figure 3: Schematic flowchart for constructing replica sets to store data redundancy and data flow

3.2 Multi-UAV Collaborative Task Area Allocation

The key to collaborative data collection by multi-UAVs is the task division of sensor CH nodes to
form sub-task regions where the task regions do not intersect and satisfy data collection by a single
UAV. At the same time, it is also necessary to identify the collection CH sensors for UAV collection in
each sub-task region.

When tasking CH sensors in 3D space, the distance of the sensors as well as the scale of the sensors
need to be taken into consideration. K-Dimensional, as a K-Dimensional spatial data organization
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and query optimization method, can set the CH sensors in the 3D mesh as nodes on the K-Dimensional
tree, and then with the advantage of the K-Dimensional tree division, through the near-neighborhood
relationship of the cluster-head sensors, the CH sensors will be grouped and the obtained is the
grouping of the CH sensors after the division [43,44]. Each group after division naturally contains
a collection of sensors with nearest-neighbor relationships, and at the same time, the overall scale of
each post-division task sensor is moderate and each task area is not intersected, so that no collision
occurs due to simultaneous grabbing of the same sensor node’s acquisition position, which meets the
demand for multi-UAV collaborative task division of labor.

The pseudo-code for carrying out multi-UAV collaborative task division using K-Dimensional is
shown below:

Algorithm 2: Collaborative task area allocation
Input: Set P of nodes in K-Dimensional space, N Number of mission area divisions
Output: The node information contained within each task area
1: Converts set P to List-one
2: Initialize List-N corresponding to N task areas
3: Create a K-Dimensional tree with List-one
4: while each List from List-1 to List-N do
5: while each node in the List-one do
6: if the traversal node has been assigned to any List then
7: skip it
8: else
9: Mark the node to the current List
10: break
11: end if
12: end while
13: Use the K-Dimensional tree created at the beginning to find the closest neighbor to the

Marked node
14: if the nearest node is already marked then
15: select the next closest node and repeat the process until an unmarked node is found and then

marked to the current List
16: end if
17: end while
18: The remaining nodes find the area of the nearest node through the K-Dimensional tree and join it
19: if the number of nodes in any area exceeds plus or minus five of the average then
20: the area is closed and no new nodes are received
21: end if

The idea of Algorithm 2: First, based on the parameter information such as the 3D coordinates
of the CH sensors and the number of task area divisions, the clusters are constructed into a tree
model using the K-Dimensional classification method. Then, the CHs with similar spatial locations
are grouped into the same task area. Finally, the divided different regions are used as UAV air-ground
linkage task subspaces.

When operating in the sub-task area, assuming that there are n CH sensors, Eq. (4) can be used
to determine the CH sensor in the sub-task area with the shortest average distance from the rest of the
sensor nodes, which will be used as the first acquisition node for the UAV to collect data.
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arg minn
i=1

√
(xr − xi)

2 + (yr − yi)
2 + (zr − zi)

2 (4)

where (xr, yr, zr) are the UAV takeoff location coordinates and (xi, yi, zi) are the i-th CH sensor
location coordinates in the sub-task area. Selecting the first collection node by the above equation
reduces the complexity of calculating the distance from each node to all other nodes and can traverse
to all other nodes faster, thus reducing the search space and improving the efficiency of the algorithm.

3.3 Planning of Data Acquisition Operations within the Sub-Task Area

Within each sub-mission area, individual UAV data collection operations need to collect data
from all CH sensors faster within their energy consumption constraints to ensure the AoI of the
monitoring data.

Studies have shown that the transmission energy consumption of UAV data collection is much
smaller than the propulsion energy consumption when the UAV is in flight [45], and therefore the main
energy consumption of the UAV comes from the flight energy consumption. In field scenarios, stable
UAV flight energy consumption can greatly enhance the probability of safe return of the UAV, which
is usually assumed to fly at a constant speed when carrying out UAV data collection. In the process of
data collection, the data AoI is directly proportional to the data collection time, i.e., flight time.

Based on the above analysis, the key parameters to be weighed in UAV operations include:
flight distance, uniform speed and flight time, with the goal of minimizing AoI and flight energy
consumption. Considering that the flight distance is related to the trajectory of the UAV flying in the
sub-region [46,47], the flight path can be determined firstly based on the scale and location of the CHs
in the sub-region. Then, the empirical determination scheme of the considered weights for the AoI
and energy consumption constraints is constructed to convert the multi-objective problem of AoI and
flight energy consumption into an objective function that unifies the speed as a variable. Finally, the
optimization method is used to obtain the optimal flight speed that satisfies the AoI and the energy
consumption of UAV flight, which provides a practical operation plan for UAVs [48,49].

UAV data collection can use fixed-wing and rotary-wing UAVs, considering that collecting
monitoring data requires more energy consumption and fixed-wing UAVs are more suitable for long-
distance navigation than rotary-wing UAVs in complex scenarios, for this reason, the calculation
method of fixed-wing UAV energy consumption is used in all the later sections when representing
the energy consumption of a single UAV operation. After determining the flight path of the UAV sub-
area, it is necessary to further determine the parameter representations such as the AoI and the energy
consumption of the UAV flight related to the data collection task, and then construct the objective
function and constraints describing the single UAV operation.

3.3.1 AoI Representation

AoI is related to the time it takes for the UAVs in the sub-region to collect monitoring data from
each CH sensor [50].

First, the flight elapsed time between the k-th and k + 1st sensors of neighboring CH sensors in
the UAV flight path is calculated as shown in Eq. (5).

η(k),(k+1) = ls

v
(5)

where ls is the Euclidean distance between neighboring sensors and v is the uniform flight speed of the
fixed-wing UAV.
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Second, based on Eq. (5), the AoI of the k-th CH sensor in the acquisition path is calculated as
shown in Eq. (6).

Γk (t) =
n∑

i=k+1

ςi +
n∑

i=k

η(i),(i+1) (6)

where ςi is the compensation time of the UAV for non-uniform flight caused by the speed reduction
of each sensor to receive data, and its value is fixed, and the AoI of the k-th CH is calculated by
simultaneously calculating the sum of the flight elapsed time of all the sensors up to that point.

Finally, Eqs. (5) and (6) are combined to calculate the average AoI of the data from all the CH
sensors along the entire flight path, as shown in Eq. (7).

—
Γ (t) = 1

n

n∑
k=1

Γk (t) = 1
n

n∑
k=1

(
n∑

i=k+1

ςi +
n∑

i=k

η(i),(i+1)

)
(7)

where n represents the total number of sensors in the delineated sub-task area, the equation sums up
the AoI of all the sensors and later divides it by the total number of sensors to find the average AoI of
the CH sensor data.

According to Eq. (7), given the UAV flight path in the sub-task area, the average value of the AoI
of the monitoring data of the CH sensors on the path is related only to the UAV flight speed v.

3.3.2 Representation of UAV Flight Energy Consumption

Fixed-wing UAV flight energy consumption is related to the UAV flight propulsion energy. The
fixed-wing UAV propulsion energy is shown in Eq. (8) [45,51].

min
v(t),a(t)

T∫
0

⎡
⎢⎢⎢⎣c1 ‖ v (t) ‖3 + c2

‖ v (t) ‖

⎛
⎜⎜⎜⎝1 +

‖ a(t) ‖2 −
(
aT (t) v (t)

)2

‖ v(t) ‖2

g2

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ dt (8)

where c1, c2, g are constants, c1, c2 are two parameters related to the weight of the airplane, wing area,
air density, etc. The expressions for c1, c2 are as follows:

c1 �
1
2
ρCDoS, c2 �

2W 2

(πe0AR) ρS
(9)

ρ is the air density, CDo is the zero-lift drag coefficient, S is the wing area, and e0 is the Oswald
efficiency (wing span efficiency), which has typical values between 0.7 and 0.85, AR is the aspect ratio
of the wing, i.e., the ratio of the wingspan to its aerodynamic width, W = mg, m denotes the mass of
the airplane containing the full load, and g is the acceleration due to gravity. The a in the equation is
the momentary acceleration and v is the flight speed at each moment.

When the fixed-wing UAV carries out uniform flight and collects animal monitoring data, Eq. (8)
needs to be adjusted to the uniform form, and after the initial simplification of Eq. (8), the propulsion
energy consumption Eu of the fixed-wing UAV is shown in Eq. (10).

Eu ≈
∫ T

0

(
c1 ‖ v ‖3 + c2

‖ v ‖
)

dt (10)
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where T denotes the total flight time of the UAV in the sub-region, considering the velocity homo-
geneity and eliminating the integral sign, the further simplified equation is shown in Eq. (11).

Eu ≈
(

c1 ‖ v ‖3 + c2

‖ v ‖
)

∗ T (11)

During the UAV flight, the UAV flight time consists of the total flight time t1 from the start node to
the termination node and the compensation time t2 for the non-uniform flight due to the transmission
of data from the sensors of each CH in the sub-region, and t1 and t2 are calculated as shown in Eq. (12).

t1 =
n∑

i=2

li

v
t2 =

n∑
i=1

ςi (12)

In order to differentiate from the neighboring distances in Eq. (5), li is used here to denote the
Euclidean distance between neighboring CH sensors on the flight path, v is the uniform speed of the
UAV throughout the voyage, and ςi is the compensation time for the UAV’s non-uniform flight caused
by the slowdown in the speed of each sensor to receive data.

Substituting the sum of Eq. (12) into having Eq. (11), the propulsive energy consumption repre-
sentation of the CH sensor for a fixed-wing UAV homogeneous collection sub-region is obtained as
shown in Eq. (13).

Eu ≈
(

c1 ‖ v ‖3 + c2

‖ v ‖
)

×
(

n∑
i=2

li

v
+

n∑
i=1

ςi

)
(13)

According to Eq. (13), the UAV flight propulsion energy consumption is only related to the UAV
flight speed v, given the UAV flight path in the sub-task area.

3.3.3 Objective Function and Solution Method

Considering that the lower the value of Eq. (7) the better the AoI collected, and the lower the
value of Eq. (13) the lower the energy consumption of the UAV flight, i.e., both the AoI and the energy
consumption are minimization constraints. Therefore, the existing theoretical model can be improved
by utilizing the linear superposition approach to represent the AoI and flight energy consumption as
a unified objective function, as shown in Eq. (14).

Ψ = σ ∗ n ∗ —
Γ (t) + τ ∗ Eu (14)

where n is the total number of CH sensors in the sub-region, and σ and τ are the weights of AoI and
UAV propulsion energy, respectively, in Eq. (14).

The constraints of Eq. (14) are:⎧⎪⎨
⎪⎩

min
v∈(0,100]

ψ(v)

min
n∑

i=2

(li)
(15)

For σ and τ of Eq. (14), a reasonable proportionality can be empirically determined by illumi-
nating information about the domain problem, and the basic idea of the determination method is as
follows:
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Based on the actual data, different orders of magnitude of weight ratios are assigned to AoI weight
σ and UAV propulsion energy τ by means of empirical research, making AoI and UAV propulsion
energy covariates by practicing different weight values.

After determining σ and τ according to the empirical method, the only variable that needs to
be optimized in Eq. (14) is the speed v. Genetic algorithms can be used to optimize v. The optimized
speed integrally embodies the AoI and UAV flight energy constraints when the UAV operates in the
sub-area.

4 Experiments and Results
4.1 Experimental Setup

It focuses on the experimental environment and the basis of parameter setting of the involved
algorithms or methods, the construction of data sets, the content of the experiments and the analysis
of the results of comparative experiments.

4.1.1 Experimental Environment and Parameter Settings

Experimental Environment: Hardware and software infrastructure: Intel Core i9-13900H Proces-
sor, 32 G RAM. Windows 11 System. Method development and experimental platform: PyCharm
2022.3.3 Platform. MATLAB r2018b.

Parameter Setting: The proposed method requires the use of genetic algorithm to optimize the
flight speed of the UAV. The built-in parameters of the genetic algorithm are set as shown in Table 1.
The preliminaries and demand solution parameter settings for the experiment are shown in Table 2.

Table 1: GA calculates AoI and energy parameter setting table

Symbol Implication Value

n_dim Dimension of solution 1
size_pop Population size 100
max-iter Maximum iterations 5000
prob_mut Mutation probability 0.001
lb Lower limit of velocity interval 0
ub Upper limit of speed interval 100
Precision Precision of value 1e−7
Updatetime Data transfer time 10
σ The weight of AoI in formula 100
τ The weight of energy in formula 1

The 3D spatial length X, Y, and Z of the simulation dataset are set to 100, which is a data setting
related to the spatial length of the simulation data with the simulation. In the later text, the spatial
measurements in both horizontal and vertical coordinates in the charts are represented by X, Y, Z here.

The UAV model chosen for this experiment is V500H and its parameters are shown in Table 3.
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Table 2: Experimental preliminaries and parameters to solve

Parameters Implication Value Is the parameter
to be requested

Terrain barrier Parameterization of peaks function 50 No
X, Y, Z Spatial extent of 3D acquisition [0, 100] No
Sub_task Subtask areas count 5 No
Num_task Number of nodes in subtask area [0, 100] Yes
AoI Age of information [0, ∞] Yes
Eu UAV propulsion energy consumption [0, ∞] Yes
v UAV flight speed [0, 100] Yes
Coordinates 3D coordinates of sensor nodes – No
Shortest_path UAV traverses the shortest path of all nodes – Yes

Table 3: UAV technical parameters

Overall size Maximum flight
speed

Standard cruise
speed

Maximum take-off
weight

Maximum load
mass

4940 mm ∗ 2560 mm ∗
900 mm

110 km/h 83 km/h 60 kg 20 kg

Operating
temperature

Maximum flight
altitude

Engines Endurance Standard load
weight

−20°C∼60°C 6000 m Two-stroke electric
injection engine

Over 10 h 10 kg

In this experiment, relevant tests are conducted in a real environment, and the geographic
location of the UAV test site is 34°35′–40°19′N latitude and 110°15′–116°27′E longitude. Its geographic
characteristics are deciduous broad-leaved forest zone in the North China Plain in the east, forest-
steppe zone and steppe zone in the Loess Plateau in the west, and there are also obvious differences
in vegetation and soil vertical zone characteristics between the two sides. Because of its high density
of forest vegetation coverage and more complex geomorphological environment, it becomes an ideal
test flight site for UAVs. The actual scene and flight process are shown in Fig. 4.

In order to verify the applicability and feasibility of the method proposed in this paper in real
scenarios, the terrain features in the area of 34°35′–40°19′ N latitude and 110°15′–116°27′ E longitude
are portrayed with digital elevation model terrain data. The TIFF type data were cleaned using
the MATLAB r2018b platform and the terrain data were visualized in PyCharm 2022.3.3 Platform
by introducing the tifffile library. The experimental terrain dataset is obtained by controlling the
parameter information of the terrain as shown in Fig. 5. The mission was to collect data built into
the sensors deployed in the forest, acquiring the data in a communication mode using a cross use of
Los and NLos links.
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(a) (b)

(c) (d)

Figure 4: UAV flight type (a), UAV flight process (b), UAV flight observation scenario (c, d)

Figure 5: Visualization of digital elevation model terrain datasets
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4.1.2 Simulation Dataset Construction Methodology

Using PyCharm with MATLAB in 3D space, a random function randomizes the locations of the
required number of sensors generated for the experiment (as shown in Fig. 6a). And based on the
deployment of sensors in the real field environment, the terrain topography with peak blocking (as
shown in Fig. 6b) and without peak blocking (as shown in Fig. 6c) are generated.

(a) (b)

(c)

: Sensor nodes in the terrain obstruction area
: Sensor nodes in the non-terrain obstacle area

Figure 6: A random function randomizes the locations of the required number of sensors generated for
the experiment (a). And based on the deployment of sensors in the real field environment, the terrain
topography with peak blocking (b) and without peak blocking (c) are generated

A total of two datasets were generated, the number of nodes in each dataset, the blocking region
and other information is shown in Table 4, and all subsequent experiments were conducted based on
this table.

Table 4: Data set information parameter table

Database Topographic
spatial extent

Topographic
barriers range

Number of blocked
nodes

Number of unblocked
nodes

Database1
X: −30.00 30.00 X: −4.28 12.85

8 42Y: −30.00 30.00 Y: −6.73 15.30
Z: −65.26 80.44 Z: 80.44 0.000

(Continued)
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Table 4 (continued)

Database Topographic
spatial extent

Topographic
barriers range

Number of blocked
nodes

Number of unblocked
nodes

Database2
X: −30.00 30.00 X: −4.28 12.85

18 82Y: −30.00 30.00 Y: −6.73 15.30
Z: −65.26 80.44 Z: 80.44 0.000

4.2 Feasibility Analysis Experiment

4.2.1 Sensor Clustering Experiment

Beginning to divide the data collection area into the area with terrain obstruction communication
and the area without terrain obstruction communication, this experiment will take different measures
for the above two areas.

For the area with terrain obstruction, this experiment uses MATLAB to simulate the mountain
peak terrain of the field environment, and individually divides the mountain peak emergence area, in
which the sensor nodes are individually self-organized network, through the above means of processing
can prevent the occurrence of the communication of sensor nodes is blocked by the terrain, and then
assigned to the same mesh within the self-organized network occurs. For the communication area
without terrain obstruction, this experiment utilizes a homogeneous mesh to divide the data collection
area, and the sensor nodes within each mesh are self-organized.

Both of these areas use the α-hop clustering algorithm, which will sort each sensor node according
to the size of the weights, where the sensor with the smallest weight is selected as the CH, after which
a Huffman tree is constructed and saved according to the size of the sensor weights. The CHs selected
in this experiment will be used as traversal targets for subsequent UAV data collection.

On the constructed data, the experiment uses MATLAB to simulate the terrain of the field
environment as shown in Fig. 7. The area where the communication is obstructed by the terrain is
wrapped with a triangular prism, and the sensor nodes that fall into the terrain obstructed area are
identified with red nodes, and the sensor nodes that do not fall into the terrain obstructed area are
identified with blue nodes.

: Sensor nodes in the terrain obstruction area
: Sensor nodes in the non-terrain obstacle area

Figure 7: Generating a randomized sensor node map located in the terrain obstruction area
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The simulated terrain-free obstruction communication area is shown in Fig. 8, with the black
nodes being the sensor nodes within this data collection area. The sensor nodes are partitioned using
a homogeneous mesh, and CHs are computed in each mesh using the α-hop clustering algorithm,
where the red nodes indicate the CHs selected in that mesh area.

:Cluster Head node
:Sensor node

α-hop cluster head
selection process

Results of α-hop
cluster head

selection

Figure 8: Schematic diagram of CH selection process for random sensor nodes without terrain
obstruction area

For the nodes in the terrain obstruction area and the mesh division area, the sum of the distances
from each node to the rest of the nodes is calculated as the weight ordering, and the redundant data
is stored according to the weights, and the Huffman tree constructed and showing the process of data
flow between the nodes is shown in Fig. 9.

Primary node

Secondary node

Arbiter node
Edge node

Figure 9: Tree diagram of data flow for each sensor node in a mesh area or terrain obstructed area

4.2.2 Multi-UAV Collaborative Task Area Allocation Experiment

On the simulation dataset 1, the feasibility of using the K-Dimensional classification method to
divide the subtask areas is verified, and the overall division results are shown in Fig. 10. The sensor
CHs are first divided into their respective task areas, and after the task areas are divided, the initial
node of UAV flight is selected for each sub-task area as shown in Fig. 11.
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:Subtask 1

Figure 10: K-Dimensional grouping diagram of 50 sensor nodes

Subtask 1 Subtask 2

Subtask 3
Subtask 4 Subtask 5

*

: Initial flight node*
*

*
* *

Figure 11: Map of the results of the division of the subtask area and the selection of its initial node of
flight

4.2.3 Experiment on Single UAV Data Collection Operations in the Sub-Task Area

Sub-task area UAV operation pathnstruction experiment: On the basis of K-Dimensional division
of task areas, the optimal path for single UAV data collection operation is constructed for each task
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area. The specific UAV data acquisition operation flow is schematically shown in Fig. 12. The UAV
path planning algorithm in this experiment is Simple Full Permutation Algorithm, and the parameters
of path planning are shown in Table 5. The UAV path planning results for each sub-task area are shown
in Fig. 13.

Table 5: UAV path planning parameters for the sub-task area

Subtask area Number of nodes Path length

Subtask 1 11 201.2
Subtask 2 10 236.6
Subtask 3 12 249.9
Subtask 4 9 179.1
Subtask 5 7 220.1

Simplex Full 
Permutation 
Algorithm

Collection of 
Path Planning 

Methods

Determine Sub-mission UAV Operation Paths

Uni-objective Function with 
UAV Uniform Velocity as 

Variable

Weight 
of AoI

Weight of 
Energy 

Consumption 

Optimization Objective Function Based on 
Genetic Algorithm

Number 
of 

Subtask 
CHs

Method 
Selection 
Strategy

Determine the Speed of Sub-mission UAV
Operations

AoI Calculation Method

Method of Calculating 
Energy Consumption 

of UAVs

Figure 12: Schematic diagram of single UAV data collection operation flow

:  Start node
:  End node
:  Release node

Subtask 1 Subtask 2

Figure 13: (Continued)
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Subtask 3 Subtask 4 Subtask 5

Figure 13: UAV path planning results for each sub-task area

AoI and UAV energy consumption weighting determination experiment: Based on the data
collection operation assessment model constructed in Section 3.3.2, Eq. (14) is expanded to obtain the
complete model equation shown in Eq. (16). And in Eq. (16), there are AoI weights and UAV energy
consumption weights, respectively. In this experiment, using the randomized sensor coordinates in
Fig. 6a and the node coordinates of two different scales, simulation dataset 1 and simulation dataset
2, as parameters, the weight ratios of the UAV propulsion energy consumption and data AoI are set
to be 1:1, 1:10, 1:100, and 1:1000, respectively, and the combined results are shown in Fig. 14. Fig. 14
shows that when the weight ratio of the two is 1:1 and 1:10, the influence factor of data AoI in the
overall evaluation model is too low, and when the weight ratio of the two is 1:1000, the influence
factor of data AoI in the overall evaluation model is too high, which makes the data AoI dominant in
the overall evaluation model. When the weight ratio of the two is 1:100, they have roughly the same
influence in the overall evaluation model, so it is most reasonable to select and in the subsequent model
as 1 and 100, respectively.

Ψ = σ ×
n∑

k=1

(
n∑

i=k+1

ςi +
n∑

i=k

η(i),(i+1)

)
+ τ ∗

(
C1||v||3 + C2

||v||
)

×
(

n∑
i=2

li

v
+

n∑
i=1

ςi

)
(16)

Figure 14: Comparison of weight ratios for the four magnitudes
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Sub-task UAV operation speed determination experiment: The 10 sensor coordinate positions
randomized in Fig. 6a are used as parameters input into the data AoI equation model and the UAV
propulsion energy calculation equation model to construct the mathematical functional relationship
between the data AoI and the UAV propulsion energy consumption and speed, as shown in Fig. 15.
Fig. 15 shows that for a given velocity interval, the larger the velocity value, the better the freshness of
the data AoI. For UAV propulsion energy consumption, an increase in velocity value causes a rapid
decrease in UAV propulsion energy consumption in the velocity starting region, but UAV propulsion
energy consumption reaches its lowest point and then starts to increase with an increase in velocity
value. The figure show that the data AoI and the UAV propulsion energy consumption do not lead to
an optimal solution at the same time.

Figure 15: Plot of data AoI and UAV propulsion energy consumption as a function of speed

The results of the above optimal path planning are input into the data collection operation
assessment model as parameters, and the genetic algorithm is used to calculate the UAV flight speed
when the optimal evaluation value is reached, which is compared with the unprocessed UAV data
collection methods (Baseline Model 1, Baseline Model 2), the values of the detailed comparison results
are shown in Table 6 and the magnitude visualization is shown in Fig. 16. It can be concluded from
the graphs that the performance of the proposed combinatorial optimization scheme in this paper is
improved by 95.56% and 58.21%, respectively, compared to the conventional baseline model.

Table 6: Table of values assessed for each mission subregion with two types of baseline models

Co-optimization model evaluation values Baseline Model 1
evaluation value

Baseline Model 2
evaluation value

Area 1 Area 2 Area 3 Area 4 Area 5 12834759.6 1358662.6

137598.4 116932.5 163840.1 91247.4 60732.7 Increase percentage Increase percentage
570351.1 95.56% 58.21%
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αα：：Sum of assessed values for the five mission areas

ββ：：Assessed value of Baseline Model 1
γγ：：Assessed value of Baseline Model 2

Figure 16: Plot of data AoI and UAV propulsion energy consumption as a function of speed

4.3 UAV Flight Test Experiment in Actual Field Complex Environment

In order to verify the universality and applicability of the method proposed in this paper in real
scenarios, this experiment is conducted by performing UAV flight missions in real scenarios, whose
real flight scenes are shown in Fig. 4, and in order to facilitate the observation of the terrain with the
portrayal of the accurate flight result values, this experiment utilizes the digital elevation model data
to display the terrain features as shown in Fig. 5, in which the experiment quantifies both the AoI and
the flight energy consumption of the data collected by the UAV, and compared with the results of the
simulation method proposed in this paper.

Through the real test flight and simulation on nine terrains, the numerical results are obtained,
in order to facilitate the observation of the results, this paper will normalize the numerical results,
retaining three decimals, and the detailed values are shown in Table 7. It can be observed through
Table 7 that the relative error between the simulation value and the real value derived from the
calculation formula and method given in this paper can be roughly maintained in the error interval of
± 10%, and the flights in the real scenarios can prove the accuracy and good suitability of the proposed
scheme in the real test experiment. Through the flight test experiments in real scenarios, the accuracy
and good applicability of the proposed scheme can be proved.
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Table 7: Table of numerical results of real and simulated values for nine terrains

Preset parameters Realistic scenarios Simulated scenarios Comparison result value

Terrain
area

Number
of nodes

Average
AoI

Average
energy

Real
value

Simulation value Relative error

Terrain 1 10 0.374 0.421 0.795 0.874 +9.937%
Terrain 2 11 0.388 0.437 0.825 0.817 −0.969%
Terrain 3 13 0.402 0.462 0.864 0.842 −2.546%
Terrain 4 9 0.385 0.403 0.788 0.841 +6.725%
Terrain 5 12 0.394 0.427 0.821 0.775 −5.603%
Terrain 6 10 0.391 0.401 0.792 0.846 +6.818%
Terrain 7 11 0.441 0.434 0.875 0.901 +2.971%
Terrain 8 13 0.474 0.492 0.966 0.857 −11.284%
Terrain 9 9 0.381 0.401 0.782 0.841 +7.545%

4.4 Comparative Experiments

This experiment compares and verifies the excellence of the combination optimization method
proposed in this paper and the mainstream sensor self-organizing network technology by deploying
sensor nodes of different sizes. As well as using simulation dataset 2, the optimal paths of sub-task
regions are constructed by using the Simple Full Permutation Algorithm, and the clustering process
and sub-task assignment process in the method are eliminated respectively to verify the roles played
by each module of combinatorial optimization in the optimization performance.

4.4.1 Comparison of Data Acquisition Performance with Mainstream Sensor Self-Organizing Network
Technologies

In order to verify the superiority of the proposed method in this paper compared with other
existing techniques in terms of efficiency and accuracy of data collection, artificial immunity and
community-based self-organizing algorithms for sensor networks, which have been performing well
in real-world application scenarios in recent years, are selected for comparison in this experiment to
demonstrate the superiority of the proposed method in this paper [52]. In order to comprehensively
evaluate the efficiency and accuracy of each algorithm, this experiment specifies the time and space
complexity of the algorithm as the evaluation index of the algorithm’s efficiency, and the total amount
of data that can be acquired by the sensors traversed by the UAV as the evaluation index of the
algorithm’s accuracy. The amount of data built into each sensor is randomized with a random function
within 0.5–1.0 to ensure the fairness of the experiment [53].

The detailed comparison values are shown in Table 8, where the number of new convergence
iterations of the heuristic algorithm over the method proposed in this paper is used as one of the
evaluation metrics. Table 8 shows that the method proposed in this paper has a huge advantage in space
and time complexity over artificial immunity and community-based self-organization algorithms for
sensor networks when facing equal sensor size scenarios, with a relative improvement of 10.46% and
12.71% for the accuracy of data extraction.
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4.4.2 Eliminating the Clustering Process Ablation Comparison

The sensor clustering process is removed from the method and multi-UAV are used directly to
perform task segmentation and flight operations for all sensors, which in turn analyzes the changes in
AoI and UAV flight energy consumption.

It can be seen through Fig. 17 that the number of sensor nodes in each sub-task area that has
not undergone the clustering process has increased, and the results of path planning for each assigned
task area are shown in Fig. 18. It can be concluded from Table 9 that there is a large gap between the
performance indicators before and after clustering, and the addition of the clustering module makes
the energy consumption of the UAV and the data AoI increase by 71.57% and 71.14%, respectively,
compared with the original. As can be seen through Fig. 19, after removing the clustering process,
the AoI and UAV flight energy consumption of the data in each sub-task area increased dramatically,
with a difference of 3.46 times in the data AoI metrics before and after the clustering process, and a
difference of 3.52 times in the UAV flight energy consumption metrics. By eliminating the clustering
process, it proves the effectiveness and scientificity of the clustering method in improving the efficiency
of UAV data collection.

Subtask 1 Subtask 2

Subtask 3 Subtask 4 Subtask 5

*

K-Dimensional
classification

: Initial flight node*

*

Figure 17: Map of the results of sub-task area division for non-clustering
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Subtask 1 Subtask 2

Subtask 3 Subtask 4 Subtask 5

(0,0,0)

(0,0,0)

: Release node

Figure 18: Non-clustered UAV path planning results for each sub-task area

Table 9: Values of data AoI and UAV flight energy consumption metrics before and after clustering

Assessment value

Following clustering Before clustering

UAV energy consumption Data AoI UAV energy consumption Data AoI

Area 1 66981.5 69390.4 191881.9 200352.9
Area 2 56035.8 58869.3 192188.9 201242.7
Area 3 79198.2 82621.4 198275.6 200982.1
Area 4 45801.7 47632.2 199842.7 201027.3
Area 5 29001.7 31561.6 192065.6 201381.1
Sum of areas 277018.9 290074.9 974254.7 1004986.1

Percentage increase in energy consumption 71.57%
Percentage increase in data AoI 71.14%
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: UAV propulsion energy consumption following clustering

: UAV propulsion energy consumption before clustering

: Data AoI following clustering

: Data AoI before clustering

Figure 19: Comparison of data AoI and UAV propulsion energy consumption metrics before and after
clustering

4.4.3 Eliminating Sub-Task Assignment Process Ablation Comparisons

The sub-task assignment process is removed from the methodology and a single UAV is used
directly to plan flight operations based on sensor clustering, which in turn analyzes the changes in
AoI and UAV flight energy consumption.

After the sensor nodes are divided through the mesh, CHs are selected within each mesh using
the α-hop clustering algorithm, and the selection process is shown in Fig. 20. The result of direct path
planning without subtask assignment for the selected CH nodes is shown in Fig. 21a. As can be seen
in Fig. 21b, the AoI of the data in the total mission area and the energy consumption of the UAV flight
both increase dramatically after removing the sub-tasking process, with a difference of 4.45 times in the
data AoI metrics before and after the sub-tasking process, and a difference of 4.47 times in the energy
consumption metrics of the UAV flight. The feasibility and effectiveness of the subtask assignment
process in improving the efficiency of UAV data collection can be demonstrated by eliminating the
subtask assignment process.

:Cluster Head node:Sensor node

Results of α-hop
cluster head selection

Figure 20: Schematic of the CH selection process after clustering of sensor nodes
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: Release node

: UAV propulsion energy consumption following clustering
: UAV propulsion energy consumption before clustering
: Data age of  information following clustering
: Data age of  information before clustering(a) (b)

Data age of
information

UAV propulsion
energy consumption

Figure 21: UAV path planning results in the mission area after clustering and comparison of AoI (a).
UAV flight energy consumption metrics before and after sub-task assignment (b)

5 Discussion

In this paper, using the idea of combinatorial optimization, through α-hop sensor clustering, K-
Dimensional division of the task area, using genetic algorithms to trade-off the relationship between
speed and the AoI of the collected information and energy consumption. We propose a multi-UAV task
planning method oriented to the collection of data from self-organized sensors, and form a multi-UAV
collection of data operation scheme. In the context of data collection in field settings, the proposed
method demonstrates a distinct advantage when compared to existing technical approaches, such as
artificial immunity and community-based sensor self-organizing networks. This is particularly evident
in terms of the method’s time and space complexity, as well as its accuracy and completeness in data
collection. In the α-hop sensor clustering module, the shortest distance CH selection method of the
neighboring sensors is capable of reducing the size of the sensors while ensuring that the quantity
and quality of the sensor data remain uncompromised. The K-Dimensional division of the task
area is employed to facilitate the optimal work sub-schemes for each UAV, enabling the concurrent
completion of data collection tasks and enhancing overall efficiency. The optimal combination of
evaluation metrics for AoI and energy consumption is assigned using genetic algorithms. This ensures
that data quality and data collection energy consumption can be taken into account.

Nevertheless, this field of work is still deficient in certain respects and constrained by a number of
limitations. Fixed-wing UAVs are capable of enduring extended periods of flight, yet their considerable
size and the necessity for a high degree of stability in their flight attitude render them unsuitable for the
collection of data from certain locations characterized by challenging terrain. In the subsequent work,
the rapid development of lightweight rotor UAV technology has led to the emergence of lightweight
rotor UAVs as a new area of interest in the field of data acquisition. The compact flight attitude of rotor
UAVs enables them to fly near the ground, facilitating data communication. Moreover, the integrity
of the acquired data is enhanced due to the stability of the communication link. The control of the
flight attitude of the lightweight UAV is also a key research topic. The wind perturbation affecting
the lightweight UAV is significant. In addition to the influence of the wind, the lightweight UAV is
also subject to rain, lightning, and other natural conditions that impose limitations. As the research
progresses, steady progress is being made, simulations are conducted and subsequently validated in the
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field. This approach allows for the evaluation of the UAV’s performance in actual flight conditions,
including the impact of adverse weather on the flight process. It enables the investigation of how
to adjust the flight attitude under varying wind speeds, thereby facilitating more comprehensive
data collection. The impact of disparate natural conditions on the flight process of the lightweight
UAV can be recorded in order to ascertain the limiting environmental parameters that the UAV is
capable of flying. Furthermore, the small rotary-wing UAV’s ability to adjust its flight attitude under
varying wind speeds can be examined in order to determine how it can better accomplish the data
collection task.

The data collection mission scenario presented in this paper is one of the scenarios in which UAVs
and sensors are used in combination, and in future work, mobile sensors such as collar sensors can also
be utilized to obtain personalized data on mobile monitoring objects. To illustrate, one might collect
audio-visual data of animals in a national forest park with the aim of understanding the aggregation
range and habits of said animals. Following this, one could then design dynamic drone path planning
algorithms to collect data from all animals wearing collar-based motion sensors within that range.
This approach offers zoologists the opportunity to obtain more up-to-date and precise animal data at
a reduced cost, which can contribute to the conservation of endangered species.

6 Conclusion

This paper proposes a multi-UAV mission planning method for self-organized sensor data
acquisition, which is designed to address the need for efficient sensor data acquisition. The method
employs a three-dimensional grid, an α-hop clustering algorithm, and a Huffman tree to cluster ground
sensors. It then selects CH nodes to pool ground sensor data for communication with the UAV,
which significantly reduces the volume of data collected by the UAV. The CH nodes are classified
according to a K-Dimensional system to form sub-mission areas that are conducive to multi-UAV
cooperative operations with non-intersecting flight areas. Based on the path flight paths generated by
the construction algorithms, the objective function and constraints for the combined AoI and UAV
flight energy consumption are formulated. Additionally, an operational implementation scheme for
solving the UAV flights in the sub-tasks is provided. Simulation experiments demonstrate that the
combinatorial optimization strategy presented in this paper is capable of devising an optimal solution
for the data acquisition work plan within the specified time frame. The combined optimization strategy
proposed in this study demonstrates superior performance compared to the traditional baseline model,
with significant improvements of 95.56% and 58.21%, respectively. To further verify the applicability
and universality of the method in the real world, the digital elevation model data of the real terrain
is used in this study for simulation testing. The results of this testing demonstrate that the error
range of the method is controlled within ±10% in comparison with the actual flight performance
test of the UAVs, thereby proving the reliability of the method in practical applications. Comparative
analyses with prevailing standard methodologies substantiate the substantial benefits of the current
approach in terms of spatial and temporal complexity. In particular, with regard to the precision of
data extraction, the current method demonstrates an improvement of 10.46% and 12.71%, respectively.
This enhancement is particularly evident in tasks that involve the processing of large amounts of data.
The results of tests conducted with split modules indicate that the omission of the clustering and
subtask assignment steps results in a notable decline in performance. Specifically, the AoI performance
decreased by a factor of 3.46 and 4.45, respectively, while the energy performance also exhibited a
reduction by a factor of 3.52 and 4.47, respectively. The results underscore the significance of the
individual modules in the optimization process and demonstrate that the current methodology is
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capable of providing precise data extraction and low-energy consumption solutions while sustaining
high performance.

This study proposes a novel approach to multi-UAV mission planning oriented to self-organized
sensor data acquisition. This approach is not only innovative in theory but also demonstrates excellent
performance and wide applicability in practical applications. These results provide a robust foundation
and novel perspectives for future research and applications in related fields. In the subsequent research,
scholars in related fields can also focus on the field of animal audio-image data collection in national
forest parks to help endangered wildlife conservation. Or it can study the flight attitude of lightweight
UAVs to meet the data acquisition tasks in narrow terrain more accurately and other related research
work. It is also possible to combine the professional opinions given by experts in different fields as
the objective function of data acquisition to construct a multi-objective optimization problem, which
further improves the generalizability and adaptability of the optimization problem of data acquisition
in different scenarios.
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