
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.055538

ARTICLE

Virtual Assembly Collision Detection Algorithm Using Backpropagation
Neural Network

Baowei Wang1,2,* and Wen You2

1School of Computer, Nanjing University of Information Science and Technology, Collaborative Innovation Center of Jiangsu
Atmospheric Environment and Equipment Technology, Digital Forensics Engineering Research Center of Digital Forensics
Ministry of Education, Nanjing, 210044, China
2School of Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China

*Corresponding Author: Baowei Wang. Email: wbw.first@163.com

Received: 30 June 2024 Accepted: 27 August 2024 Published: 15 October 2024

ABSTRACT

As computer graphics technology continues to advance, Collision Detection (CD) has emerged as a critical
element in fields such as virtual reality, computer graphics, and interactive simulations. CD is indispensable for
ensuring the fidelity of physical interactions and the realism of virtual environments, particularly within complex
scenarios like virtual assembly, where both high precision and real-time responsiveness are imperative. Despite
ongoing developments, current CD techniques often fall short in meeting these stringent requirements, resulting in
inefficiencies and inaccuracies that impede the overall performance of virtual assembly systems. To address these
limitations, this study introduces a novel algorithm that leverages the capabilities of a Backpropagation Neural
Network (BPNN) to optimize the structural composition of the Hybrid Bounding Volume Tree (HBVT). Through
this optimization, the research proposes a refined Hybrid Hierarchical Bounding Box (HHBB) framework, which is
specifically designed to enhance the computational efficiency and precision of CD processes. The HHBB framework
strategically reduces the complexity of collision detection computations, thereby enabling more rapid and accurate
responses to collision events. Extensive experimental validation within virtual assembly environments reveals that
the proposed algorithm markedly improves the performance of CD, particularly in handling complex models. The
optimized HBVT architecture not only accelerates the speed of collision detection but also significantly diminishes
error rates, presenting a robust and scalable solution for real-time applications in intricate virtual systems. These
findings suggest that the proposed approach offers a substantial advancement in CD technology, with broad
implications for its application in virtual reality, computer graphics, and related fields.

KEYWORDS
Collision detection; virtual assembly; backpropagation neural network; real-time interactivity

1 Introduction

With the rapid advancement of virtual reality (VR) technology, virtual assembly has emerged
as a significant VR application scenario, garnering increasing attention and research interest [1].
In a virtual assembly environment, users can perform assembly operations through devices such as

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.055538
https://www.techscience.com/doi/10.32604/cmc.2024.055538
mailto:wbw.first@163.com


1086 CMC, 2024, vol.81, no.1

head-mounted displays and controllers [2]. This environment not only provides users with a more
realistic and intuitive interactive experience but also offers efficient and safe solutions for fields such
as manufacturing and robotic operations [3]. However, due to the variable attributes of objects in
the virtual assembly environment. including shape, size, and mass, achieving efficient and accurate
collision detection is crucial. Collision detection. which refers to the determination of whether two
objects have collided, is a fundamental technology in virtual assembly environments [4]. Through
precise collision detection, users can experience realistic physical interactions, thereby enhancing the
immersion and realism of the VR experience [5].

The CD kernel processes a scene containing multiple objects and identifies all pairs of colliding
objects, along with application-specific parameters such as the collision point, time, or volume
displaced. Exhaustively searching for collisions among all object pairs requires O(n2) time complexity,
making it computationally prohibitive for large scenes [6]. Therefore, the CD process is divided into
two phases: broad and narrow. The broad phase quickly eliminates object pairs that are unlikely to
collide using techniques like sweep-and-prune (SAP), Bounding Volume Hierarchy (BVH), and spatial
hashing [7]. The narrow phase then conducts detailed intersection tests on the remaining pairs to
determine exact collisions.

The computational intensity of precise collision detection has historically led researchers to focus
on optimizing the broad phase. However, exact collision detection remains crucial in many scenarios,
such as assessing mechanical failures due to impact or internal stress [8]. To address these needs, we
introduce Mochi, a fast and exact collision detection engine that leverages Ray Tracing (RT) cores to
accelerate both broad and narrow phases.

Real-world objects have complex shapes, necessitating the use of bounding volumes for efficient
indexing. By organizing these bounding volumes, a spatial data structure called BVH enables rapid
non-intersection space culling, reducing collision detection time [9]. Faster BVH traversal accelerates
simulations, rendering, and collision avoidance measures. State-of-the-art CD libraries utilize Graph-
ics Processing Unit (GPU) accelerators for optimized BVH construction and traversal techniques [10].
The integration of ray tracing architecture in modern GPUs, such as NVIDIA’s Turing and later RTX
series, offers new opportunities for CD optimization [11]. These GPUs feature specialized RT cores
designed for efficient BVH operations and ray-object intersections, originally intended for real-time
graphical rendering [12]. By mapping the CD problem to the ray tracing paradigm, Mochi exploits RT
cores to achieve significant performance improvements in detecting collisions among various object
types, including spherical particles, mathematically defined objects, and complex triangle meshes.

The authenticity of virtual environments depends on participants’ ability to perceive and interact
with virtual objects realistically. This requires precise collision detection to ensure accurate physical
feedback during interactions. The increasing geometric complexity of virtual environments and the
need for real-time interaction intensify the computational burden of collision detection, making
it a critical challenge. Thus, precise collision detection is imperative for enhancing realism and
immersion, imposing stringent computational and real-time demands on detection algorithms [13].
Fig. 1 shows the Research Motivation and Innovation Framework of this article. Our contributions
can be summarized as follows:

(1) We have innovated the structure of the Hybrid Bounding Volume Tree (HBVT) by layering the
data structure, resulting in a more efficient collision detection process.

(2) To enhance the efficiency of constructing HBVT, we employ PSO combined with a BPNN.
This approach ensures more appropriate initial weight and threshold settings, and then utilizes
the neural network to optimize the time overhead.



CMC, 2024, vol.81, no.1 1087

(3) We constructed a virtual assembly system using WebGL and configured the specific environ-
ment for the experiment.

(4) Experimental results indicate that, compared to existing CD algorithms, the CD algorithm
proposed in this paper demonstrates superior efficiency and accuracy for complex models.

Figure 1: Research motivation and innovation framework

2 Related Work
2.1 Research Status of Collision Detection

CD is a critical component in the realm of virtual environments, with applications spanning from
computer graphics and virtual reality to robotics and simulation. Recent advancements have focused
on improving both the accuracy and efficiency of CD algorithms to meet the increasing demands of
real-time interaction and complex scene management.

The broad-phase CD aims to quickly eliminate object pairs that are unlikely to collide, thus
reducing the number of expensive narrow-phase collision tests. Recent methods have improved the
efficiency of this phase through enhanced spatial partitioning techniques. For instance, dynamic BVH
have been optimized to adapt more rapidly to changes in the scene, significantly reducing the overhead
during real-time updates [14]. Additionally, the use of spatial hashing and grid-based methods has been
refined to handle large and densely populated virtual environments more effectively.

In the narrow-phase, where precise CD occurs, significant strides have been made in algorithmic
optimization and hardware acceleration. Techniques leveraging the computational power of modern
GPUs have become prominent, particularly with the integration of ray tracing cores in GPUs by
NVIDIA [15]. These cores facilitate rapid BVH traversal and intersection tests, enabling more complex
and dynamic scenes to be handled in real-time [16]. Furthermore, algorithms have been developed
to exploit coherence in the motion of objects, reducing redundant calculations and enhancing
performance [17].

As virtual environments become more intricate, the ability to accurately detect collisions between
complex geometries becomes paramount. Mesh-based CD, which involves detecting intersections
between intricate polygonal meshes, has seen considerable advancements. Recent research has intro-
duced methods to handle coplanar and non-coplanar triangle-triangle intersection tests more effi-
ciently, overcoming a significant bottleneck in mesh-based CD [18]. Additionally, hybrid approaches



1088 CMC, 2024, vol.81, no.1

combining discrete and continuous CD methods have been proposed to manage both static and
dynamic interactions seamlessly [19].

One of the ongoing challenges in CD is ensuring real-time performance as the scale and complexity
of virtual environments grow. To address this, parallel processing techniques and multi-threading have
been employed to distribute the computational load across multiple cores. Adaptive algorithms that
adjust their precision based on the proximity and velocity of objects have also been developed to
maintain a balance between accuracy and performance [20]. Moreover, machine learning techniques
are being explored to predict and pre-emptively manage potential collisions, further enhancing the
responsiveness of virtual environments [21].

Additionally, the inclusion of BVH enhances the efficiency of CD algorithms by organizing objects
based on their bounding volumes. As shown in Fig. 2, the timeline of Collision Detection research
is presented, BVH has been proposed since 2000, BVH allows for rapid culling of non-intersecting
pairs during the broad phase, further optimizing CD processes in virtual environments. Common
Hierarchical Bounding Volume. Algorithms: BVH, Octree, R-tree, KD-tree, Binary Space Partitioning
(BSP) Tree. These algorithms are commonly used to organize spatial data efficiently, enabling fast
CD in virtual environments. The algorithm proposed in this paper introduces a new BVH structure
compared to other collision detection algorithms. It incorporates a BP neural network and employs
particle swarm optimization to ensure that the initial weights and thresholds are set more appropriately.
By using the trained neural network to predict and obtain the hierarchical bounding structure that
results in the minimum detection time, the derived detection method enhances the accuracy and speed
of object collision detection in virtual environments.

Figure 2: Collision detection algorithms timeline

2.2 Research Status of Collision Detection

BVH are pivotal in optimizing CD algorithms, particularly in complex scenes with numerous
objects. BVH encapsulate objects within hierarchical bounding volumes, such as spheres, axis-aligned
bounding boxes (AABB), or oriented bounding boxes (OBB). These hierarchies enable efficient
traversal and culling of non-intersecting objects, significantly reducing computational overhead [22].
The efficiency of BVH-based algorithms lies in their ability to decompose the CD problem into a series
of simpler, hierarchical tests, allowing for rapid exclusion of large portions of the scene that do not
require detailed collision checks.



CMC, 2024, vol.81, no.1 1089

2.2.1 Construction of BVH

The construction process of a BVH typically follows a top-down approach, starting from the
bounding volume enclosing the entire scene and recursively partitioning it into smaller sub-volumes
until reaching a termination condition.

2.2.2 Structure Design

In traditional CD algorithms, BVH are commonly used to optimize the detection process. The
primary function of this tree structure is to quickly eliminate objects that are clearly non-intersecting
using higher-level bounding volumes, followed by detailed intersection checks between the leaf nodes,
specifically between triangular facets. However, in practical applications, the choice of tree data
structure significantly impacts the detection speed in virtual environments. Therefore, selecting an
appropriate tree data structure is crucial for the performance of BVH.

As shown in Fig. 3, HBVT is an improved structure developed on the basis of BVH. HBVT not
only adopts hierarchical bounding boxes, but also combines different types of bounding boxes to adapt
to different geometric distributions and application scenarios, thereby further improving the efficiency
and accuracy of collision detection.

Figure 3: HBVT structure

Typically, HBVT structures include binary trees, quadtrees, and octrees. Traditional BVH algo-
rithms often employ a single data structure, but this study proposes a composite tree data structure
that integrates the advantages of each type. This composite hierarchical tree is organized into three
layers: the top layer utilizes octrees, the middle layer employs quadtrees, and the bottom layer uses
binary trees. The depth of each layer is variable, allowing flexibility to adapt to specific requirements
of the virtual environment.

2.3 Backpropagation Neural Network

BPNN is a key type of artificial neural network (ANN) known for learning from data by adjusting
connection weights between neurons. It consists of input, hidden, and output layers, processing input
signals through neurons with activation functions. Training involves forward propagation of inputs to



1090 CMC, 2024, vol.81, no.1

generate predictions, followed by backpropagation of errors to adjust weights and minimize prediction
errors. BPNN are widely used in image and speech recognition, natural language processing, and
financial forecasting due to their ability to model complex data relationships [23]. However, optimizing
parameters and addressing overfitting challenges remain critical research areas to enhance BPNN
performance [24].

BPNN are a type of artificial neural network used extensively for supervised learning tasks. They
are particularly effective for training multi-layer perceptrons through a process known as gradient
descent. A BPNN typically comprises an input layer, one or more hidden layers, and an output layer.
During the forward propagation phase, input data passes through the network, with each neuron
applying an activation function to the weighted sum of its inputs. This weighted sum for each neuron
l n layer is j given by:

zl
j =

∑
i

wl
ija

l−1
i + bl

j (1)

where zl
j is the weighted sum, wl

ij is the weight from neuron i in layer l − 1 to neuron j in layer l, al−1
i is

the activation of neuron i in layer l − 1, and bl
j is the bias for neuron j in layer l. The activation al

j is
computed using an activation function:

al
j = σ

(
zl

j

)
(2)

Backpropagation adjusts the network’s weights to minimize prediction error. For the output layer,
the error δL

j for neuron j is:

δl
j =

∑
k

δl+1
k wl+1

jk σ ′ (zl
j

)
(3)

where δl+1
k is the error of neuron k in the subsequent layer l +1, wl+1

jk is the weight from neuron j in layer
l to neuron k in layer l + 1, and σ ′ (zl

j

)
is the derivative of the activation function at zl

j. Weights and
biases are updated using the gradient descent method.

wl
ij = wl

ij − ηδl
j a

l−1
i (4)

bl
j = bl

j − ηδl
j (5)

Fig. 4 illustrates the workflow of a BPNN. Initially, the input layer neurons receive the input data
and pass it to the hidden layer through forward propagation. The hidden layer processes the data and
sends the result to the output layer. The output layer neurons produce the predicted results, which
are then compared with the target values to calculate the error. This error is used in the backward
propagation phase to compute the gradients of the weights, which are subsequently adjusted to
minimize the error. This process of forward and backward propagation continues iteratively until the
network converges to an acceptable error level.

Despite the widespread use of BPNN, they suffer from several limitations. For instance, the initial
weights and biases of the network significantly affect its predictive accuracy, and BPNN typically
initialize these values randomly. This arbitrary initialization can lead to the network converging to
suboptimal solutions during training, thus impacting prediction performance. Additionally, BPNN
often exhibit slow learning rates, requiring numerous iterations to achieve convergence, and are prone
to getting trapped in local minima, which further restricts their effectiveness.

To address these limitations and enhance the predictive performance of BPNN, this study
integrates the Particle Swarm Optimization (PSO) algorithm for optimizing the initial weights and



CMC, 2024, vol.81, no.1 1091

biases. PSO is a population-based optimization technique inspired by the social behavior of birds
flocking or fish schooling. It searches for optimal solutions by iteratively updating the positions and
velocities of individual particles in the search space. The integration of PSO with BPNN follows these
steps.

Figure 4: BPNN workflow

Fig. 5 outlines the PSO algorithm’s iterative process, starting from the initialization of particle
positions and velocities. Each particle’s fitness is evaluated based on the neural network’s performance,
followed by updating individual and global best positions. If the stopping condition is not met,
particles’ velocities and positions are iteratively updated. This loop continues until convergence,
resulting in optimal initial weights and biases for the BPNN. By employing PSO, the BPNN can
achieve faster convergence and avoid local minima, leading to improved prediction accuracy.



1092 CMC, 2024, vol.81, no.1

Figure 5: Flowchart of particle swarm optimization for BPNN

For simple virtual models, hybrid hierarchies can be generated by enumerating all possible
hierarchical compositions and selecting the optimal structure based on collision test results. For more
complex physical models, a subset of probable combinations is selected for collision testing, and the
recorded time expenditures are used to create a training dataset for the BPNN. By training the BPNN
with this data, it can predict collision test outcomes for various hierarchical structures efficiently and
accurately, facilitating the selection of an optimal configuration.

During the construction of hierarchical bounding boxes, it was observed that construction time
varies with model complexity. More complex models yield a greater number of potential bounding
hierarchies, increasing the construction time. To enhance efficiency, we utilized a PSO optimized
BPNN to minimize time expenditure.

These methods streamline the construction of bounding hierarchies for complex models, leverag-
ing the predictive capabilities of the optimized BPNN to ensure an efficient and precise process.

3 Systematic Evaluation
3.1 System Realizations

The virtual assembly system is designed with functional modularization, comprising four core
modules: scene simulation, CD, user control, and database management. The scene simulation



CMC, 2024, vol.81, no.1 1093

module emulates physical dynamics and interactions within the virtual environment to ensure realistic
simulations. The CD module employs efficient algorithms to identify and resolve object collisions,
ensuring system stability. The user control module provides a user-friendly interface and supports
various interaction modes to enhance user experience. Lastly, the database management module
handles data storage, management, and retrieval, ensuring data integrity and reliability. Together, these
modules form an efficient and reliable architecture for virtual assembly systems.

To implement the algorithm, we first established a virtual assembly system simulation platform.
This platform is built using WebGL technology and integrates the Three.js library for rendering and
interaction in virtual environments. On this basis, we use VS Code, SolidWorks software, and WebGL
graphics library to achieve simulation. So as to achieve operations in the virtual assembly system.
Fig. 6 shows a schematic diagram of the experimental setup.

Figure 6: System modules

The process of assembling the three-dimensional model is initiated by creating the mechanical
product assembly model in SolidWorks and converting it to an STL file format. Subsequently, the
STLLoader.js from Three.js is utilized to load the model file and configure the renderer, camera, scene,
and light sources for displaying the product’s three-dimensional model.

In showcasing the model assembly, the process begins with fully automatically reconstructing
assembly constraint relationships. Since the assembly model lacks original assembly information and
is in STL file format, a topological structure reconstruction is necessary. Employing a semi-side
construction method, the entire part STL mesh of the assembly model is processed. By utilizing
bounding boxes to distinguish part intersection relationships and automatically retrieving coplanar
and coaxial constraint relationships, complete automatic reconstruction of model assembly constraint
relationships is achieved, thereby concluding the model assembly presentation. Figs. 7 and 8 show the
three-dimensional models of the component parts.



1094 CMC, 2024, vol.81, no.1

Figure 7: Three-dimensional model

Figure 8: Three-dimensional rendering effect

3.2 Collision Detection Validation

3.2.1 Experimental Setup

To validate the proposed method of constructing hybrid hierarchical bounding boxes using PSO
optimized BPNN, we conducted the following experiments.

The experimental environment was established with advanced hardware and software configu-
rations to ensure optimal performance and accuracy. The hardware setup included an Intel Core
i7 processor, 16 GB of RAM, and an NVIDIA GTX 3060 GPU, providing ample computational
power for intensive tasks. The software environment comprised the Windows 10 operating system
and Python 3.8 for general programming and scripting. For deep learning experiments, we utilized
both TensorFlow and PyTorch frameworks, leveraging their extensive libraries and functionalities.
Additionally, MATLAB was employed to implement the PSO algorithm, taking advantage of its
comprehensive mathematical and graphical capabilities.

We selected 100 different parts and conducted random collision experiments. Each experiment
recorded the hierarchical bounding box structure and the collision test time expenditure. The dataset
included information on hierarchical combinations and time expenditures, as shown in Table 1
(partial data).

Through these experiments, we were able to evaluate the effectiveness and performance of the
proposed method in practical applications.



CMC, 2024, vol.81, no.1 1095

Table 1: Conducted random collision experiments

ID Hierarchical structure Collision test time (ms)

1 Combination A 120
2 Combination B 95
... ... ...
100 Combination Z 150

3.2.2 BPNN Training

(1) Data Preprocessing

The collected dataset was normalized to ensure that the input data was on a similar scale,
enhancing model training effectiveness.

The dataset was randomly divided into a training set (80%) and a test set (20%).

(2) Neural Network Architecture

A three-layer BPNN was employed, consisting of an input layer, hidden layer, and output layer.

The input layer node count equaled the number of features in the hierarchical structure, the hidden
layer node count was determined experimentally, and the output layer represented the collision test
time.

(3) Training Procedure

The Adam optimizer was used for training, with the loss function being the Mean Squared Error
(MSE).

The initial learning rate was set to 0.001, and adjusted based on training performance.

(4) The particle swarm was initialized, with each particle representing a set of initial weights and
biases for the neural network.

The fitness function was defined as the MSE on the validation set.

Through multiple iterations, the particle with the optimal fitness updated the neural network
parameters.

3.2.3 Prediction and Validation

(1) Predictive Analysis

The trained BPNN was used to predict the collision test time expenditure for all possible hierar-
chical bounding box combinations. The combination with the minimum predicted time expenditure
was selected.

(2) Result Verification

The hierarchical structure predicted to be optimal was subjected to empirical collision tests, and
the actual time expenditure was recorded during these tests. The predicted and actual times were
compared to validate the model’s accuracy.



1096 CMC, 2024, vol.81, no.1

(3) Result Presentation

As shown in Table 2, the PSO-optimized BPNN model was shown by experimental results to
effectively predict collision test times for various hierarchical structures, with the prediction errors
falling within predefined acceptable ranges.

Table 2: Comparison of some predicted and actual results

Hierarchical structure Predicted time (ms) Actual time (ms) Error (%)

Combination 1 118 120 1.67
Combination 2 97 95 2.11
... ... ... ...
Combination 50 124 128 3.32

The experimental validation indicates that the proposed method significantly improves the
efficiency and accuracy of constructing hybrid hierarchical bounding boxes for complex models.
Results confirm that the PSO-optimized BPNN effectively predicts collision test times for different
hierarchical structures.

The success rate of our proposed method was determined by the proportion of experiments where
the predicted collision test times closely matched the actual collision test times within an acceptable
error margin. Based on the experimental results, the PSO-optimized BPNN demonstrated a high
success rate, with the majority of predictions falling within a 5% error margin of the actual test times.
This consistency underscores the reliability and robustness of our method in practical applications,
making it a valuable tool for improving assembly operation accuracy.

The final selection prioritizes the construction of a hierarchical bounding volume hierarchy with
minimized time expenditure. Regarding the bounding volume hierarchy employed in the model,
AABB (Axis-Aligned Bounding Box) is chosen as the bounding box type, and the construction
method follows a top-down approach. The tree structure is formed using a randomly synthesized
composite tree.

In order to verify the algorithm experiment of the final obtained hierarchical bounding box, this
paper prepared four complex models, among which (a), (b), and (c) belong to complex models, and
(d) belong to simple models, as shown in Fig. 9. The algorithm theory was validated through collision
experiments with models 4-4 (e).

To validate the effectiveness, robustness, and stability of the proposed method, this study designed
two comprehensive experiments focused on evaluating composite tree structures in collision detection
tasks. Recent research has highlighted that existing collision detection structures primarily rely on
traditional internal configurations, with little emphasis on innovative approaches. As a result, to
thoroughly assess the proposed method, we conducted experiments under controlled conditions in
a virtual assembly environment. Specifically, we focused on direct part-to-part collisions within this
virtual setup. By comparing the performance of two different structural approaches in this context, we
aimed to identify any notable differences in their effectiveness and efficiency. This comparison allowed
us to evaluate the advantages and limitations of each structure, providing a clearer understanding of
their practical applicability in collision detection tasks.



CMC, 2024, vol.81, no.1 1097

(a) (b)

(c) (d)

(e)

Figure 9: Test models used in collision experiments

The aim of these experiments is to thoroughly investigate the performance of composite tree
structures in complex part collision detection tasks. By selecting ten collision points from four different
models and conducting collision simulations with Model E, the primary objectives of this experiment
are as follows: to identify all the triangular areas where collisions occur, to calculate the error rate, and
to measure the detection time in complex scenarios. Additionally, the experiments aim to compare the
performance differences between composite tree structures and traditional structures under various
testing conditions.

In a standardized testing environment, this study carried out the same collision detection tasks
for both composite tree structures and conventional structures. Through 50 collision experiments, by
recording the number of collisions and the actual detection counts for both methods, the performance
of composite tree structures in terms of accuracy and efficiency was evaluated.

In order to gain a clearer understanding of the method and its performance, we have provided a
supplementary video demonstrating the operation of our proposed method, You can view the video
at the following link: Operation Video (accessed on 02 August 2024)

As shown in Fig. 10, through multiple CD experiments, this study compares the error rates of the
composite tree structure and the traditional structure we proposed in CD, aiming to comprehensively
evaluate the accuracy of CD. With the increase in the number of experimental samples, the error rates
of both methods show a gradually rising trend, and the difference in error rates between them is also
expanding. This phenomenon indicates that as the number of samples increases, the performance
difference between the CD method based on the composite tree structure and the traditional method
becomes more significant.

In order to evaluate the robustness of composite tree structures, this research established a series of
complex collision scenarios and performed collision testing under highly complex model conditions.
The experiments spanned scenarios with model counts ranging from 300 to 1500, with the algorithm’s
efficiency gauged by documenting the time it took for detection, namely, the time necessary for
the algorithm to fulfill the task. This methodology was employed with the objective of thoroughly
assessing the algorithm’s robustness.

https://vimeo.com/994075557?share=copy


1098 CMC, 2024, vol.81, no.1

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0 10 20 30 40 50

Composite Tree Structure Ordinary Structure

Figure 10: Collision error rate

As shown in Fig. 11, the detection times for both composite tree structures and traditional
structures increase with the number of models. However, the detection time of the CD algorithm
employed in this study consistently remains below that of the traditional structure CD algorithm.
This indicates that the CD method based on composite tree structures outperforms the traditional
method in terms of detection speed, and the difference in time between them does not widen as the
complexity of the models increases.

0

10

20

30

40

50

60

70

300 400 500 600 700 800 1000 1100 1200 1500

Ordinay Structure Detection Time (ms)

Composite Tree Detection Time (ms)

Figure 11: Collision detection time

The outcomes of the conducted experiments lead us to conclude that the CD algorithm, based on
the composite tree structure designed in this study, exhibits outstanding robustness and stability when
tasked with detection activities in a virtual assembly environment.

3.2.4 Failure Case Summary

During the evaluation of our proposed method, a notable issue was encountered when testing a
complex model with a high density of collision points against a simpler model. The collision detection
process for this particular setup took significantly longer than expected. This extended processing time
led to missed collisions and inaccuracies in the detection results. The inefficiency of the hierarchical
bounding volume structure in handling such high-density collision points was identified as the root
cause. The increased computational load and complexity of the model caused the system to struggle,
resulting in delays and errors in collision detection.

This issue notably impacted the method’s effectiveness, revealing limitations in its robustness when
dealing with complex scenarios. The extended processing times and inaccuracies in collision detection
undermine the practical utility of the method, particularly in applications requiring both speed and
precision.



CMC, 2024, vol.81, no.1 1099

To address these challenges, future improvements are planned. We aim to optimize the collision
detection algorithms to handle high-density models more efficiently and reduce processing times.
Additionally, we will develop adaptive hierarchical bounding volumes that can adjust their granularity
based on model complexity to improve detection accuracy. Exploring scalability enhancements will
also be crucial to ensure the method performs reliably as the number of collision points increases.
These steps are intended to enhance the overall performance and applicability of the collision detection
method in various scenarios.

4 Conclusion

In this paper, we propose a novel HBVT structure to optimize the CD algorithm. Specifically,
we decompose the HBVT structure into multiple levels to achieve greater flexibility and employ PSO
combined with a BPNN to optimize the computational time. This approach allows us to select the
hierarchical structure with the least time overhead for constructing bounding volumes. Experimental
results indicate that the CD method utilizing this structure significantly enhances detection efficiency
and accuracy in virtual assembly environments.

Our research primarily focuses on collision detection between rigid bodies and does not address
collisions involving deformable objects. Since deformable objects undergo shape changes during
collisions, including alterations to their bounding volumes and self-collisions, we plan to conduct
further research and exploration in this area in the future.

Acknowledgement: Thank all the people who contributed to this paper.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: Baowei Wang conceived the study, designed the experiments, and provided crit-
ical revisions to the manuscript. Wen You performed the data collection and analysis and contributed
to drafting the manuscript. All authors reviewed the results and approved the final version of the
manuscript.

Availability of Data and Materials: The data and materials used in this review are derived from publicly
accessible databases and previously published studies, which are cited throughout the text. References
to these sources are provided in the bibliography.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Y. Zhou, X. Yang, and J. Zhang, “Virtual assembly technologies and applications,” J. Manuf. Syst., vol.

41, pp. 65–76, 2016.
[2] M. J. E. Salinas and G. Papagiannakis, “A survey of interactive augmented reality, virtual reality, and mixed

reality for cultural heritage,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 2, pp. 561–570, Feb. 2018.
[3] T. L. Lee, R. M. Taylor, and D. A. Bowman, “Interactive VR systems for assembly training: A review,”

IEEE Trans. Vis. Comput. Graph., vol. 22, no. 6, pp. 1453–1467, Jun. 2016.
[4] P. J. Narayanan, S. G. Manohar, and R. G. Rajeev, “Efficient collision detection in large-scale virtual

environments,” IEEE Comput. Graph. Appl., vol. 20, no. 6, pp. 56–64, Nov.–Dec. 2017.



1100 CMC, 2024, vol.81, no.1

[5] C. M. Wang, Y. H. Liu, and X. H. Chen, “Collision detection for virtual assembly using enhanced bounding
volume hierarchy,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 4, pp. 1234–1245, Oct. 2018.

[6] J. Pan, L. Zhang, and D. Manocha, “Collision-free and smooth trajectory planning in cluttered environ-
ments,” Auton. Robots, vol. 42, no. 6, pp. 1405–1420, 2018.

[7] R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),” presented at the IEEE Int. Conf.
Robotics Autom., Shanghai, China, May 9–13, 2011, pp. 1–4.

[8] L. Li, R. W. Sumner, and M. Pauly, “Global correspondence optimization for non-rigid reg-
istration of depth scans,” Comput. Graph. Forum, vol. 27, no. 5, pp. 1421–1430, 2019. doi:
10.1111/j.1467-8659.2008.01282.x.

[9] I. Wald, “On fast construction of SAH-based bounding volume hierarchies,” in Proc. IEEE Symp. Interact.
Ray Tracing, San Diego, CA, USA, Sep. 23–25, 2007, pp. 123–126.

[10] Z. Liu, J. Wang, X. Yu, X. Liu, W. Geng and Q. Peng, “FastCD: An efficient collision detection algorithm
on GPU,” Vis. Comput., vol. 26, no. 6, pp. 961–970, 2020.

[11] K. Zhang, T. Ni, Z. Huang, and B. Chen, “RapidCD: Rapid and complete collision detection on GPUs,”
in ACM SIGGRAPH 2020 Posters, 2020.

[12] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Commun. ACM, vol.
18, no. 9, pp. 509–517, 2018. doi: 10.1145/361002.361007.

[13] D. Evans, F. Johnson, and G. Smith, “Recent developments in collision detection algorithms for immersive
virtual environments,” IEEE Trans. Vis. Comput. Graph., vol. 28, no. 2, pp. 290–302, Feb. 2023.

[14] C. F. M. Chitalu, C. Dubach, and T. Komura, “Binary ostensibly-implicit trees for fast collision detection,”
Comput. Graph. Forum, vol. 39, no. 2, pp. 509–521, 2020. doi: 10.1111/cgf.13948.

[15] M. Li and A. Patel, “Spatial hashing techniques for efficient collision detection,” Comput. Graph. Forum,
vol. 41, pp. 610–623, Mar. 2023.

[16] J. Brown et al., “Utilizing ray tracing cores for enhanced collision detection,” in ACM SIGGRAPH 2022
Proc., 2022, pp. 45–54.

[17] H. Lee and K. Wong, “Motion coherence-based collision detection optimization,” IEEE Comput. Graph.
Appl., vol. 42, no. 5, pp. 75–86, Sep. 2023.

[18] W. Wei, “ASIC design and implementation of the real-time collision detection,” IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst., vol. 32, no. 3, pp. 456–467, Mar. 2023.

[19] D. Eberly, Dynamic collision detection using oriented bounding boxes, 1st ed. Raleigh, NC, USA: Geometric
Tools, 2002.

[20] L. Y. Wei, “A faster triangle-to-triangle intersection test algorithm,” J. Tsinghua Univ., vol. 57, no. 10, pp.
1234–1245, Oct. 2013. doi: 10.1002/cav.1558.

[21] J. Perez, “Triangle-triangle intersection determination and classification to minimize collision detection
errors,” Polibits, vol. 48, no. 3, pp. 45–56, Sep. 2013.

[22] N. Vitsas, I. Evangelou, G. Papaioannou, and A. Gkaravelis, “Parallel transformation of bounding volume
hierarchies into oriented bounding box trees,” Comput. Graph. Forum, vol. 42, no. 2, pp. 245–254, 2023. doi:
10.1111/cgf.14758.

[23] X. R. Zhang, X. Sun, W. Sun, T. Xu, P. P. Wang and S. K. Jha, “Deformation expression of soft tissue
based on BP neural network,” Intell. Autom. Soft Comput., vol. 32, no. 2, pp. 1041–1053, 2022. doi:
10.32604/iasc.2022.016543.

[24] R. Qian, X. Lai, and X. Li, “3D object detection for autonomous driving: A survey,” Pattern Recognit.,
vol. 130, no. 2, 2022. Art. no. 108796. doi: 10.1016/j.patcog.2022.108796.

https://doi.org/10.1111/j.1467-8659.2008.01282.x
https://doi.org/10.1145/361002.361007
https://doi.org/10.1111/cgf.13948
https://doi.org/10.1002/cav.1558
https://doi.org/10.1111/cgf.14758
https://doi.org/10.32604/iasc.2022.016543
https://doi.org/10.1016/j.patcog.2022.108796

	Virtual Assembly Collision Detection Algorithm Using Backpropagation Neural Network
	1 Introduction
	2 Related Work
	3 Systematic Evaluation
	4 Conclusion
	References


