.W\ Computers, Materials &)
‘ Continua & Tech Science Press

DOI: 10.32604/cmc.2024.055592

ARTICLE Check for

updates

Obstacle Avoidance Capability for Multi-Target Path Planning in Different
Styles of Search

Mustafa Mohammed Alhassow'-, Oguz Ata’ and Dogu Cagdas Atilla'

!'Department of Electrical and Computer Engineering, Altinbas University, Istanbul, 34217, Turkey
*Department of Software Engineering, Altinbas University, Istanbul, 34217, Turkey
*Corresponding Author: Mustafa Mohammed Alhassow. Email: mustafaalshakhe@gmail.com

Received: 02 July 2024 Accepted: 20 August 2024 Published: 15 October 2024

ABSTRACT

This study investigates robot path planning for multiple agents, focusing on the critical requirement that agents
can pursue concurrent pathways without collisions. Each agent is assigned a task within the environment to reach
a designated destination. When the map or goal changes unexpectedly, particularly in dynamic and unknown
environments, it can lead to potential failures or performance degradation in various ways. Additionally, priority
inheritance plays a significant role in path planning and can impact performance. This study proposes a Conflict-
Based Search (CBS) approach, introducing a unique hierarchical search mechanism for planning paths for multiple
robots. The study aims to enhance flexibility in adapting to different environments. Three scenarios were tested, and
the accuracy of the proposed algorithm was validated. In the first scenario, path planning was applied in unknown
environments, both stationary and mobile, yielding excellent results in terms of time to arrival and path length, with
atime of 2.3 s. In the second scenario, the algorithm was applied to complex environments containing sharp corners
and unknown obstacles, resulting in a time of 2.6 s, with the algorithm also performing well in terms of path length.
In the final scenario, the multi-objective algorithm was tested in a warehouse environment containing fixed, mobile,
and multi-targeted obstacles, achieving a result of up to 100.4 s. Based on the results and comparisons with previous
work, the proposed method was found to be highly effective, efficient, and suitable for various environments.

KEYWORDS

Conflict algorithm; dynamic environment; mobile robot; omnidirectional mobile robot; unknown environment;
warehouse

1 Introduction

Multi-agent pathfinding (MAPF) is a crucial problem in multi-agent planning. Each agent must
move from a starting point to a predetermined destination while avoiding collisions with other agents.
This problem has gained significant attention due to the widespread use of Al and robotics. Recent
research has demonstrated the effectiveness of MAPF in various applications, including autonomous
airplanes towing cars, office and warehouse robots, and other multi-robot systems [1,2]. In a shared
environment, MAPF aims to minimize the total completion times for a group of agents while planning
collision-free pathways between their start and goal locations. Even though MAPF is NP-hard to solve

Copyright © 2024 The Authors. Published by Tech Science Press.
@ @ This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.055592
https://www.techscience.com/doi/10.32604/cmc.2024.055592
mailto:mustafaalshakhe@gmail.com

750 CMC, 2024, vol.81, no.1

optimally, the Al community has developed various optimal and approximate suboptimal MAPF
planners for fully observable environments. When a central planner has complete knowledge of the
surroundings and allows agents to determine their routes collaboratively, critical factors are needed
to handle environments to choose the path for mobile robots. These factors are generally divided
into global and local categories, applicable in known and unknown environments [3]. The goal of
learning-based MAPF approaches is to develop a uniform, decentralized policy that each agent
follows based on its local observations. Path planning generally aims not only to avoid fixed obstacles
but also to prevent collisions between agents, which can lead to planning failures. Planning for
moving paths is somewhat similar to fixed paths but involves treating moving agents as obstacles and
planning accordingly [4]. Given that the size of the single-agent observation space is determined by the
partially observable scenario, this method can be applied to any number of agents in various settings.
However, learning-based MAPF techniques face significant challenges due to the non-stationarity of
the environment from the perspective of any single agent. Goal-oriented reinforcement learning with
single-agent incentives can make the learning process unpredictable and time-consuming, leading to
each agent prioritizing its own goals over teamwork. The two main challenges are determining the best
route for each robot and maintaining control of the robots [5]. Although considerable work has been
done in the field of robot route planning, much of it focuses on single robots. Some researchers have
extended these concepts to multi-robot systems, but coordination remains a significant issue that needs
to be addressed fully. Several adjustment techniques have been proposed by researchers [6]. MAPF can
be applied in various modern scenarios, such as autonomous straddle carriers, office robots, warehouse
robots, unmanned surface vehicles, and self-driving cars. These industrial and service robots are
often non-holonomic and designed to resemble cars. Most of the strategies mentioned above rely on
the assumption that agents are modeled as disks with rotational capability. In reality, robots with
rectangular shapes that resemble cars and have small turning radii are more common. This type of
path planning is known as a car-like robot [7,8], or nonholonomic path planning [9].

To prevent collisions between moving agents, solvers use various types of conflicts, such as vertex
conflicts and edge conflicts [10]. However, the types of conflicts applied depend on their specific
contexts and cannot cover all possible collision scenarios. This research addresses the problem of
route planning in a warehouse system with an unknown environment by introducing a successful
multi-agent pathfinding approach (MAPP). Conflict-Based Search (CBS) is a re-planning method
that generates paths and expands state spaces. A major challenge with many previously implemented
methods is their failure when the environment changes frequently. Frequent changes can increase the
time required for re-planning and affect the path length. Most methods rely on pre-determined paths,
which fail in unknown environments. Although a few algorithms are capable of re-planning paths when
environments change frequently, they may still struggle with other factors.

Dynamic route planning aims to avoid both static obstructions and collisions. In real life, dynamic
obstacles are always moving, but if their motion trajectory can be analyzed, they can be treated as static
obstacles. When this is the case, path planning can proceed as it would for static obstacles. If there is
insufficient information about the environment, the robot will use its sensors to gather data about
the local surroundings. The A* method [1 1], and its variations are well-known for finding the shortest
path and performing well in static environments. Pathfinding techniques that use incremental search
methods, like other algorithms and their variations, reuse previous and incomplete searches. Unlike the
A~ algorithm, the D* algorithm can quickly handle navigation problems in dynamic environments by
combining heuristic and incremental search approaches. However, relying solely on D* may decrease

CMC, 2024, vol.81, no.1 751

the success rate and increase the time required to reach the goal. In terms of planning time and
solution quality, this study proposes a modified Conflict-Based Search (CBS) algorithm. The key
points summarized in this study are as follows:

e A conflict-based search algorithm is introduced to plan the paths of robots in various environ-
ments. The proposed method demonstrates high efficiency across different scenarios, including
dynamic maps and obstacles, and other factors that may impact the environment. The method
offers complete flexibility in improving goal search results and adapting to environmental
changes without requiring prior information about the environment.

e Most dynamic pathfinding techniques perform well with minor map alterations. However, when
the map changes too frequently, fixing the path may take longer than replanning, with a slight
possibility of path-seeking failures. Abrupt map changes can negatively impact performance,
particularly in large areas with numerous moving obstacles.

e The study aims to develop a path-planning method that supports agents in navigating and
avoiding obstacles of various shapes, such as concave, rectangular, and circular. A modified
conflict-based search method is proposed for robot path planning in mixed settings. This
method performs local route planning independently and selects the best route. It also includes
a prejudgment process to reassess neighbors to avoid obstructions and incorporates techniques
for robot waiting and circuitous routing. To validate the proposed method, a comparison was
made with relevant prior work, and the study also provides a comprehensive definition of
the critical elements involved in creating and fine-tuning multi-robot pathways. Experimental
results show that the proposed method achieves a high success rate, particularly in terms of
avoiding obstacles and reaching goals in record time.

This study section also includes several noteworthy contributions and evaluations of related
literature. Section 2 provides an overview of associated works and defines the problem. The proposed
solution is discussed in Section 3, and the final analysis is presented in Section 4.

2 Literature Reviews

In this section, this study aims to compile research closely related to the proposed task. Initially,
robotic route planning was focused solely on specific industrial production needs. Since then, robotics
has gained acceptance across various fields, with evolving robot classifications being used to perform
tasks and an increase in work related to route planning algorithms. The history of planning algorithms
is extensive, with solutions ranging from heuristic methods to evolutionary and hybrid algorithms
to address route-planning problems. Multi-robot systems (MR) are employed to perform complex
tasks. While a single robot can handle many streamlined tasks, a multi-robot system is required for
performing multiple tasks simultaneously, which presents its challenges. Multiple robots have been
used in applications such as dynamic mission planning [2], collaborative construction, multi-tasking
assignments, and mapping environment variables, which require distinct architectures to function
effectively. Each robot is assigned a unique task, making the management of multiple robots in
unpredictable settings more dynamic and complex. In addition to structural obstacles within the
environment, there are dynamic barriers created by each robot that affect the others. Multi-agent
reinforcement learning (MARL) is a popular area in reinforcement learning, focusing on sequential

752 CMC, 2024, vol.81, no.1

decision-making where multiple agents share actions and information [12]. The problem becomes
evident when planning for a group of mobile robots with multiple locations, similar to traveling
salesman problems (MTSP) with one or more depots [13]. For example, Reference [14] proposed a
conflict resolution method to help agents verify their speed and movements, while Reference [15]
introduced a modified algorithm that avoids re-planning. Additionally, Reference [16] proposed a
parallelized algorithm for multi-agent path planning (MAPP). Experimental results from this method,
tested in static settings and compared with traditional algorithms, indicate superior performance.

In [17], multi-agent reinforcement learning was used to enable conflict-free automated guided
vehicle (AGV) path planning in automated container terminals, though it faced limitations related
to kinematic operations and omnidirectional issues. The A* technique is less effective in MAPF
situations and requires high environmental model accuracy [18]. Experimental results can be obtained
by simulating specific environments using this method [19]. Future work will include experimenting
with contemporary methods in highly complex situations and using advanced techniques to enhance
performance and reduce complexity. The MAPF-POST algorithm for differential drive robots,
proposed in [20], ensures a safe distance between robots, and considers velocity constraints. This
includes a generalized version of CBS for large agents occupying multiple grids, combining token-
passing mechanisms and SIPP (Speed-Indexed Path Planning) for pickup and delivery scenarios. It
also features a roadmap-based planner supporting various movement speeds, alongside a grid-based
planner for any-angle moves using a variation of SIPP. Distributed collision avoidance for multiple
non-holonomic robots is another research area [21]. Traditional methods such as artificial potential
fields, dynamic window techniques, and model predictive control are used for single robots. The
decentralized reciprocal velocity obstacle (RVO) algorithm allows robots to avoid collisions while
maintaining silence [22]. However, many methods may face issues with complex or high environmental
requirements, such as rapid re-planning accuracy and short-term changes [23]. This article focuses on
warehousing and industrial applications that use multiple robots to reduce labor-intensive tasks and
require highly efficient re-planning in changing environments. A fundamental overview is provided in
this regard in Table 1.

Table 1: Illustrate related surveys on the avoidance of obstacles in a different area

Publisher

Kind of method

Map type

4]

Soft actor-critic

Partially observable
environments

[25] DWA Unknown environments
[26] IQL Warehouse

[27] PSO Static and dynamic En
28] Heuristic Normal map-based WH
[29] RNN Warehouse

[20] BFS Warehouse

31] CBS Game theory

[32] Ar Warehouse

[33] DEEP MIX environment

[34] Antennae search algorithm Static environment

CMC, 2024, vol.81, no.1 753

2.1 Problem Definition

Traditional Multi-Agent Pathfinding (MAPF) solutions typically assume holonomic agents that
can travel in four directions and do not account for the size of the agents. This limitation prevents these
solutions from being effectively implemented in real-world multi-agent systems, particularly those
involving robot cars. Omnidirectional Robots (O-MAP) present significant challenges for researchers.
In practice, various route models, such as circular and asymptotically headed trajectories, apply to
different types of robots. A multi-agent pathfinding (MAPF) problem can be defined using a graph
G = (V, E) and a set of agents {al,..., ak}. Time is discretized into steps, and each agent can either
wait at its current vertex or move to a neighboring vertex in subsequent time steps. Waiting incurs
a unit cost unless an agent is at the final goal. The Al must decide between moving or waiting
based on the action that will be taken from the start position. Node conflicts arise when agents
ai and aj occupy the same vertex (u,v) at time step ¢, potentially increasing the total cost of the
paths. In a dynamic warehouse challenge involving multiple robots, there is a predefined configuration
and specific target positions. The problem can be viewed as an optimization task for robots to find
routes that avoid collisions and allow each robot to reach its destination efficiently. Path planning
in a multi-robot system requires the creation of collision-free paths with minimal robotic movement.
The environment includes static obstacles that robots cannot bypass. The target mission is crucial,
as the objective area provides essential information for direction planning. Generally, a multi-robot
trajectory planning system involves mapping out goals for each robot to reach. The destination itself
becomes an additional obstacle that impacts the final path calculation. Effective goal assignment aims
to minimize the length of future paths and the computation time required. Randomly assigning targets
can significantly increase both computation time and path length. Therefore, it is preferable to employ
a strategy that considers path length in advance, Fig. 1 shows an example of a simulation structure.

Figure 1: In the simulation, the red block represents the agent, the green block represents the dynamic
obstacle, and the black pods represent the static obstacle

754 CMC, 2024, vol.81, no.1

2.2 Conflict-Based Search (CBS)

CBS begins by separately planning the shortest paths for all agents, which can be done relatively
quickly. These paths are initially designed to avoid collisions. A collision-free solution is sought by
detecting and resolving conflicts. If a collision is found between two nodes (e.g., nodes a and b), CBS
recursively evaluates two possibilities: one with a restriction preventing node a from being in a cell x
at time step ¢, and another with a restriction preventing node b from being in a cell x at time step ¢. At
the top level of the binary constraint tree, each node N contains a set of constraints. These constraints
can be either:

e A (negative) vertex constraint a, x, ¢; that prevents node a from being in a cell x at time ¢,, or
e A (negative) edge constraint a, x, y, t; that prevents node ¢ from moving from cell x to cell y at
time ¢;.

The root node of the constraint tree starts with an empty set of constraints and a solution
composed of the n shortest paths. CBS checks if the solution is collision-free once the node N has been
picked for expansion. If it is, node N becomes a goal node, and CBS returns the solution. If not, CBS
resolves the collision by choosing one of the conflicting nodes and updating the node N. For instance,
if CBS resolves a vertex collision between nodes @ and b at cell x at time step ¢, it ensures that only one of
these nodes can be in the cell x at time 7. The constraints added are either a, x, ¢, or b, x, t,. CBS creates
two child nodes, each with a set of constraints that reflect these restrictions. Alternatively, if CBS
resolves an edge collision at the time step ¢, it must consider constraints like b, x, y, t; (preventing node b
from moving from cell y to cell x at the time ¢) and a, x, y, ¢; (preventing node a from moving from cell x
to cell y at time 7). In the low-level search phase, CBS quickly finds the new shortest path for each node
with the newly enforced constraints. For example, a vertex constraint prunes one node in the search
tree, potentially intersecting the paths of other nodes but not crossing the environment’s boundaries.
Each child node must adhere to the constraints imposed. The separation between all robots and their
respective targets is then calculated, choosing the closest point to each robot’s objective. The distance
ratio helps identify the best collision-free path. The suggested solution is applied to address challenges
in warehouse packaging, where multiple robots share the same environment and have various goals.

To explain more broadly, let’s assume we have a constraint tree, where each node represents a set
of constraints that are used to resolve conflicts during pathfinding. In this tree, the root node, referred
to as the constraint’s node N, initially contains an empty set of constraints. Imagine a scenario with
two agents. The root node N is tasked with finding the shortest paths for both agents. For simplicity,
let’s say:

e Agent 1’s path is represented by [A, B, E],
e Agent 2’s path is represented by [B, C, D].

These paths are calculated independently of each other, with the total cost of node N being the
sum of the individual costs for both agents. Assume the cost of moving between nodes is uniform, and
the total cost for node N is 4. During the simulation, observing that a collision will occur at the node
C during time step 1 when both agents attempt to occupy the same space. To resolve this conflict, CBS
will split the root node N into two child nodes, each imposing a different constraint to avoid collision.
In the left child node, a constraint is added to prevent Agent 1 from being at the node C at time step
1. This constraint is represented as [1, C, 1] After adding this constraint, CBS recalculates the shortest
path for Agent 1. The new path might be [A, A, C, E], where the agent waits at node A for a one-time

CMC, 2024, vol.81, no.1 755

step before proceeding. The cost of this new path is now 3 (including the wait time). Agent 2’s path
remains unchanged, as it doesn’t need to avoid node C. The total cost of this child node becomes 5
(path cost 4 wait time). In the right child node, a different constraint is added to prevent Agent 2 from
being at the node C at time step 1, represented as [2, C, 1]. Again, CBS recalculates the shortest path
for Agent 2, which might be [B, B, C, D] with a wait time at node B. The cost of this new path for Agent
2 also becomes 3. Agent 1’s path remains the same as in the root node. The total cost for this child node
also sums up to 5. In this example, both child nodes generated by the CBS algorithm have the same
total cost, which is 5. However, the algorithm will select the node that represents a collision-free path
as the target node. In this case, since both paths involve different constraints that resolve the collision,
either could be selected, depending on other factors like search heuristics or additional constraints.
The key takeaway is that CBS systematically imposes constraints to prevent collisions, recalculates
paths considering these constraints, and ultimately selects the path with the best cost that also avoids
collisions. This process of constraint-based decision-making is visualized in Fig. 2.

Root Node (N)
Total Cost: 4
Constraints: {}
Paths:

Agent 1: [A->B->E]
Agent 2: [B->C -> D]

ﬁnﬂict Detectekouﬂict Detected

Child Node 1 (N1) Child Node 2 (N2)
Total Cost: 5 Total Cost: 5
Constraints: {(1, C, 1)} Constraints: {(2, C, 1)}
Paths: Paths:

Agent I: [A->A->C->E] Agent |: [A->B ->E]
Agent 2: [B -> C -> D] Agent2: [B->B ->C ->D]

Figure 2: Example of tree node of the multi-agent path

At each stage of the algorithm’s operation, CBS selects the lowest-cost node that leads to the
goal. When the algorithm detects a potential collision between two nodes (as previously explained),
it splits the parent node into two child nodes, each introducing additional constraints to address
the predicted collision. This process, known as node expansion, increases the complexity of the
nodes where collisions are expected. When the algorithm evaluates all nodes generated from the
collision hypothesis, it assumes the presence of an agent at each vertex during each time step. This
assumption is logical and helps in reducing the number of constraints the algorithm needs to apply,
which is approximately O(nkC). Typically, constraints are added at each node of the root tree, and
the cumulative number of constraints can limit the depth of the parent tree. Consequently, the overall
time complexity of the algorithm can be bounded by O(nC«x2knC). As discussed earlier, priority plays
a crucial role in resolving conflicts and preventing collisions. For instance, consider a scenario where
an agent is stuck due to a priority issue. If a low-priority agent holds a resource simultaneously needed
by a high-priority agent, it could lead to failure, especially if a medium-priority agent is also present.
In such situations, an agent that inherits priority from a higher-priority client must wait to determine

756 CMC, 2024, vol.81, no.1

if this waiting will yield a successful outcome. If the waiting is justified, the agent can proceed to its
target node. However, if the waiting does not resolve the issue, the agent must request a different node
excluding those already claimed by agents with higher priority. This priority-based approach ensures
that agents with higher priority can navigate more effectively, while lower-priority agents adapt to
avoid collisions and resource conflicts. By dynamically adjusting to these constraints, the algorithm
can achieve a collision-free path that efficiently guides all agents to their respective goals. Initially,
there are no constraints at the root node of the Conflict Tree (CT). This absence of restrictions allows
for the free computation of potential paths for all agents. The root node serves as the foundation
for expanding the CT, guiding the search for a collision-free solution. In summary, the CT’s role in
CBS is to methodically explore and validate potential paths while resolving any conflicts that arise.
The root node of the CT, which starts without constraints, is progressively expanded as conflicts are
detected and resolved. When no further conflicts are found, the CT node is selected as the destination,
indicating a successful solution. R; is a mobile robot where i = 1, to n, that represents the agent ID
this representation is done using Eq. (1).

Ci(t) = (x, i, 0) (H
If there is a collision between R, and R;, the result will be as Eq. (2).
Collision (i,j) — 3t: C(¢) = C;(t) wherei #j 2)

The maximum path will be selected after producing the length of the path (u pl) as in Eq. (3).

n

wpl = Z:u:lpff 3)

The following equation can be used to express these scenarios numerically to ensure that the
solution is optimum. Presenting the free routes after getting the total number of agents inside the
map, and then reaching the goal, Eq. (4).

Collision (i, k) = ¢VR,, R, where, i £k 4)

First deleting the conflict mobile path if that happened. Second, pl ought to be at a minimum.
Consider the following while employing the specified set of ideal pathways (S) for all agents inside the
device:

S = [P,.] Vi.j where D,; = 1 5

and min (p pl) and collision (i, k) = p for each pair of R;, R, robots in the system. The flowchart in
Fig. 3 describes the modification of the work structure.

2.3 General Path Method

The simulation begins with converting the warehouse environment into a node-based graph
format, which is essential for applying pathfinding algorithms. Following this, source-to-destination
pairs are created using the distance ratio of the destination assignment, which helps in determining
the most efficient paths for the robots. A distance metric-based method is then employed to design
collision-free routes, ensuring smooth operations in the dynamic warechouse environment. Collision
avoidance is addressed using reserved tables, which manage and prevent mutual collisions by reserving
paths for each robot. The environment is set up by constructing a habitat with multiple robots, where
an input reference map defines the accessible and inaccessible areas. Robots start at predetermined
locations and are assigned goals using an intelligent selection approach, resulting in a goal-mapping

CMC, 2024, vol.81, no.1 757

matrix that facilitates further path planning. Distance ratios for each target are calculated to enhance
the evaluation of free space traversed, improving pathfinding efficiency. Finally, the cost of transfers
is calculated in a static warehouse setting to ensure cost-effective and optimized paths.

| Start |

| Define Grid/Graph and Agents |

v
I Generate Initial Paths of Modified CBS I

Y

Check for Conflicts

Conflicts Exist

I Feedback Loop: Identify Conflicts

Identify Conflicts

r
| Apply CBS Constraints I
| Adjust Agent Priorities

d

-

Update Paths
.
4
No Conflicts I l Check for New Cunﬂlcls
! / l \
I Verify Goals l | No New Conflicts LNew Conflicts Exist Feedback Loop: Check for New ConﬂictsJ

A
All Goals Reached | Create New CBS Nodes |

Expand CBS Tree

Figure 3: Flowchart of the proposed approach

758 CMC, 2024, vol.81, no.1

2.4 Simulation Structure

The proposed method is assessed for its efficacy in planning paths for multiple robots across
various known and unknown environments, including those with both fixed and moving obstacles.
In dynamic settings, each robot is tasked with navigating towards its target while treating other
robots as moving obstacles. In these scenarios, red circles represent the robots, green circles denote
moving obstacles, and black blocks indicate fixed obstacles. Target assignment in environments such
as unknown and warehouse settings is determined by evaluating the cost associated with each path,
which includes factors like the total path length and the number of collisions encountered. The cost
function is used to assign positions to multiple mobile robots.

For unknown environments, target destinations are often chosen randomly. An example image
illustrates a warehouse scenario with multiple robots, detailing their starting positions, goal positions,
storage areas, and depots. demonstrates an example of the target assignment process.

ol sHNe F [OW

18

®
pi:] 15
€] O

20

Figure 4: Shows the targets, marked in white, inside the black pods. It also depicts the starting position
of each agent’s launch into the environment

CMC, 2024, vol.81, no.1 759

3 Simulation Experiments

To evaluate the effectiveness of the proposed method, this study simulated various moving
scenarios and obstacles by creating approximately 230 different maps. These maps varied in size and
shape, with obstacles including concave, rectangular, and circular forms. The study was divided into
three scenarios, each with different complexities. The first scenario involved multiple environments
with varying locations and shapes, classified as having medium complexity. In this scenario, agents
were tested in unknown environments with multiple dynamic obstacles. The agents were required to
navigate through these obstacles and reach their destinations without collisions. An example of this
setup is illustrated in Fig. 5.

Figure 5: Different movement of multi-agents in a dynamic environment

Fig. 5 illustrates one of the results obtained from path planning in an environment containing
moving targets, with no prior knowledge of the environment type. The primary objective is for the
robot to reach its goals in this unknown environment without colliding with any fixed or moving
obstacles. The proposed method prioritizes path planning for the robot closest to the goal, taking into
account both the time required to reach the goal and the length of the path. After determining both the
goal points and starting points, the path length was calculated. Table 2 provides details on the starting
positions, goal positions, estimated time to reach the goals, path lengths, agents involved, and map
sizes.

760 CMC, 2024, vol.81, no.1

Table 2: Result description of the proposed approach

Start Goal T PL M Map
(1, 1) (12, 18) 5.4 4.9 8 8x8
(11,9) (6, 1) 23 33 8 8x8
(12, 6) (6, 10) 5.3 3.5 8 8% 8
(11,2) (2, 18) 6.1 4.3 8 8x8
(1, 17) (11, 1) 4.7 3.5 8 8x8
(12, 12) (1,2) 34 6.5 8 88
(12, 13) (2, 6) 6.6 7.2 8 88
(11, 19) (3, 10) 3.9 4.7 8 88
4, 1) (6, 19) 2.6 5.2 8 8x8
(7, 19) 4, 1) 3.2 4.5 8 8% 8
9, 19) 4,2) 4.3 2.4 8 8% 8
(1, 10) (12, 16) 5.5 4.2 8 8x8
(1, 15) (12,5) 6.9 5.3 8 8x8
(1, 5) (10, 12) 3.2 2.4 8 8% 8
(1,4) (12, 1) 3.0 4.2 8 8% 8
6,1) (1, 5) 34 2.7 8 8% 8

It is evident how the robot’s movement is managed within an unknown environment, with a
recorded success rate of reaching the target in a time of 6.9. This success rate varies among robots due
to factors such as the time required to avoid collisions or potential waiting caused by priority rules
for crossing paths with other robots. Performance analysis largely depends on collision avoidance and
priority determination. For instance, if two robots are moving in the same direction and encounter a
single exit, the robot that should pass first is determined by the priority mechanism specifically, the
robot closest to the goal is given precedence. The second robot will then pass once the first robot has
cleared the exit. If a new collision occurs with another robot, the priority will be recalculated based on
the closest target, and the same mechanism will be applied. The evaluation of the modified algorithm
for multi-agent pathfinding considers different map metrics, including static and dynamic obstacles.
In this evaluation, one mobile robot is treated as an agent while other robots are considered moving
obstacles. The main goal is for each agent to reach its final destination without colliding with obstacles
or other agents. To further test the algorithm, the map size is expanded, and the number of agents
and obstacles is increased. Additional examples illustrate the algorithm’s performance in unknown
environments with moving obstacles, as shown in Fig. 6 below.

Fig. 6 illustrates the changes that occurred within the work environment. It demonstrates how
various factors impact the environment and the robot’s interaction with these changes. As the com-
plexity of the environment increases, previously available paths to the goal may disappear, highlighting
the need for continuous path modification. Each time obstacles are added, or paths are altered, the
planning calculations are updated accordingly. Changes in the environment, such as the introduction
of static obstacles, can affect the path length, travel time, and success rate of reaching the goal. These
performance metrics and positional data are detailed in Table 3.

CMC, 2024, vol.81, no.1

761

Figure 6: General path planning under an unknown environment

Table 3: Simulation result under dynamic movement

Start Goal T PL M Map

(1,7) (5,23) 7.5 7.9 16 32 %32
(11,7) (3,27) 3.9 5.4 16 32 %32
(5,3) (15, 18) 9.3 12.5 16 32 %32
(8, 14) (21, 25) 10.1 6.3 16 32 %32
8,7 (31, 24) 7.7 5.5 16 32 %32
(1, 5) (29, 25) 6.4 6.3 16 32 %32
(6, 10) (32, 28) 8.6 4.2 16 32 %32
(15,7) (30, 32) 5.9 6.7 16 32 %32
(18,7) (26, 29) 2.6 4.2 16 32 %32
(32, 10) (28, 30) 4.2 4.5 16 32 %32
(13, 12) (19, 18) 33 5.4 16 32 %32
(11, 1) (30, 4) 2.5 4.2 16 32 %32
(24, 10) (32, 6) 7.9 5.3 16 32 %32
(20, 12) (31, 10) 5.2 3.1 16 32 %32
(7, 1) (23, 10) 4.0 22 16 32 %32
(13, 18) (32, 12) 34 4.3 16 32 %32
(18, 8) (25, 10) 9.5 5.2 16 32 %32
(23, 6) (20, 23) 4.5 4.5 16 32 %32

(Continued)

762 CMC, 2024, vol.81, no.1

Table 3 (continued)

Start Goal T PL M Map

(23, 15) (19, 12) 3.2 34 16 32 %32
(22, 17) (18, 11) 2.2 6.1 16 32 %32
(29, 11) (15,19) 7.6 7.1 16 32 %32
(23, 10) (15,21) 6.9 6.2 16 32 %32
(27, 8) (6, 10) 10.5 10.6 16 32 %32
(26, 15) (1, 17) 9.3 9.2 16 32 %32
(27, 12) (1,1 8.1 12.1 16 32 %32
(30, 25) (10, 30) 7.6 8.2 16 32 %32
(31, 28) (10, 11) 6.8 7.4 16 32 %32
(30, 2) 2,17 4.6 6.6 16 32 %32
(26, 15) (1, 20) 3.5 34 16 32 %32

Based on Table 3 and the clear results, several important observations can be made. As the
complexity of the environment increases, there is a noticeable rise in the time required to reach the
goal and in the length of the robot’s path. Although the time increment is not substantial, it reflects
the challenges of navigating through moving obstacles, particularly in unknown environments where
many influencing factors are present.

In Phase Two, multi-target scenarios in warehousing present a significant challenge today. Agents
need to respond swiftly, and many industrial warehouses can serve as realistic examples for this
simulation. Each agent must be assigned specific start and destination positions and navigate the routes
ensuring no collisions occur. Several scenarios have been developed to demonstrate how the simulation
addresses these challenges effectively see Fig. 7.

Fig. 7a illustrates the initial placement of points and targets within the warechouse. Initially,
the robot moves towards its designated target while navigating around moving obstacles in the
environment. As shown in Fig. 7b, the robot successfully avoids all obstacles and reaches its target,
despite the ongoing movement of the obstacles. Following this, an update on the robots’ status and the
generation of new targets within the environment occurs. The robot, having reached its initial goal, now
considers this point as its new starting position. Consequently, the robot must re-plan its path to tackle
new challenges, including potential increases or decreases in the number of obstacles and changes in
target locations. This dynamic testing aims to evaluate the performance of the proposed system under
varying conditions. Fig. 8 depicts the results of these environmental changes and the introduction of
new goals, highlighting the system’s adaptability and effectiveness in a continually evolving setting.

Fig. 8a shows the robot starting from a previously reached target, which now serves as its new
starting point. After receiving an update with new goals, the robot relies on this initial target point
and recalculates its path based on the new targets. Additionally, the number of moving obstacles
has decreased. This phase also introduces a new change: new goals are assigned to the robot. The
robot must now re-plan its path, considering the updated environment complexity and recalculating
priorities, as discussed earlier. In Fig. 8b, you can see that the goals have changed twice. Initially,
after reaching the first goal, the robot’s information was updated, and new starting points were
established. Subsequently, new goal points were introduced, leading to changes in the environment

CMC, 2024, vol.81, no.1 763

twice sequentially. The robot must now plan its path again, with the new starting points based
on the previously achieved goals. This scenario simulates an environment with varying numbers
of moving obstacles, reflecting the dynamic nature of real-world warehouse settings, where targets,
worker locations, and obstacle positions can change. The final step involves examining the results of
these updates, as illustrated in Fig. 9, which will detail the outcomes of this dynamic planning and
adaptation process.

(a) Multi-agent start position. (b) Multi-agent reaches the first target.

Figure 7: The proposed experiment works first target setting. (a) Multi-agent start position. (b) Multi-
agent reaches the first target

(a) New start state. (b) Multi-agent reaches the second target.

Figure 8: New targets have been assigned. (a) New start state. (b) Multi-agent reaches the second target

764 CMC, 2024, vol.81, no.1

(a) New start state occurred.

Figure 9: The final destination has been reached by the mobile robot after the pick and delivery
operation

Fig. 9 illustrates the final result where the robot reaches its ultimate goal after a series of changes.
Initially, the last goal reached was the robot’s original starting point. However, due to updates, the
robot had to adjust its goals into two sub-goals. Upon completing these, the robot returned to its
original starting point. The simulation involved 28 mobile robots, 520 static blocks, and human
workers as moving objects. The results presented in Figs. 7-10 depict the performance of the robots
in handling multiple targets. Each robot navigates from the starting state, passes through dynamic
obstacles, reaches the first goal, then moves to a new assigned goal, and finally returns to its
workstation. The success rate remained consistent across various map selections, demonstrating the
robustness of the proposed method. The method effectively managed environments with 50 x 50
maps and maintained a high success rate throughout the simulation. The summary of the experiment
changes is detailed in Fig. 10.

CMC, 2024, vol.81, no.1 765

EEMENNAN BEGRENEEAE DEGBEREEAR FCRRLRURAN

BHERERY BEEMRENEEE BEGHEENERE NNRARCHEN
BPERAEHNA EAFENAGESD ENEERAGREH EIREHGIN
EdSEERRRYY Ed9eEakEeS FANCEGREYY EATLECREYS

Figure 10: Overall system experiment

The following table provides a comparison of all changes in the environment, focusing on time
and path length. It also details the changes in target assignments within a warehouse environment.
The table outlines the results for three-goal assignments: the first goal represents the agents moving
from their starting positions, the second goal involves new targets being assigned to the agents, and the
third goal represents further target adjustments. The fourth column of Table 4 illustrates how changes
in the path affect the multi-agent system’s performance.

Table 4: Result and comparison between all the changes that occurred in the environment

First goal result Second goal Third goal First path Second path Third path
(Sec) result (Sec) result (Sec) change change (T in change
(T in Sec) Sec) (T in Sec)

7.5 5.5 6.4 7.9 6.7 8.9

3.9 4.9 53 5.4 4.9 6.4

9.3 8.3 4.2 12.5 10.1 9.5

10.1 9.8 3.4 6.3 5.2 7.3

7.7 5.6 9.4 5.5 4.3 6.5

6.4 6.4 8.7 6.3 6.3 5.5

8.6 9.6 6.9 4.2 5.1 6.2

5.9 4.6 5.4 6.7 4.5 3.7

2.6 3.6 4.6 4.2 3.1 3.2

4.2 5.2 7.6 4.5 39 3.5

3.3 3.8 4.9 5.4 39 4.4

2.5 2.1 7.6 4.2 4.9 3.2

7.9 5.6 6.5 5.3 6.2 4.3

5.2 4.2 7.6 3.1 5.2 5.4

(Continued)

766 CMC, 2024, vol.81, no.1

Table 4 (continued)

First goal result Second goal Third goal First path Second path Third path

(Sec) result (Sec) result (Sec) change change (T in change
(T in Sec) Sec) (T in Sec)

4.0 4.9 8.2 2.2 4.1 3.2

34 33 6.2 4.3 6.3 5.3

9.5 6.5 4.3 5.2 6.7 6.2

4.5 5.5 5.2 4.5 7.5 6.5

3.2 4.2 3.5 3.4 4.1 4.4

2.2 1.9 53 6.1 4.2 3.3

7.6 6.5 4.6 7.1 8.1 6.1

6.9 7.1 6.2 6.2 9.2 7.2

10.5 5.2 5.1 10.6 7.6 8.6

9.3 6.1 3.4 9.2 11.2 7.2

8.1 7.2 3.8 12.1 8.1 11.1

7.6 6.2 7.6 8.2 6.2 9.2

6.8 5.9 2.4 7.4 5.4 8.4

4.6 5.4 6.4 6.6 5.6 5.6

3.5 4.9 4.5 3.4 2.4 4.4

Table 4 provides a detailed comparison of the effects of changing goals across three stages. It high-
lights the impact on various outcomes, with a focus on a 48 x 48 environment containing numerous
static and dynamic obstacles. This table underscores the differences observed in performance based on
goal changes. The next results will address the success rate and the effectiveness of avoiding obstacles,
particularly in scenarios involving the addition, removal, and modification of obstacles. Figs. 11 and 12
illustrate the performance in handling multiple obstacle changes, including variations in the number
of obstacles and the generation of random maps. The proposed method demonstrates versatility in
managing different styles of random maps, each with its level of complexity, which can influence the
path planning process. Based on testing in various unknown environments, the study concludes that
the proposed approach effectively meets the challenges of path planning.

Figs. 11-13 illustrate the complete process of obstacle avoidance and the capability of the
modified planning method to handle transitions from single to multi-target scenarios. The success rate
assessment focuses on evaluating the effectiveness of the proposed method in dynamic environments.
Changes in the environment can impact the success of agents in reaching their goals. For instance, in a
warehouse setting, while the initial target setting might have a minimal effect, subsequent changes such
as introducing a second goal can increase complexity, priority considerations, and costs, which may
indirectly influence the success rate. This impact is further observed with additional target settings,
reflecting how the method adapts to evolving challenges. In particular, a comparison was made of the
proposed method with relevant prior work to validate its high performance as shown in Table 5.

CMC, 2024, vol.81, no.1 767

30
25
20
15 4
10
5
04

Agents

T T T T T T T T T T T T 1
0 5 10 15 20 25 30
35— Avoidance Rate
30
25
20
15
10
5]
04

Agents

T T T T T T T T T T T i 1

0 5 10 15 20 25 30
Success Rate

Figure 11: The success rate of our modified algorithm especially when avoiding obstacles in path
trajectory

Mobile Robot
35 - Obstacle

30
25

20

Agents

15 o

0 5 10 15 20 25
Success Rate

Figure 12: The success rate of avoiding obstacles in path trajectory

768 CMC, 2024, vol.81, no.1
35+
30 4
20
-l 25
254
20
204
£ 154 =
S
< 10 4 10 4
54 94
0 - 0
0 5 10 15 20 0 5 10 15 20 2
35, Avoidance Rate 35, Avoidance Rate
30 30
254 25 4
20 4 20 4
E’, 15 15 4
<<
10 104
5 4 5 4
04 0
0 5 10 15 20 0 5 10 15 20 e
Avoidance Rate Avoidance Rate
Figure 13: The number of obstacle avoidance average
Table 5: The comparison of modified CBS result with mentioned related works
Author Type of T (Sec) Average MAP Robot type Obstacle Obstacle
method length number type
[2] Soft 185.6 55.3 Static Ship-Car 4 Concave
actor-critic
[35] DWA 169.8 34.5 Dynamic Car-like 6 Mixed
[25] Ds 177.5 453 Dynamic Car-like Random Concave
[9] K-PBS 248.7 NA Dynamic Car-like Random Concave
[23] SBAs NA NA Dynamic Omni- Random Concave
Direction
[36] CBS 165.4 64.2 Dynamic Omni- Random Concave
Direction

(Continued)

CMC, 2024, vol.81, no.1 769

Table 5 (continued)

Author Type of T (Sec) Average MAP Robot type Obstacle Obstacle
method length number type

[37] GNN NA NA Static NA Random Concave

Our MCBS 100.4 32.1 Static, Omni- Random up Mixed

Dynamic Direction to 50

4 Conclusion

This research evaluated the performance of a modified conflict-based search (CBS) method in
various virtual environments to test its effectiveness and adaptability. By progressively increasing
the complexity of the environments, starting from simple scenarios and advancing to those with
added obstacles, the study demonstrated the method’s high performance. The results indicate that
the proposed CBS algorithm effectively handles both static and dynamic environments, adapts to
changes, and efficiently manages multiple goals. The method excels in maintaining a high success
rate, optimizing path length, and reducing travel time. It successfully navigates environments with
varying levels of complexity and is capable of managing multiple goals before returning to the base.
The proposed approach addresses challenges encountered in previous implementations, showcasing
its robustness in both simulated and complex scheduling scenarios, such as in manufacturing plants
where resource optimization is crucial. However, the current approach has limitations, including its
focus on omnidirectional robots and potential issues related to grid size, response time, and complex
planning when applied to real-world scenarios. Future research will explore expanding the approach
to 3D paths and industrial environments, aiming to overcome these limitations and enhance practical
applicability.

Acknowledgement: This paper extends sincere gratitude to all the reviewers for their invaluable
contributions to the field and the editors for their exceptional work in enhancing the quality of this
research.

Funding Statement: The authors did not receive any specific funding for this study.

Author Contributions: Study conception and design: Mustafa Mohammed Alhassow, Oguz Ata,
Dogu Cagdas Atilla; data collection: Mustafa Mohammed Alhassow; analysis and interpretation of
results: Mustafa Mohammed Alhassow, Oguz Ata, Dogu Cagdas Atilla; draft manuscript preparation:
Mustafa Mohammed Alhassow, Oguz Ata. All authors reviewed the results and approved the final
version of the manuscript.

Availability of Data and Materials: The authors confirm that all data supporting the findings of this
study are included in the paper.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

770

CMC, 2024, vol.81, no.1

References

(1]

(2]
(3]
(4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Y. Liang and L. Wang, “Applying genetic algorithm and ant colony optimization algorithm into
marine investigation path planning model,” Soft Comput., vol. 24, no. 11, pp. 8199-8210, 2020. doi:
10.1007/s00500-019-04414-4.

G. Chen, T. Wu, and Z. Zhou, “Research on ship meteorological route based on A-star algorithm,” Math.
Probl. Eng., vol. 2021, no. 7, pp. 1-8, 2021. doi: 10.1155/2021/9989731.

B. Fu et al., “An improved A* algorithm for the industrial robot path planning with high success rate and
short length,” Robot. Auton. Syst., vol. 106, no. 3, pp. 26-37, 2018. doi: 10.1016/j.robot.2018.04.007.

H. Lu, M. Zhang, X. Xu, Y. Li, and H. T. Shen, “Deep fuzzy hashing network for efficient image retrieval,”
IEEE Trans. Fuzzy Syst., vol. 29, no. 1, pp. 166-176, 2020. doi: 10.1109/TFUZZ.2020.2984991.

X. R. Tang, Y. K. Zhu, and X. X. Jiang, “Improved A-star algorithm for robot path planning in a static
environment,” J. Phys.: Conf. Ser., vol. 2021, pp. 1792, 2021, Art. no. 012067.

A. Mavrogiannis, R. Chandra, and D. Manocha, “B-GAP: Behavior-rich simulation and naviga-
tion for autonomous driving,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 4718-4725, 2022. doi:
10.1109/LRA.2022.3152594.

L. Wen, Y. Liu, and H. Li, “CL-MAPF: Multi-agent path finding for car-like robots with kine-
matic and spatiotemporal constraints,” Robot. Auton. Syst., vol. 150, 2022, Art. no. 103997. doi:
10.1016/j.robot.2021.103997.

M. M. Alhassow, O. Ata, and D. C. Atilla, “Car-Like robot path planning based on voronoi and Q-Learning
algorithms,” in 2021 Int. Conf. Eng. Emerg. Technol. (ICEET), Istanbul, Turkey, 2021, pp. 1-4.

X. Zhang, G. Xiong, Y. Wang, S. Teng, and L. Chen, “D-PBS: Dueling priority-based search for multiple
nonholonomic robots motion planning in congested environments,” IEEE Robot. Autom. Lett., vol. 9, no.
4, pp. 638-639, 2024. doi: 10.1109/1.RA.2024.3402183.

R. D’Andrea, “Guest editorial: A revolution in the warehouse: A retrospective on kiva systems and
the grand challenges ahead,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 4, pp. 638-639, 2012. doi:
10.1109/TASE.2012.2214676.

D. Zhang, C. Chen, and G. Zhang, “AGV path planning based on improved A-star algorithm,” in 2024
IEEE 7th Adv. Inf. Technol., Electron. Autom. Control Conf. (IAEAC), Chongqing, China, 2024, pp. 1590-
1595.

K. Zhang, Z. Yang, and T. Basar, “Multi-agent reinforcement learning: A selective overview of theories
and algorithms,” in Handbook of Reinforcement Learning and Control, 2021, pp. 321-384.

D. -H. Cho, D. -S. Jang, and H. -L. Choi, “Memetic algorithm-based path generation for multiple
Dubins vehicles performing remote tasks,” Int. J Syst. Sci., vol. 51, no. 4, pp. 608-630, 2020. doi:
10.1080/00207721.2020.1737263.

A. Bakdi, A. Hentout, H. Boutami, A. Maoudj, O. Hachour and B. Bouzouia, “Optimal path planning
and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control,” Robot. Auton.
Syst., vol. 89, no. 1, pp. 95-109, 2017. doi: 10.1016/j.robot.2016.12.008.

R. Almadhoun, T. Taha, L. Seneviratne and Y. Zweiri, “A survey on multi-robot coverage path
planning for model reconstruction and mapping,” SN Appl. Sci., vol. 1, no. 8, pp. 1-24, 2019. doi:
10.1007/s42452-019-0872-y.

J.J. Roldan, P. Garcia-Aunon, M. Garzon, J. D. Ledn, J. D. Cerro and A. Barrientos, “Heterogeneous multi-
robot system for mapping environmental variables of greenhouses,” Sensors, vol. 16, no. 7, 2016, Art. no.
1018. doi: 10.3390/s16071018.

H. Hu, X. Yang, S. Xiao, and F. Wang, “Anti-conflict AGV path planning in automated container terminals
based on multi-agent reinforcement learning,” Int. J Prod. Res., vol. 61, no. 1, pp. 65-80, 2023. doi:
10.1080/00207543.2021.1998695.

Y. Jeon and D. Park, “Poster: Adaptive astar algorithm for calculation time reduction of autonomous
vehicle’s pathfinding,” in 2024 IEEE Veh. Netw. Conf. (VNC), IEEE, 2024.

https://doi.org/10.1007/s00500-019-04414-4
https://doi.org/10.1155/2021/9989731
https://doi.org/10.1016/j.robot.2018.04.007
https://doi.org/10.1109/TFUZZ.2020.2984991
https://doi.org/10.1109/LRA.2022.3152594
https://doi.org/10.1016/j.robot.2021.103997
https://doi.org/10.1109/LRA.2024.3402183
https://doi.org/10.1109/TASE.2012.2214676
https://doi.org/10.1080/00207721.2020.1737263
https://doi.org/10.1016/j.robot.2016.12.008
https://doi.org/10.1007/s42452-019-0872-y
https://doi.org/10.3390/s16071018
https://doi.org/10.1080/00207543.2021.1998695

CMC, 2024, vol.81, no.1 771

[19]

[20]

(21]

[22]

(23]
[24]

[25]

[26]

(27]

(28]

[29]
[30]
(31]
(32]
[33]

(34]

[35]

(36]

[37]

J. Li, Z. Chen, D. Harabor, P. J. Stuckey, and S. Koenig, “MAPF-LNS2: Fast repairing for multi-agent path
finding via large neighborhood search,” Proc. AAAI Conf. Artif. Intell., vol. 36, no. 9, pp. 10256-10265,
2022. doi: 10.1609/aaai.v3619.21266.

W. Honig, S. Kiesel, A. Tinka, J. W. Durham, and N. Ayanian, “Persistent and robust execution of
MAPF schedules in warehouses,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1125-1131, Apr. 2019. doi:
10.1109/LRA.2019.2894217.

T. Guo and J. Yu, “Decentralized lifelong path planning for multiple ackerman car-like robots,” 2024,
arXiv:.2402.11767.

I. Solis, J. Motes, R. Sandstrom, and N. M. Amato, “Representation-optimal multi-robot motion planning
using conflict-based search,” IEEE Robot. Autom. Lett., vol. 6, no. 3, pp. 4608-4615, Jul. 2021. doi:
10.1109/LRA.2021.3068910.

A. Zanardi, P. Zullo, A. Censi, and E. Frazzoli, “Factorization of multi-agent sampling-based motion
planning,” in 2023 62nd IEEE Conf. Decis. Control (CDC), IEEE, 2023.

Q. Lin and H. Ma, “SACHA: Soft actor-critic with heuristic-based attention for partially observable multi-
agent path finding,” IEEE Robot. Autom. Lett.,vol. 8,no. 1, pp. 1-8,2023. doi: 10.1109/LRA.2023.3292004.
L. Chang, L. Shan, C. Jiang, and Y. Dai, “Reinforcement-based mobile robot path planning with improved
dynamic window approach in an unknown environment,” Auton. Robots, vol. 45, no. 1, pp. 51-76, 2021.
doi: 10.1007/s10514-020-09947-4.

E.S. Low, P. Ong, and C. Y. Low, “A modified Q-learning path planning approach using distortion concept
and optimization in a dynamic environment for an autonomous mobile robot,” Comput. Ind. Eng., vol. 181,
no. 6, 2023, Art. no. 109338. doi: 10.1016/j.c1e.2023.109338.

F. H. Ajeil, 1. Ibraheem, A. Azar, and A. J. Humaidi, “Autonomous navigation and obstacle avoidance of
an omnidirectional mobile robot using swarm optimization and sensors deployment,” Int. J. Adv. Robot.
Syst., vol. 17, no. 3, 2020. doi: 10.1177/1729881420929498.

G. Fragapane, R. de Koster, F. Sgarbossa, and J. O. Strandhagen, “Planning and control of autonomous
mobile robots for intralogistics: Literature review and research agenda,” Eur. J. Oper. Res., vol. 294, no. 2,
pp. 405-426, 2021. doi: 10.1016/j.¢j0r.2021.01.019.

J. Yuan, H. Wang, C. Lin, D. Liu, and D. Yu, “A novel GRU-RNN network model for dynamic path
planning of mobile robot,” IEEE Access, vol. 7, pp. 15140-15151, 2019.

H. Tang, “Multi-robot material delivery in industrial parks based improved on A* algorithm,” Highl. Sci.
Eng., Technol., vol. 46, pp. 280-288, 2023.

J. Li, W. Ruml, and S. Koenig, “EECBS: A bounded-suboptimal search for multi-agent pathfinding,” Proc.
AAAI Conf. Artif. Intell., vol. 35, no. 14, 2021.

R. Cui, J. Guo, and B. Gao, “Game theory-based negotiation for multiple robots task allocation,” Robotica,
vol. 31, no. 6, pp. 923-934, 2013. doi: 10.1017/50263574713000192.

D. Zhang, H. Maei, X. Wang, and Y. Wang, “Deep reinforcement learning for visual object tracking in
videos,” 2017, arXiv:1701.08936.

Q. Wu, H. Lin, Y. Jin, Z. Chen, S. Li and D. Chen, “A new fallback beetle antennae search algorithm for
path planning of mobile robots with collision-free capability,” Soft Comput., vol. 24, no. 3, pp. 2369-2380,
2020. doi: 10.1007/s00500-019-04067-3.

R. Chandra and D. Manocha, “GamePlan: Game-theoretic multi-agent planning with human drivers at
intersections, roundabouts, and merging,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 2676-2683, 2022.
doi: 10.1109/LRA.2022.3144516.

M. M. Alhassow, O. Ata, and D. C. Atilla, “Multi-agents path planning for a mobile robot in a dynamic
warehouse environment,” in Int. Conf. Comput., Intell. Data Analyt., Springer, 2022.

Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for decentralized multi-robot path
planning,” in 2020 IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Las Vegas, NV, USA, IEEE, 2020.

https://doi.org/10.1609/aaai.v36i9.21266
https://doi.org/10.1109/LRA.2019.2894217
https://doi.org/10.1109/LRA.2021.3068910
https://doi.org/10.1109/LRA.2023.3292004
https://doi.org/10.1007/s10514-020-09947-4
https://doi.org/10.1016/j.cie.2023.109338
https://doi.org/10.1177/1729881420929498
https://doi.org/10.1016/j.ejor.2021.01.019
https://doi.org/10.1017/S0263574713000192
https://doi.org/10.1007/s00500-019-04067-3
https://doi.org/10.1109/LRA.2022.3144516

	Obstacle Avoidance Capability for Multi-Target Path Planning in Different Styles of Search
	1 Introduction
	2 Literature Reviews
	3 Simulation Experiments
	4 Conclusion
	References

