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ABSTRACT

Gliomas are aggressive brain tumors known for their heterogeneity, unclear borders, and diverse locations on Mag-
netic Resonance Imaging (MRI) scans. These factors present significant challenges for MRI-based segmentation,
a crucial step for effective treatment planning and monitoring of glioma progression. This study proposes a novel
deep learning framework, ResNet Multi-Head Attention U-Net (ResMHA-Net), to address these challenges and
enhance glioma segmentation accuracy. ResMHA-Net leverages the strengths of both residual blocks from the
ResNet architecture and multi-head attention mechanisms. This powerful combination empowers the network to
prioritize informative regions within the 3D MRI data and capture long-range dependencies. By doing so, ResMHA-
Net effectively segments intricate glioma sub-regions and reduces the impact of uncertain tumor boundaries.
We rigorously trained and validated ResMHA-Net on the BraTS 2018, 2019, 2020 and 2021 datasets. Notably,
ResMHA-Net achieved superior segmentation accuracy on the BraTS 2021 dataset compared to the previous years,
demonstrating its remarkable adaptability and robustness across diverse datasets. Furthermore, we collected the
predicted masks obtained from three datasets to enhance survival prediction, effectively augmenting the dataset
size. Radiomic features were then extracted from these predicted masks and, along with clinical data, were used
to train a novel ensemble learning-based machine learning model for survival prediction. This model employs a
voting mechanism aggregating predictions from multiple models, leading to significant improvements over existing
methods. This ensemble approach capitalizes on the strengths of various models, resulting in more accurate and
reliable predictions for patient survival. Importantly, we achieved an impressive accuracy of 73% for overall survival
(OS) prediction.
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1 Introduction

The human brain is incredibly complex and powerful, with around 86 billion interconnected
neurons. It makes us conscious and self-aware, allowing us to think, solve problems, and be creative.
The brain can adapt and change, which helps us learn and recover from injuries [1]. It also controls
our emotions and social interactions, enabling us to form relationships and understand others.
However, it is susceptible to arrange of diseases, among which brain tumors are significant [2]. These
tumors, arising from abnormal cell growth within the brain, can manifest in various forms, benign
or malignant, and originate from different brain tissue types. The exact cause of brain tumors is
not always clear, but they can develop due to genetic mutations, exposure to radiation, or a family
history of brain tumors [3]. Early detection of brain tumors is crucial because it increases the chances
of successful treatment and can help prevent the tumor from growing and causing more severe
symptoms or complications [4]. Gliomas, a heterogeneous group of brain tumors, present significant
challenges due to their varying grades and complex compositions, including necrosis/core tumor (CT),
enhancing tumor and non-enhancing tumor components (ET/NET), and edema (ED). Magnetic
resonance imaging (MRI) is a cornerstone in the diagnostic process, offering detailed imaging of brain
structures without invasive procedures [5]. This non-invasive technique utilizes powerful magnetic
fields and radio waves to generate precise images, aiding in gliomas’ detection, characterization,
and monitoring. Integrating advanced 3D MRI modalities is pivotal in diagnosing and managing
brain tumors, providing detailed insights into tissue characteristics and tumor extent [6]. T1-weighted
(T1) imaging delineates normal and abnormal brain structures, crucial for identifying tumors and
surrounding tissues [7]. Post-contrast T1-weighted imaging (T1ce) enhances visualization of tumor
vascularization and contrast enhancement, distinguishing benign from malignant lesions effectively.
T2-weighted (T2) imaging highlights differences in tissue water content, aiding in edema detection and
understanding tumor impact on brain structures [8]. Fluid-attenuated inversion recovery (FLAIR)
imaging suppresses cerebrospinal fluid signals, improving abnormality visualization and subtle tumor
changes detection [9]. These modalities not only support initial tumor diagnosis but also guide surgical
planning by accurately mapping tumor location and extent, thereby minimizing damage to healthy
brain tissue during interventions. Manual segmentation of glioma brain tumors is a critical process
in medical imaging and diagnosis, involving the meticulous delineation of tumor boundaries on brain
scans by expert radiologists [10]. This procedure typically uses MRI scans, which provide detailed and
high-contrast images of brain tissues, allowing for precise identification of tumor regions. Radiologists
carefully examine each MRI slice to outline the tumor, differentiating it from healthy tissues and
other abnormalities. This process is time-consuming and requires expertise, as accurate segmentation
is crucial for treatment planning, disease progression monitoring, and research studies. Deep neural
networks (DNN) have emerged as revolutionary tools in various domains [11–14], particularly for
brain tumor segmentation. Techniques such as DeepMedic [15], SegNet [16], RescueNet [17], and
convolutional neural networks (CNN) [18] represent significant advancements over traditional manual
methods [19–21]. These advanced methods enhance the precision and efficiency of segmentation,
offering notable improvements. Furthermore, survival prediction is a crucial aspect of neuro-oncology,
aiming to estimate a patient’s expected lifespan following a diagnosis [22]. Accurate prediction of
survival outcomes helps clinicians tailor treatment plans, manage patient expectations, and improve
decision-making. However, predicting survival in brain tumor cases remains challenging due to the
tumors’ complex and heterogeneous nature, variability in treatment responses, and the impact of
genetic, molecular, and environmental factors on disease progression. Emerging advanced machine
learning techniques offer powerful tools for predicting patient survival with greater accuracy, pre-
senting significant potential for personalized medicine and new treatment strategies. By providing
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a clearer picture of a patient’s prognosis, machine learning facilitates the creation of individualized
treatment plans, enhancing patient outcomes. It also allows for more efficient clinical trials by grouping
patients with similar prognoses, leading to faster and more targeted testing of new therapies. This paper
presents ResMHA-Net, a novel deep-learning model combining a multi-head attention mechanism
with a ResNet U-Net architecture to improve brain tumor segmentation. Our method effectively
segments three key regions of gliomas: the core tumor, surrounding edema, and enhancing tumor
region. Additionally, we employ a novel voting-based ensemble model for more efficient survival
prediction compared to state-of-the-art methods. The workflow of the proposed methodology begins
with preprocessing MRI images to prepare them for analysis. We then develop the ResMHA-Net
model to segment key tumor regions. Following segmentation, we apply post-processing techniques to
enhance image quality by refining boundaries and removing artifacts. From these improved images, we
extract radiomic features and perform feature selection to retain the most relevant features, discarding
any redundant or less informative ones. These selected features are then combined with each patient’s
clinical data, including age, resection status, and survival duration, to create a comprehensive dataset
integrating both imaging and clinical information. Finally, this dataset is used in an ensemble model
for survival prediction, which classifies patients into long, short, and mid-term survival groups. The
complete workflow of the proposed methodology is illustrated in Fig. 1.

Figure 1: Workflow for brain tumor segmentation and survival predictions

Contribution

a) We propose a novel architecture that integrates ResNet and UNet strengths, enhanced by
a multi-head attention mechanism. This model achieves precise multiclass segmentation of
gliomas, effectively distinguishing distinct tumor sub-regions.

b) We introduce an innovative machine learning-based voting ensemble method for predicting
patient survival using predicted masks from Task 1. Our proposed survival prediction model
offers a more robust and accurate estimation of patient survival compared to existing methods,
achieving an impressive accuracy of 73%.

The paper is organized into 7 sections. Section 1 highlights the significance of brain tumor seg-
mentation and survival prediction, addressing the challenges in glioma segmentation and forecasting
survival outcomes. Section 2 reviews relevant literature. Section 3 details the proposed methodology
for brain tumor segmentation. Section 4 presents the results of the segmentation. Section 5 covers the
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methodology for overall survival prediction. Section 6 focuses on the statistical analysis related to both
brain tumor segmentation and survival prediction. Finally, Section 7 summarizes the key findings,
demonstrating the effectiveness of our proposed architecture for precise glioma segmentation and
survival prediction, and outlines future directions.

2 Related Work

Recent advancements in brain tumor segmentation have led to several innovative deep-learning
models, each introducing unique mechanisms to enhance accuracy and reliability in analyzing medical
images. Zhu et al. [23] combined deep semantic information and edge details from multimodal MRI
scans using a Swin Transformer, CNNs with an “edge spatial attention block,” and a “multi-feature
inference block” based on graph convolution. Their method outperformed existing state-of-the-art
techniques on the BraTS benchmarks. Rehman et al. [24] introduced RAAGR2-Net, an encoder-
decoder architecture featuring a residual spatial pyramid pooling (RASPP) module and an attention
gate (AG) module. This model outperformed BraTS benchmarks by enhancing segmented outputs
and retaining location information. Cao et al. [25] developed MBANet, a 3D convolutional neural
network that integrates optimized shuffle units and a novel 3D Shuffle Attention (SA) module for
enhanced feature processing. MBANet achieved significant performance on BraTS datasets, with high
dice scores for various tumor categories. Malhotra et al. [26] introduced CB-D2RNet, a model that
effectively bridges the contextual gap between the encoder and decoder, addressing computational
complexity and excessive model parameters. It demonstrated competitive performance on BraTS
benchmarks with a minimal parameter count. Wu et al. [27] developed AGGN, an MRI-focused
attention glioma grading network leveraging a dual-domain attention mechanism to weigh channel
and spatial information. AGGN’s extensive experiments validated its effectiveness, superiority, and
robustness over other advanced models. Yang et al. [28] developed a 2D DenseUNet model incorpo-
rating a ResBlock mechanism and Gaussian noise layer for data augmentation, replacing conventional
2D convolutional layers with pooling layers. Their model, tested on 200 MRI images, demonstrated
superior performance and reliability in clinical treatment strategies. Rehman et al. [24] proposed
RAAGR2-Net, a deep learning model for brain tumor segmentation. It includes preprocessing steps
like N4 bias correction and z-score normalization, with critical modules RASPP for spatial pooling
and AG for attention-based refinement. RAAGR2-Net outperforms existing methods on BraTS
benchmarks for segmentation tasks. Berkley et al. [29] developed a 3D U-Net model using BraTS
data for glioma segmentation and tested it on clinical MRIs from their institution. The model, despite
variations in imaging quality and tumor types, achieved competitive dice scores: 0.764 for whole tumor
(WT), 0.648 for core tumor (CT), and 0.61 for enhancing tumor (ET). Vinod et al. [30] introduced a
novel brain tumor segmentation approach that combines a U-Net model, a Convolutional Neural
Network (CNN), and a Self-Organizing Feature Map (SOFM) in an ensemble technique, tested on
the BRATS 2020 dataset. The model achieved an accuracy of 96.5%, an IoU of 0.546, and a dice
coefficient of 0.992 during validation phase, leading to an overall segmentation accuracy of 98.28%.
Mazher et al. [31] proposed a method combining deep learning and radiomics for predicting brain
tumor patient survival. Their approach uses advanced features from a segmentation model, integrates
these with clinical data, and applies various regression techniques. Their method outperforms existing
approaches in predicting survival days for glioma patients. Akter et al. [32] created a deep learning
system combining a CNN for classifying brain images and a U-Net for segmenting them. They tested
their system on six datasets and found that using segmentation improved classification accuracy,
achieving up to 98.8% accuracy. Their approach, with up to 97.7% accuracy on individual datasets,
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shows potential for clinical use in automatically identifying and segmenting brain tumors from MRI
scans.

3 Proposed Methodology
3.1 Dataset Description

The BraTS (Multimodal Brain Tumor Segmentation Challenge) datasets, spanning 2018 to 2021,
have become a cornerstone for glioma research. Each year offers a significant number of cases: 285 in
2018 [33], 335 in 2019 [34], 369 in 2020 [35], and 1251 in 2021 [36]. These cases encompass high-grade
gliomas (HGG) and low-grade gliomas (LGG). Each case has four MRI modalities (T1, T1ce, T2,
and FLAIR) and their respective masks with consistent dimensions (240 × 240 voxels and 155 slices)
across the years. To ensure data quality and consistency, the BraTS organizers preprocess all datasets.
This includes co-registration to a standard template, interpolation for uniform resolution (1 mm3),
and skull-stripping. Additionally, the datasets provide comprehensive annotations for various tumor
sub-regions (enhancing tumor (ET)–Label 4, edema (ED)–Label 2, necrotic/core tumor (CT)–Label 1,
and background Label 0). Beyond segmentation, these datasets offer valuable resources for developing
predictive models. Each year includes a dedicated “Overall Survival” (OS) dataset containing crucial
clinical information for each case, such as patient age, resection status such as gross total resection,
subtotal resection, and not available (GTR, STR, NA), patient ID, and survival times. The datasets
are structured for algorithm evaluation, offering separate validation sets: 66 cases in 2018, 125 cases in
2019, 125 cases in 2020, and 219 cases in 2021 without ground truth. The test sets include a substantial
number of cases: 191 cases in 2018, 166 cases in 2019, 167 cases in 2020, and 530 cases in 2021. All test
sets also lack ground truth masks. Fig. 2 illustrates the number of cases across these years (2018–2021),
while Fig. 3 shows several MRI modalities and their corresponding masks.

Figure 2: Case numbers in brats 2018, 2019, 2020 and 2021 datasets
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Figure 3: Sample images and corresponding segmentation masks in brats’ dataset

3.2 Pre-Processing

Accurate segmentation of brain tumors in MRI scans is vital for effective diagnosis and treat-
ment planning [37]. In this study, the pre-processing pipeline was designed to ensure high-quality,
standardized MRI data for analysis. Bias field correction was initially applied to address intensity
inhomogeneities from different scanners or protocols, which improved data consistency but did not
significantly enhance segmentation accuracy. Recognizing this, intensity normalization was empha-
sized to adjust scans to a common intensity scale, which reduced variability and improved data
consistency. This led to better segmentation performance, as indicated by higher dice similarity coef-
ficients (DSC) and overall accuracy across tumor classes, demonstrating the effectiveness of intensity
normalization in enhancing segmentation outcomes. Following normalization, we leveraged the rich
information captured by four distinct MRI modalities–T1, T1ce, T2, and FLAIR. By stacking these
individual images into a comprehensive multi-channel image, we created a powerful representation
that encapsulates intricate details of brain structure and potential pathologies, providing a more
comprehensive view than analyzing each modality in isolation. To balance computational efficiency
and the capture of relevant anatomical details, we strategically cropped a central volume of dimensions
128×128×128 from the multi-channel glioma MRI images. This targeted cropping prioritizes the brain
region most likely to harbor glioma-related pathologies, ensuring the inclusion of crucial information
for segmentation while maintaining a manageable data size.
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3.3 Network Architecture

We developed ResMHA-Net, a novel ResNet U-Net model with a multi-head attention mecha-
nism for semantic segmentation of glioma brain tumors from MRI data (see Fig. 4). The model inte-
grates ResNet blocks into the U-Net architecture and a multi-head attention mechanism to enhance
feature representation. It consists of three main parts: the encoder, the central block with multi-head
attention, and the decoder. ResNet blocks with 3D convolutions, Batch Normalization, and SELU
activation extract hierarchical features in the encoder, while max pooling reduces spatial dimensions.
The central block refines features from the final encoder output through additional ResNet processing
and a multi-head attention mechanism to capture long-range dependencies. Crucially, the output of the
multi-head attention block is passed directly as input to the decoder. This interaction is pivotal, as the
attention-enhanced features are upsampled using transposed convolution layers in the decoder. The
decoder also incorporates skip connections from the encoder to combine these upsampled features
with high-resolution features from earlier layers, enabling more accurate segmentation. Additional
ResNet blocks in the decoder refine these combined features, ensuring precise feature transfer and
segmentation. Detailed algorithmic discussion is given below:

Figure 4: Proposed ResMHA-Net architecture for brain tumor segmentation

The algorithm initializes an input tensor I with dimensions specified for image height (H), width
(W ), depth (D), channels (C), and classes (K), specifically (128×128×128×4). This tensor I ε RH×W×C

represents the input data. During the encoder phase, the input tensor I undergoes sequential processing
through ResNet blocks designed to extract hierarchical features crucial for accurately segmenting
different regions (CT, WT, ET) of glioma tumors from MRI scans. Each ResNet block i (where i ranges
from 1 to N) consists of two 3D convolutional layers with a filter size of (3, 3, 3) and the number of
filters Fi. For our algorithm, N = 4, F1 = 64, F2 = 128, F3 = 256, and F4 = 512. Max pooling layers
with a pool size of (2, 2, 2) are interleaved to reduce spatial dimensions and enhance feature extraction.
These layers systematically decrease the spatial size of feature maps produced by convolutional layers.
MaxPooling is essential for capturing contextual information at various scales and is critical for
accurately segmenting tumor regions. Outputs Ei from these encoder stages are stored in E, preserving
valuable features at different levels for subsequent decoder stages. In each encoder block, operations
follow a structured approach: starting with E1 initialized from the input tensor I , each subsequent
Ei (where i ranges from 2 to N) builds upon the output of the previous ResNet block Ei−1. Each Ei
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undergoes convolution with progressively larger filters (64, 128, 256, and 512), capturing intricate
details like edges and complex tumor structures, followed by batch normalization (BN) and scaled
activation linear unit (SELU) activation for detailed feature representation. Batch normalization
stabilizes training by normalizing activations, while SELU activation introduces non-linearity, which
is crucial for learning intricate MRI patterns. ResNet blocks include skip connections (residual
connections) facilitating direct information flow between layers, mitigating vanishing gradient issues
by maintaining stable gradient magnitudes during backpropagation. Skip connections preserve fine
details throughout the network by retaining learned features from earlier layers, which is crucial for
learning robust MRI representations. The encoder effectively learns and represents diverse aspects
of MRI data by downsampling via max pooling, feature extraction via convolution and activation,
and information flow via skip connections. This hierarchical process captures local details and global
structures, laying a strong foundation for subsequent segmentation tasks. Ultimately, the encoder
phase plays a pivotal role in preparing the model to accurately segment whole, core and enhance tumor
regions in glioma segmentation task, demonstrating its capability to handle complex MRI data.

3.4 MultiHead Attention Mechanism

The central block of our ResNet U-Net with multi-head attention begins with the output EN

from the last encoder block. This output EN undergoes a ResNet block operation to refine its feature
representations further:

C = ResNetBlock (EN, 1024, kernel size = (3, 3, 3)).

Next, we employ a multi-head attention mechanism to enhance feature interaction and capture
long-range dependencies across different parts of the feature space. This mechanism partitions C into
queries Q, keys K, and values V, each transformed via learned weight matrices W Q

h , W K
h , W V

h :

Qh = CWQ
h , Kh = CWK

h , Vh = CWV
h

where h denotes the head index in the multi-head attention mechanism. The model can jointly
attend to information from different representation subspaces at other positions using multiple
heads. Each head h computes a separate set of queries, keys, and values, allowing the model to
capture various features and relationships within the data. This approach enables a richer and more
nuanced understanding of the feature space, which is beneficial for glioma tumor segmentation.
Consequently, this leads to improved accuracy in identifying and delineating tumor regions, enhancing
the overall performance of the segmentation task. The scaled dot-product attention mechanism
calculates attention scores by computing the dot product between Qh and Kh, scaled by dk, where
dk represents the dimensionality of the key vectors. These scores are then normalized using a SoftMax
function to obtain the attention weights, which are applied to the value matrix Vh:

Attention (Qh, Kh, Vh) = softmax
(

QhKT
h√

dk

)
Vh

The outputs from all attention heads are concatenated and linearly transformed using another
learned weight matrix WO to produce the final multi-head attention output MultiHead (Q, K, V):

MultiHead (Q, K, V) = Concatenate (head1, . . . , headh) wO

Subsequently, layer normalization is applied to stabilize the output and facilitate training:

C = LayerNorm (C + MultiHead (Q, K, V))
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To enhance generalization and prevent overfitting, dropout regularization is employed, randomly
dropping units from the output tensor during training:

C = Dropout (C, rate = 0.3)

Finally, another ResNet block refines the features further:

C = ResNetBlock (C, 1024, kernel size = (3, 3, 3))

Algorithm 1: ResNet U-Net model with multihead attention
1: Inputs:

I ∈ R
H×W×C(Input data tensor)

H, W, D (height, width, depth of the input)
C (Number of input channels)
K (Number of segmentation classes)

2: Hyperparameters:
N (number of encoder blocks)
Fl (list of filter sizes for encoder blocks, length N)
Hk (number of heads in multi-head attention)

3: Encoder: Ei ∈ R
Hi×Wi×Di×Fi (Output of ith encoder block)

E = [ ] List to store encoder outputs)
4: for i ∈ {1, . . . , N} do

Ei = ResNetBlock (Ei−1, Fi, kernel size = (3, 3, 3))

Ei = BatchNormalization (Ei)

Ei = Activation (selu) (Ei) E. append (Ei)

Ei = MaxPooling3D (Ei, pool size = (2, 2, 2))

5: end for
6: Central block with multi-head attention:
7: Input: EN(Output from the last encoder block)
8: Output: C (Processed feature representation)

Initialize C = ResNetBlock (EN, 1024, kernelsize = (3, 3, 3))

Partition C into queries Qh, keys Kh, and values Vh:
Qh = CWQ

h , Kh = CWK
h , Vh = CWV

h

9: Compute scaled dot-product attention:

Attention (Qh, Kh, Vh) = softmax
(

QhKT
h√

dk

)
Vh

10: Concatenate and linearly transform outputs from all attention heads:
MultiHead (Q, K, V) = Concatenate(head1, . . . , headh)wO

11: Apply layer normalization: C = LayerNorm (C + MultiHead (Q, K, V))

12: Apply dropout regularization: C = Dropout (C, rate = 0.3)

13: Refine features with another ResNet block: C = ResNetBlock (C, 1024, kernelsize = (3, 3, 3))

14: Apply convolutional layer with SELU activation:
C = Conv3D(C, 64, Kernelsize = (3, 3, 3) , activation =′ selu′, kernelinitializer =′

lecun normal′, padding =′ same′)
15: Decoder: Di ∈ R

Hi×Di×Fd (Output of i − th decoder block)

Fd = 2N(Number of filters in the first decoder block)

(Continued)
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Algorithm 1 (continued)
16: for i ∈ {0, . . . , N − 1} do

Di = Conv3DTranspose (Di−1, Fd−i, kernel size = (2, 2, 2), strides = (2, 2, 2), padding =′

same′)
Di = Concatenate (Di, E[−(i + 1)])
Di = ResNetBlock (Di, Fd−i, kernel size = (3, 3, 3))

Di = BatchNormalization (Di)

Di = Activation (selu) (Di)

Di = Dropout (Di, rate = 0.2)

Di = ResNetBlock (Di, Fd−i, kernel size = (3, 3, 3))

17: end for
18: Output: O = Conv3D (DN−1, Fo = K, Kernel size = (1, 1, 1) , activation =′ softmax′)
19: Return: Model (I = Input, O) = 0

A convolutional layer with SELU activation and appropriate padding concludes this stage:

C = Conv3D (C, 64, Kernel size = (3, 3, 3) , activation =′ selu′, kernel initializer

=′ lecun normal′, padding =′ same)

This central block effectively integrates multi-head attention to enhance feature interactions
and capture complex dependencies across the input space, crucial for accurate glioma brain tumor
segmentation.

Decoder: The decoder part of the network plays a pivotal role in converting encoded features,
including those refined by the multi-head attention block, into the final segmentation output through
a structured process. Operating in a reverse hierarchical manner compared to the encoder, it employs
Conv3DTranspose layers with decreasing filter sizes (512, 256, 128, and 64) to progressively upsample
feature maps, reconstructing spatial dimensions essential for accurate segmentation. Initialized with
Di, where i denotes each decoder block, and Fd is set to 2N based on the number N of encoder blocks,
it begins by upscaling the feature representations. Subsequently, two successive ResNet blocks refine
and enhance these integrated features, contributing significantly to the final segmentation prediction.
Dropout regularization within these blocks mitigates overfitting risks during training, ensuring robust
model generalization across diverse datasets and imaging modalities. The iterative progression across
layers refines segmentation maps to effectively capture local details and global context, thereby improv-
ing segmentation accuracy. We iteratively employ convolutional transpose operations to increase the
spatial dimensions of Di, ensuring that the learned features from earlier stages are expanded and
contextualized across the image. We incorporate skip connections by concatenating the upsampled
features Di with corresponding feature maps from the encoder E [(i + 1)], preserving fine-grained
details crucial for accurate segmentation. This integration step effectively combines high-level semantic
information from the encoder with precise spatial information from earlier layers. As we refine the
features through each decoder block, ResNet blocks are instrumental in enhancing representational
power. Each ResNet block includes batch normalization and ReLU activations, promoting stable
training and deeper feature extraction. We introduce dropout regularization to prevent overfitting and
promote generalization, randomly deactivating a fraction of units during training. This regularization
step enhances the decoder’s generalization ability across diverse input data and unseen scenarios. The
final stage of the decoder involves a 1 × 1 × 1 convolutional layer followed by a softmax activation.
This layer computes the probability distribution across K segmentation classes, including background,



CMC, 2024, vol.81, no.1 895

producing the final segmentation output of O. By applying softmax, we ensure that each voxel in
the output volume represents the likelihood of belonging to each class, thereby facilitating robust
segmentation results.

3.5 Post-Processing

We applied binary erosion and dilation as post-processing techniques to our predicted masks.
These operations were implemented using a structured element with a kernel size of (3, 3, 3). Erosion
was used to contract the boundaries of segmented regions, eliminating small, isolated pixel groups
that could represent noise or artifacts. This process helped smooth the edges of segmented structures,
ensuring uniformity and regularity in boundaries, which is crucial for accurately delineating anatom-
ical features and pathological regions. Conversely, dilation expanded the boundaries of segmented
areas to fill in small gaps or holes within structures, thereby restoring details that might have been lost
during erosion. This step ensured the continuity and integrity of segmented regions, maintaining the
structural coherence necessary for precise analysis.

4 Segmentation Results

To advance the state of brain tumor segmentation, we developed an innovative deep-learning
architecture incorporating a multi-head attention mechanism. This model was rigorously tested using
the BraTS datasets from 2018 to 2021.Each dataset was divided into training and validation sets using
a 70–30 ratio. After removing images and their corresponding masks that do not contain all four labels
(0, 1, 2, and 4), the distribution of each MRI dataset used in our experimentation is shown in Fig. 5.

Figure 5: Distribution of images in the brats 2018–2021 datasets for our study
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We conducted separate training and validation processes on each dataset and achieved superior
results on the BraTS 2021 dataset, attributable to its larger case volume compared to earlier years, as
illustrated in Table 1. Figs. 6 and 7 depict the training and validation performance of the proposed
model. Fig. 6 shows the accuracy metrics for both training and validation datasets, highlighting the
model’s effectiveness in correctly predicting segmentation labels. As the number of epochs increases,
the accuracy increases, indicating the model’s learning improvement over time. In contrast, Fig. 7
illustrates the training and validation loss curves, showing that loss decreases as the number of epochs
increases, demonstrating the model’s ability to minimize errors. Our model was trained over 240 epochs
to ensure thorough learning and convergence. We used a batch size of 2 to balance memory usage and
model performance. A learning rate of 0.001 was chosen to enable stable and gradual optimization.
For the optimization process, we employed the adam optimizer, which adapts learning rates based on
the estimates of the first and second moments of the gradients, thereby enhancing the efficiency and
effectiveness of the training. Additionally, we noted that performance improved from BraTS 2018 to
BraTS 2019 and further improved from BraTS 2019 to BraTS 2020 dataset. This improvement is likely
due to the increased number of cases available for training and validation, highlighting the importance
of dataset size in enhancing model performance. Fig. 8 illustrates the performance metrics of the model
during training and validation on the BraTS 2018–2021 datasets, including the dice score, sensitivity,
specificity, and precision for the three tumor regions. Notably, the BraTS 2021 dataset showed superior
results with validation dice scores of 92% for WT, 91% for CT, and 91% for ET, and an overall accuracy
of 99%. These results highlight the model’s robustness and improved generalization to newer data,
making it an effective tool for accurate brain tumor segmentation. The dice coefficient is computed
separately for each class in this multiclass segmentation problem, and the individual class results are
averaged. This approach ensures that each class contributes equally to the final loss value, regardless
of the class’s frequency or size in the dataset. Minimizing this dice loss during training enables the
model to produce segmentations that closely match the ground truth labels, enhancing segmentation
accuracy and reliability. The dice loss is mathematically defined as follows:

Dice Loss = 2
∑

v y_true(v).y_pred(v) + ε∑
v y_true(v)2 + ∑

v y_pred(v)2 + ε
(1)

Table 1: Performance metrics for brain tumor segmentation with ResMHA-Net on BraTS datasets
(2018–2021)

BraTS dataset Phase Label Precision (%) Sensitivity (%) Specificity (%) Dice (%)

2018

WT 99 99 99 92
Training CT 94 95 99 94

ET 78 96 99 86
WT 97 97 99 80

Validation CT 90 61 99 73
ET 77 77 99 77

(Continued)
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Table 1 (continued)

BraTS dataset Phase Label Precision (%) Sensitivity (%) Specificity (%) Dice (%)

2019

WT 96 96 98 84
Training CT 85 90 99 88

ET 79 64 99 71
WT 98 98 99 83

Validation CT 90 83 99 86
ET 81 87 99 84

2020

WT 98 98 99 92
Training CT 94 94 99 94

ET 90 90 99 90
WT 99 99 99 92

Validation CT 90 97 99 90
ET 88 92 99 90

2021

WT 98 98 99 92
Training CT 96 95 99 95

ET 91 91 99 91
WT 99 99 99 92

Validation CT 96 98 99 91
ET 92 92 99 91

Figure 6: Training and validation accuracy performance
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Figure 7: Loss analysis per epoch

Figure 8: Results of training and validation on brats 2018–2021 datasets in our study

In this formula, y_true(v) represents the ground truth label for voxel v, and y_pred(v) represents the
predicted probability for voxel v. The summation

∑
v denotes the sum over all voxels in the 3D volume.
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To prevent division by zero and ensure numerical stability, a small constant ε (typically 1 × 10−6) is
added to both the numerator and the denominator. The term 2

∑
v y_true(v).y_pred(v) in the numerator

calculates the intersection between the ground truth and predicted segmentations, scaled by a factor
of 2 to balance with the terms in the denominator. The denominator,

∑
v y_true(v)2 + ∑

v y_pred(v)2

measures the total size of both the ground truth and predicted segmentation by summing their squared
values. This ensures that the dice coefficient considers both the presence and absence of segmentation,
providing a balanced evaluation metric. The dice coefficient loss is instrumental in guiding the training
process of deep learning models, as it helps them achieve more accurate segmentation. By minimizing
this loss, the models are better equipped to produce clinically relevant glioma tumor segmentations,
enhancing their performance in practical applications.

Additionally, Fig. 9 showcases predictions on testing images, demonstrating the model’s ability
to segment different tumor regions accurately. In the figure, the core tumor is highlighted in red,
the edema is shown in green, and the enhancing tumor is outlined in blue. These regions are crucial
for precise tumor identification and classification. The combination of the core tumor, edema, and
enhancing tumor regions represents the whole tumor, which a surrounding by black background
area. This visual representation aids in understanding the model’s effectiveness in distinguishing
and segmenting various tumor sub-regions, which is essential for accurate diagnosis and treatment
planning.

Figure 9: Predictions on testing images by the proposed model: red for core tumor, green for edema,
blue for enhancing tumor, and black for background

4.1 State of the Art

In recent advancements in brain tumor segmentation, several innovative models have significantly
improved over previous techniques. Zhang et al. [38] introduced a brain tumor segmentation model
with multiple encoders, enhancing feature extraction and boosting performance. They proposed a new
loss function called “Categorical Dice,” which tackles voxel imbalance by assigning varying weights
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to segmented regions. Evaluated using the BraTS 2020 dataset achieved dice scores of 0.70 for the ET,
0.88 for WT, and 0.73 for CT, outperforming current state-of-the-art techniques.

Ali et al. [39] developed a 3D U-Net model for automatic brain tumor detection and segmentation.
Their approach achieved high dice scores of 0.913, 0.874, and 0.801 on the BraTS 2018 dataset for WT,
CT, and ET regions, respectively. Evaluation on a local dataset of 71 subjects also demonstrated strong
performance with dice scores of 0.891, 0.834, and 0.776.

Aboelenein et al. [40] proposed the Hybrid Two-Track U-Net (HTTU-Net) for brain tumor
segmentation. The method addresses class imbalance using focal loss and generalized dice loss. Tested
on the BraTS 2018 dataset, it achieved mean dice scores of 0.86 for WT, 0.80 for CT, and 0.74 for ET,
with median scores of 0.883, 0.895, and 0.815, respectively.

Sun et al. [41] developed an efficient CNN for brain tumor segmentation with 7 layers, 108 kernels,
and 20,308 parameters. Evaluation on BRATS2018 shows consistent segmentation performance:
77.2% for ET, 89.2% for WT, and 76.3% for CT. The system operates with minimal computational
load, requiring 29.07G Flops per case, highlighting ‘its clinical applicability.

Li et al. [42] developed a corrective diffusion model for MRI brain tumor segmentation, address-
ing systematic errors. They introduced a Vector Quantized Variational Autoencoder (VQ-VAE) to
compress data and stabilize corrections and a Multi-Fusion Attention Mechanism for enhanced
segmentation accuracy. Evaluation of BRATS2019, BRATS2020, and Jun Cheng datasets showed
superior performance compared to existing methods. A summary of these results and other state-of-
the-art methods is compiled in Table 2. Furthermore, researchers are actively exploring the potential
of various machine-learning approaches.

Table 2: Comparison of sensitivity, specificity, and DSC for various methods with proposed method

Method Sensitivity Specificity DSC

WT CT ET WT CT ET WT CT ET

Me-Net [38] 0.72 0.90 0.74 0.99 0.99 0.99 0.70 0.88 0.73
3D-UNet [39] 0.89 0.82 0.78 0.99 0.99 0.99 0.89 0.83 0.77
HTTU-Net [40] 0.88 0.82 0.76 0.99 0.99 0.99 0.85 0.81 0.74
CNN [41] 0.88 0.77 0.79 0.99 0.99 0.99 0.89 0.76 0.77
CorrDiff [42] 0.92 0.85 0.83 0.99 0.99 0.99 0.92 0.86 0.82
ResMHA-Net (no post-processing) 0.99 0.98 0.92 0.99 0.99 0.99 0.92 0.91 0.91
ResMHA-Net (with post-processing) 0.99 0.98 0.93 0.99 0.99 0.99 0.93 0.92 0.91

One such example is a study by Islam et al. [43] that utilizes a CNN with a unique 3D-UNet
architecture enhanced by attention mechanisms. This model segments brain tumors in MRI scans
and extracts valuable information about their characteristics like shape and location. By combining
this data with other clinical factors, the model can predict patient survival times more accurately.
Another innovative approach comes from Behrad et al. [44]. They use genetic algorithms to optimize
a U-Net-based network for brain tumor segmentation. Notably, deep features extracted from the
optimized network are then used for survival prediction, achieving superior efficiency compared to
current methods. Additionally, Tran et al. [45] introduced a self-supervised learning framework for
brain tumor survival prediction using MRI scans. This method identifies specific image patches and
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learns their spatial relationships within the scans. Tested on a large dataset, their method outperformed
existing methods’ accuracy and ability to identify meaningful connections between image features and
patient survival. A comparison of these methods with our approach is presented in Table 3.

Table 3: Survival prediction performance comparison of proposed method and others

Method Accuracy MSE Median SE Std. SE SpearmanR

XGBoost [43] 48% 127,478.64 35,101.14 211,645.67 0.18
Linear regressor [44] 40% 70,807.34 22,492.98 134,647.33 0.54
SVR [44] 57% 156,437.29 40,916.55 256,928.47 0.19
Random forest [44] 67% 119,100.91 35,115.26 189,730.35 0.16
Voting-ensemble 73% 60,320.42 141.86 242.88 0.72

5 Survival Prediction
5.1 Feature Extraction

Following the segmentation of MRI images using the ResMHA-Net model, we extracted radiomic
features to characterize the segmented regions of interest (ROIs) quantitatively. PyRadiomics, a Python
library designed explicitly for this purpose, was employed for feature extraction [46]. The extracted
features can be broadly categorized into four groups: shape features, first-order, and basic texture
statistics, second-order statistics, and higher-order statistics.

Shape Features: These features capture the geometric properties of the segmented ROIs. Examples
include elongation, flatness, most minor and major axis lengths, maximum diameters in both 2D slices
(Maximum2DDiameterSlice) and 3D volume (Maximum3DDiameter), sphericity, surface area, and
voxel volume.

First Order and Basic Texture Statistics: This category focuses on the intensity distribution within
the ROIs. Features like autocorrelation, contrast, correlation, difference average (DifferenceAverage),
difference entropy (DifferenceEntropy), and difference variance (DifferenceVariance) quantify how
the intensity values are distributed within the segmented object.

Second Order Statistics: These features delve deeper into the spatial relationships between
neighboring voxels within the segmented ROI. They capture aspects like cluster prominence, shade,
and tendency alongside gray-level non-uniformity and variance. This provides information on how
intensity values interact spatially within the ROI.

Higher Order Statistics: This category focuses on more complex relationships between intensity
values within the segmented ROI. Features like high and low gray level emphasis and large and small
dependence emphasis capture how often specific intensity values appear and how they relate to their
neighbors non-linearly.

5.2 Ensemble Model

Our study delved into predicting patient survival outcomes using machine learning (ML) models.
We incorporated two key data sources: radiomic features extracted from predicted masks across three
datasets and clinical data encompassing patient age, survival duration, and surgical resection status.
Before analysis, we meticulously ensured data quality by normalizing and addressing missing values.
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To maximize the effectiveness of our models, we strategically split the dataset, allocating 80% for
training and 20% for testing the survival prediction models. For the classification task, we categorize
patients into three survival categories such as long survivors (>540 days), short survivors (<210 days),
and mid survivors (210–540 days) and adopted a multifaceted approach, employing a diverse set of
ML algorithms. Our ensemble approach integrates three distinct ML models for classification and two
models for regression as shown in Fig. 10. We used random forest (RF), multi-layer perceptron (MLP),
and gradient boosting classifier for classification. For regression, we employed random forest regressor
(RFR) and MLP regressor. RF, known for its ensemble learning strength, was utilized to construct
multiple decision trees and aggregate their predictions for enhanced accuracy and robustness. The
random forest classifier (RFC) was trained with hyperparameters optimized through GridSearchCV.
We explored various parameters, including the number of trees (n_estimators) ranging from 100 to 300,
the maximum depth of each tree (max_depth) from 10 to 30, the minimum number of samples required
to split a node (min_samples_split) from 2 to 15, and the minimum number of samples required to be at
a leaf node (min_samples_leaf) from 1 to 10. Additionally, we evaluated whether to apply class weights
to address the class imbalance, choosing between ‘balanced’ or no weights. This rigorous tuning
process enabled the RF to effectively aggregate predictions from multiple trees, leading to accurate
and reliable results. We experimented with MLPs by varying the number and size of hidden layers,
using configurations such as (64, 64), (128, 128), (256, 256), (128, 128, 128), and (256, 128, 64). To
determine the best configuration, we employed GridSearchCV to test various combinations of training
parameters. These parameters included different numbers of training epochs (from 100 to 300), batch
sizes (ranging from 16 to 128), and optimizers (like ‘adam’, ‘rmsprop’, and ‘sgd’). The MLP model was
trained using scaled features from the training data, with ‘sparse categorical cross-entropy’ as the loss
function and ‘accuracy’ as the performance metric. Gradient boosting, another powerful technique,
was employed to sequentially build models that rectify errors made by previous models, leading to
progressively improved predictive performance. We used GridSearchCV to find the best parameters
for the gradient boosting classifier. The search focused on parameters such as the number of boosting
stages (n_estimators) ranging from 100 to 200, the learning rate ranging from 0.01 to 0.2, and the
maximum depth of each tree (max_depth) from 3 to 5. Gradient boosting builds models sequentially,
where each new model tries to correct the errors of the previous ones. This process leads to better
performance over time. After determining the optimal parameters through GridSearchCV, we trained
the gradient boosting classifier on our training data using these best hyperparameters. To enhance
our classification model’s performance, we combined the top-performing classifiers: RF, MLP, and
gradient boosting classifier into a single ensemble model using a voting classifier. This voting classifier
employs a ‘soft’ voting strategy, aggregating the predicted probabilities from each model. Specifically,
it averages these probabilities and assigns the class label with the highest average probability to each
data point. This method leverages the strengths of each classifier, leading to improved overall accuracy
(see Fig. 11) and robustness of the classification results. The classification task prioritized accuracy
for evaluating the ensemble’s effectiveness in categorizing patient survival. For regression, metrics
included mean squared error (MSE) for prediction accuracy, Spearman’s Rho for rank correlation,
median absolute error (MAE) for outlier resistance, and the standard deviation (SD) of Errors for
assessing prediction consistency. The various loss functions employed in the survival prediction model
are shown below:

Sparse categorical crossentropy: We use sparse categorical cross-entropy to penalizes differences
between predicted probabilities and actual class labels, ensuring that the model focuses on minimizing
classification errors.
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Loss =
∑C

c=1
yc log(pc) (2)

yc represents the true probability distribution (one-hot encoded) for class c. pc represents the
predicted probability distribution for class c.

Mean squared error: We use the MSE loss function to measure the average squared difference
between predicted and actual values, with larger errors penalized more heavily. The training goal is to
minimize this value, ensuring model predictions closely match the actual data.

Loss = 1
n

n∑
i=1

(yi − Ẏi)
2 (3)

yi represents the true value of the target. ẏi represents the predicted value of the target. n is the
number of samples in the dataset.

Figure 10: Voting-based classifier and regressor ensembles for brain tumor survival prediction

Figure 11: Accuracy comparison of proposed model and other approaches

Regression analysis: To predict the exact survival duration of patients, we used two regression mod-
els: RFR and MLP Regressor. The RFR was trained with various parameters, such as n_estimators
ranging from 150 to 250 and max_depth from 15 to 25. These parameters were fine-tuned using
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GridSearchCV to find the best configuration for minimizing prediction errors. The MLP regressor,
on the other hand, was set up with different hidden layer sizes and trained to predict continuous
survival durations using MSE as the loss function, which helps measure the accuracy of predictions.
We created an ensemble of the best RFR and MLP regressor models using a voting regressor for
the regression task. This ensemble combines the predictions from both models by averaging them,
which generally improves the accuracy and reliability of survival duration predictions compared to
using a single model alone. We used GridSearchCV to systematically optimize hyperparameters for
both classification and regression tasks, improving model performance on new data. Our ensemble
approach combines predictions from multiple regression models to enhance accuracy, stability, and
robustness in survival duration predictions. We also employed various evaluation metrics to thoroughly
assess model performance.

6 Statistical Analysis

To rigorously assess the segmentation accuracy among various methods, we employed a compre-
hensive statistical analysis involving both analysis of variance (ANOVA) and Tukey’s honest significant
difference (HSD) test. The primary focus was on comparing the dice scores for the whole tumor, core
tumor, and enhancing tumor across several methods, including Me-Net, 3D-UNet, HTTU-Net, CNN,
CorrDiff, and our proposed method (ResMHA-Net). For each tumor class, we computed various
components of an ANOVA test to determine whether there were statistically significant differences
in dice scores among these methods. Specifically, we calculated key ANOVA metrics such as the
sum of squares total (SST), sum of squares between groups (SSB), sum of squares within groups
(SSW), mean squares (between and within groups), f-statistic, and p-value. These components were
computed separately for each tumor class (WT, CT, ET) to assess the differences in performance
among the segmentation methods. The f-statistic, which measures the variance ratio between groups
to the variance within groups, was used to assess the significance of the differences. High f-statistic
values suggest that there are meaningful differences between the group means. For our analysis, the
f-statistics obtained were 30.9331 for WT, 14.7731 for CT, and 22.0940 for ET, all with p-values less
than 0.05. This indicates a very low probability that the observed differences in segmentation accuracy
are due to random variation alone, confirming significant differences between at least two methods
for each tumor class as shown in Table 4.

Table 4: Anova results for dice scores across methods for WT, CT, and ET tumor classes

Tumor class SST SSB SSW df_between df_within MSB MSW f-statistic p-value

WT 0.380 0.282 0.098 5 54 0.056 0.001 30.933 < 0.05
CT 0.307 0.177 0.129 5 54 0.035 0.002 14.773 < 0.05
ET 0.422 0.283 0.138 5 54 0.056 0.002 22.094 < 0.05

To further pinpoint which specific methods showed significant differences, we applied Tukey’s
HSD test as a post-hoc analysis. Tukey’s HSD test is designed to perform pairwise comparisons
between group means following ANOVA, allowing us to identify which methods differ significantly.
This test provided detailed comparisons between all methods, highlighting those with significantly
better or worse performance. This approach offered a deeper understanding of the comparative
effectiveness of each segmentation method. For each tumor class (WT, CT, ET), we found significant
differences involving our proposed method (ResMHA-Net) compared to other methods. Specifically,
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Tukey’s HSD test results indicated that ResMHA-Net showed significant improvements in dice scores
over other methods, demonstrating the robustness and superiority of our approach. The detailed
results of the Tukey HSD test are presented in Table 5.

Table 5: Tukey HSD results for WT, CT, and ET

Tumor type Comparison p-adj Reject null hypothesis

WT

3D-UNet vs. ResMHA-Net 0.0003 Yes
CNN vs. ResMHA-Net 0.0141 Yes
HTTU-Net vs. ResMHA-Net 0.0000 Yes
Me-Net vs. ResMHA-Net 0.0000 Yes

CT

3D-UNet vs. ResMHA-Net 0.0005 Yes
CNN vs. ResMHA-Net 0.0000 Yes
CorrDiff vs. ResMHA-Net 0.0292 Yes
HTTU-Net vs. ResMHA-Net 0.0001 Yes

ET

3D-UNet vs. ResMHA-Net 0.0000 Yes
CNN vs. ResMHA-Net 0.0000 Yes
CorrDiff vs. ResMHA-Net 0.0022 Yes
HTTU-Net vs. ResMHA-Net 0.0000 Yes

The table includes attributes such as tumor class, which indicates the specific tumor class (WT,
CT, or ET); Comparison, which lists the pairwise comparisons between different methods, focusing
on comparisons involving our proposed method (ResMHA-Net); p-adj, which is the adjusted p-value
for each comparison, accounting for multiple testing to reduce the likelihood of Type I errors; and
Reject Null Hypothesis, which indicates whether the null hypothesis (no difference between methods)
is rejected for each comparison based on the adjusted p-value. A “Yes” in this column indicates a
statistically significant difference between the methods being compared. All comparisons involving our
proposed method (ResMHA-Net) show significant differences (p-adj < 0.05), affirming the enhanced
performance of our method across all tumor classes. In addition, we extended our statistical analysis
to evaluate the accuracy of various survival prediction models, including XGBoost, Linear Regressor,
SVR, RF, and the proposed method (voting-based ensemble model). ANOVA was used to assess
whether there were significant differences in accuracy among these models. The analysis yielded an f-
statistic of 58.4907 with a p-value less than 0.05, confirming that significant differences exist between
the models. Following the ANOVA, the Tukey HSD test employed for post-hoc analysis identified
significant differences between methods. Our proposed method significantly outperforms the linear
regressor, SVR, and XGBoost, while its performance is comparable to RF. Overall, our method
demonstrates superior accuracy compared to the other models, as shown in Table 6.
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Table 6: Multiple comparison of means-Tukey HSD, FWER = 0.05

Group 1 Group 2 Mean diff p-adj Lower Upper Reject

Linear regressor Voting-ensemble 32.4226 0.0 24.858 39.9872 True
Linear regressor Random forest 29.3061 0.0 21.7415 36.8707 True
Linear regressor SVR 20.2583 0.0 12.6937 27.8229 True
Linear regressor XGBoost 8.9006 0.0163 1.336 16.4652 True
Voting-ensemble Random forest −3.1165 0.733 −10.6811 −4.4481 False
Voting-ensemble SVR −12.1643 0.0009 −19.7289 −4.5997 True
Voting-ensemble XGBoost −23.522 0.0 −31.0866 −15.9574 True
Random forest SVR −9.0478 0.0144 −16.6124 −1.4832 True
Random forest XGBoost −20.4055 0.0 −27.9701 −12.8409 True
SVR XGBoost −11.3577 0.0019 −18.9223 −3.7931 True

7 Conclusion

Glioma tumor segmentation in MRI images is critical in medical imaging and neuro-oncology,
as it enables precise identification and delineation of tumor regions. Accurate segmentation is
essential for treatment planning, tumor progression, and treatment response evaluation. Given the
heterogeneous nature of gliomas, which often exhibit varying shapes, sizes, and intensities, an effective
segmentation framework is crucial for providing reliable and detailed tumor characterization. In this
study, we have introduced an innovative deep-learning framework explicitly designed for segmenting
multiclass glioma tumors in MRI images. Based on ResNet blocks with skip connections, our encoder
effectively captures hierarchical features while preserving intricate details and addressing challenges
associated with deep network training. The decoder utilizes transposed convolutional layers and
ResNet blocks to enhance spatial information recovery, thereby improving segmentation accuracy.
Integrating multi-head attention mechanism further enhances feature representation, contributing to
superior segmentation outcomes. Additionally, we have introduced a multiclass dice coefficient loss
function tailored for glioma tumor segmentation, which robustly guides model training by evaluating
spatial overlap between predicted and ground truth segmentations. Training and validation were
conducted on an NVIDIA A100 80 GB graphics card. Our approach includes a voting-based ensemble
for survival prediction, combining insights from multiple models to deliver more reliable prognostic
outcomes. The proposed model achieves a rapid two-second inference time and requires only 8 GB of
memory, demonstrating its efficient design and resource management. To support such performance,
the model is well-suited for deployment on the NVIDIA A100 80 GB graphics card, which provides
ample memory and computational power. The A100’s advanced capabilities ensure that the model runs
efficiently and easily handles demanding tasks, leveraging its high-bandwidth memory and processing
strength. Looking forward, our deep learning framework for multiclass glioma tumor segmentation
offers several future directions. These include enhancing attention mechanisms within the network
to adapt better to varied tumor characteristics and imaging conditions, developing specialized loss
functions to address data challenges, and collaborating with clinicians to validate our model on
diverse datasets. Additionally, we plan to include clinical validation and clinician feedback as a critical
component in our future work. These efforts aim to refine our approach for better clinical application
and patient outcomes in glioma management.
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