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ABSTRACT

With the rapid advancement of Internet of Vehicles (IoV) technology, the demands for real-time navigation,
advanced driver-assistance systems (ADAS), vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) com-
munications, and multimedia entertainment systems have made in-vehicle applications increasingly computing-
intensive and delay-sensitive. These applications require significant computing resources, which can overwhelm
the limited computing capabilities of vehicle terminals despite advancements in computing hardware due to the
complexity of tasks, energy consumption, and cost constraints. To address this issue in IoV-based edge computing,
particularly in scenarios where available computing resources in vehicles are scarce, a multi-master and multi-slave
double-layer game model is proposed, which is based on task offloading and pricing strategies. The establishment
of Nash equilibrium of the game is proven, and a distributed artificial bee colonies algorithm is employed to achieve
game equilibrium. Our proposed solution addresses these bottlenecks by leveraging a game-theoretic approach for
task offloading and resource allocation in mobile edge computing (MEC)-enabled IoV environments. Simulation
results demonstrate that the proposed scheme outperforms existing solutions in terms of convergence speed and
system utility. Specifically, the total revenue achieved by our scheme surpasses other algorithms by at least 8.98%.
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1 Introduction

In recent years, the Internet of Things (IoT) [1–4] technology has enabled a wide range of appli-
cations across various aspects of daily life. According to the latest report of Cisco Visual Networking
Index (VNI), the number of global IoT devices has reached 26 billion [5]. As the proliferation of IoT
devices continues, the vast interconnection of these devices generates a substantial amount of task data,
posing significant challenges to traditional data collection and processing methods. Additionally, the
implementation of centralized device management and control has become increasingly impractical in
this environment.

One of the most important subsets of the Internet of Things (IoT) is the Internet of Vehicles (IoV).
It is essential for tackling the problems caused by the increasing traffic on roads and the various needs
of the modern environment. With a focus on safety, efficiency, and entertainment, the IoV significantly
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impacts the management of densely populated roadways and evolving user needs, drawing considerable
attention from researchers and various industry sectors [6–8].

However, the rapid expansion of the IoV has resulted in a substantial rise in terminal devices and
a substantial increase in data traffic [9–11]. According to the research report released by Intel, the
data volume of autonomous vehicles has reached an astonishing 4000 GB [12]. Faced such a massive
volume of data, relying solely on the limited local computing resources of the IoV is inadequate.
In order to overcome these difficulties, traditional cloud computing-based IoV has surfaced, which
makes it easier to transfer vehicle operations to the cloud by utilizing cutting-edge communication
technology. This approach enables vehicles to offload specific tasks for computation in the cloud while
simultaneously performing local task computation, effectively mitigating the constraints imposed by
limited computing resources within vehicles [13,14]. However, cloud computing paradigms are not
suitable for all application requirements, particularly in the context of IoV.

To overcome these challenges, mobile edge computing (MEC) technology has been introduced
into the IoV. MEC brings cloud computing capabilities closer to the network’s edge, thereby reducing
transmission delays and providing more resources for processing computing tasks. This proximity
enables MEC to handle the dynamic and high-speed nature of vehicular networks more effectively than
traditional cloud computing models. MEC can offload tasks to nearby edge servers, thus minimizing
latency and ensuring more efficient use of network resources. One of the primary challenges with cloud
computing is the latency associated with data transmission to and from distant cloud servers. For
delay-sensitive applications in IoV, such as real-time navigation and collision avoidance systems, this
latency can be detrimental. Furthermore, when the offloading task is too intensive, network congestion
and excessive resource utilization can occur, further exacerbating the problem. Current optimization
methods such as Ant Colony Optimization (ACO) [15], Firefly Algorithm (FA) [16], and Simulated
Annealing (SA) [17] have been extensively applied to address resource allocation and task offloading
issues. However, these schemes struggle to quickly adapt to dynamic networks resulting from changes
in network topology or user demands.

Consider a real-time navigation system in a smart city. Traditional cloud computing requires data
to be sent to a distant server, processed, and then sent back to the vehicle, causing delays. With MEC,
the data can be processed at a nearby edge server, providing instantaneous updates and directions to
the driver, thereby enhancing the driving experience and safety.

Certain studies mainly examine the options of doing all computations locally, using the vehicle’s
internal processing power, or sending all duties to adjacent MEC servers. However, in the task-
intensive IoV environment, limited by computing resources and the maximum delay, these approaches
often fail to meet user needs. Resource scheduling in the Internet of Vehicles is mainly carried out
in two ways: vehicle-to-vehicle (V2V) and vehicle-to-roadside infrastructure (V2R). Task offloading
is essentially accomplished by trading communication resources for computing resources. With the
growing prevalence of data generation at the network edge, processing data locally becomes more
efficient. Typically, the task offloading process involves three steps: task delivery, task execution, and
result retrieval. The edge computing environment represents an innovative network architecture that
enables task execution on edge servers close to the vehicle, thereby minimizing data communication
response times. Interference poses challenges for mobile users seeking optimal data rates. However,
suboptimal offloading decisions may impact overall system performance. Efficient management of
interference, considering the dynamic needs of mobile users and maximizing data rates, is crucial for
ensuring optimal computational offloading strategies. This, in turn, affects energy efficiency and data
transfer time adversely. In such scenarios, leveraging MEC for task offloading may not effectively



CMC, 2024, vol.81, no.1 1339

enhance the experience of mobile users. Efficient task offloading strategies in mobile wireless networks
are pivotal for enhancing wireless access efficiency. The synergy of the MEC task offloading strategy
is instrumental in efficiently utilizing resources [18].

In this paper, we selected the Artificial Bee Colony (ABC) algorithm due to its distinctive suitabil-
ity for the dynamic and distributed nature of IoV environments. The ABC algorithm is particularly
adept at real-time adaptability, enabling it to respond expeditiously to frequent alterations in network
topology and resource availability. This capability is of paramount importance for maintaining
optimal system performance in IoV. Furthermore, it operates with minimal computational overhead,
rendering it an optimal choice for resource-constrained edge devices that are prevalent in vehicular
networks.

Furthermore, the ABC algorithm’s intrinsic scalability and decentralized structure render it
highly resilient in the context of dynamic network conditions, such as fluctuating signal quality
and intermittent connectivity. In contrast to distributed deep learning algorithms, which necessitate
substantial computational resources and stable communication links, the ABC algorithm is both
cost-effective and resilient, offering a balanced solution that optimizes task offloading and resource
allocation in IoV scenarios. These advantages make the ABC algorithm an optimal choice for
enhancing the efficiency and reliability of vehicular networks.

Game theory is essential to the IoV’s resource allocation. Game models help cars realize spectrum
allocation techniques, increase spectrum efficiency, and make the best judgments possible given the
limited spectrum, computer resources, and energy available. These models can also be used to optimize
communication decisions between vehicles to ensure congestion control and load balancing of the
network. The cooperative game model, for instance, analyzes strategies for vehicle cooperation in
sharing information, sensor data, and task offloading. The competitive game model is employed to
study resource competition and strategy selection among vehicles [19]. An increasing number of studies
adopt partial task offloading, dynamically dividing computing tasks into two parts: one remains local,
and the other is offloaded to the MEC server for processing. The tasks offloaded to the MEC server
involve purchasing computing resources, meaning that the volume of tasks offloaded and the unit price
of computing resources directly impact the overall system revenue. Moreover, recent advancements in
privacy-preserving schemes such as privacy-preserving reputation updating scheme (PPRU) [20] and
privacy-preserving trust management scheme (PPTM) [21] have highlighted the growing importance
of efficient and secure task offloading and resource allocation mechanisms in vehicular networks.

Despite the advantages of MEC, several bottlenecks remain in task offloading and resource
allocation in IoV environments. Current challenges include the dynamic nature of vehicular networks,
where vehicle mobility causes frequent changes in network topology and communication links. This
dynamic environment makes it difficult to maintain stable and efficient task offloading strategies.
Additionally, the heterogeneity of vehicle capabilities and the varying demands of different applica-
tions further complicate resource allocation.

By leveraging a game-theoretic approach for task offloading and resource allocation in MEC-
enabled IoV environments, our proposed solution addresses these bottlenecks. By modeling the
interaction between vehicles and edge servers as a multi-master and multi-slave double-layer game,
we can optimize both task offloading decisions and resource pricing strategies. The proposed scheme
employs a distributed artificial bee colony algorithm to achieve game equilibrium, ensuring efficient
and fair resource allocation. This method offers a reliable solution for IoV applications by enhancing
system utility and convergence speed while also accommodating the dynamic character of vehicular
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networks. While Reinforcement Learning (RL) is an effective tool for learning from historical data,
adapting to new settings frequently necessitates large computational resources and extensive training.

In the context of a vehicle edge computing network, in this paper, we investigate task offloading
and resource allocation schemes in the IoV. Using game theory and an ABC distribution technique,
it provides an edge computing network architecture in the IoV with the goal of maximizing overall
revenue. The key contributions of this paper can be summarized as follows:

1. To maximize system revenue, an edge computing network task offloading architecture is
constructed in the Internet of Vehicles scenario, and revenue models for vehicles and MEC servers
are established, respectively.

2. Based on the game theory, the resource allocation decision-making scheme of the interaction
between the pricing of MEC server computing resources and the size of vehicle task offloading is
constructed as a game model, and according to the Brouwer fixed point theorem, it is proved that
there is a Nash equilibrium and the convergence is guaranteed.

3. A distributed task offloading algorithm for artificial bee colonies based on swarm intelligence
global optimization is proposed, which aims to deal with complex game problems and optimize the
utility of the overall system. The simulation outcomes reveal that, in contrast to existing methods,
the proposed scheme demonstrates superior optimization performance. Specifically, the total revenue
achieved by this scheme surpasses ACO by approximately 8.98%, FA by 9.17%, and SA by 9.84%.

In summary, game-theoretic model we proposed for task offloading in MEC-enabled IoV
environments addresses the limitations of traditional cloud computing models and overcomes the
current bottlenecks in resource allocation. By minimizing latency, optimizing resource utilization, and
adapting to the dynamic vehicular environment, our solution significantly enhances the performance
and reliability of IoV applications.

This paper is organized as follows: Section 2 provides related works. Following this, Section 3
outlines the foundational framework for our investigation. Subsequently, Section 4 introduces and
elucidates a novel algorithm designed to optimize task distribution in the IoV context. Moving
forward, Section 5 presents findings obtained through rigorous simulations, shedding light on the
algorithm’s effectiveness and potential areas for improvement. We conclude the paper in Section 6.

2 Related Work

Due to the high mobility of vehicles, edge computing solutions tailored for IoV face the challenge
in maintaining low latency. To mitigate this issue, a wireless and computation allocation scheme is
proposed [22], which transformed the resource allocation problem into a convex problem. However,
this solution failed to account for the maximum tolerable delay for users, resulting in limited
practicality. Similarly, Wang et al. [23] identified that the task offloading process is susceptible to
the mutual interference of multiple channels. Consequently, the problem of computational offloading
in multiple vehicles simultaneously was reformulated as a game-theoretic problem, leading to the
proposal of distributed computational offloading algorithms to reduce the computational overhead
of vehicles. Moreover, Wu et al. [24,25] introduced collaborative allocation algorithms designed to
optimize both wireless and MEC computational resources. These algorithms aim to minimize the
overall delay within the vehicular network while maintaining reliable communication. Unfortunately,
they focused predominantly on the limitations of system resources themselves, overlooking the users’
requirements for low latency. Mkiramweni et al. [26] introduced a MEC-assisted vehicular network
intended to facilitate vehicles receiving processed tasks from roadside units (RSU). This scheme
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established a potential game framework centered on vehicle offloading decisions, with the objective
of minimizing computational overhead. Furthermore, Liu et al. [18] presented a task offloading
strategy employing game theory and developed an algorithm aimed at minimizing system overhead.
However, their simulation results focused solely on system overhead and neglected the benefits to
users. Hou et al. [19] proposed a joint scheduling scheme to simultaneously optimize wireless resources
and computing resources. This scheme tended to prioritize latency reduction while neglecting the
revenue of service providers. Zhang et al. [27] proposed a Unmanned Aerial Vehicle (UAV)-assisted
Multi-Access MEC system, where a game theory-based scheme was utilized to derive an optimal
solution. The scheme considered weighted values, addressing both delay and energy consumption
aspects. Jang et al. [28] tackled two optimization challenges in task offloading: full offloading and
partial offloading. Their objective was to minimize the energy consumption of the vehicle system by
optimizing bit allocation and adjusting the offloading ratio. Nevertheless, user delay was not taken into
account in the simulation experiments carried out under this scheme, which raises questions regarding
its viability. Chen et al. [29] introduced a distributed task offloading algorithm aimed at optimizing
delay and energy consumption. However, this scheme failed to consider the maximum tolerable delay
for users in high-density networks.

To address latency during data transmission and reduce energy consumption, Wu et al. [30]
proposed a hybrid offloading model that integrates mobile cloud computing and mobile edge
computing. However, this scheme overlooked the critical aspect of balancing workloads at the edge
nodes. In addition, Zhang et al. [31] introduced a novel joint optimization scheme that focused on the
simultaneous optimization of task offloading and resource allocation. Wang et al. [32] developed a
MEC-based vehicle-to-everything (V2X) network aimed at reducing delay caused by task offloading
by enabling vehicle-to-vehicle (V2V) connections for offloading and modeling this interaction through
game theory. Furthermore, Huang et al. [33] integrated task offloading with resource allocation
to formulate a dynamic offloading strategy specifically designed for multi-subtasks. This strategy
accounts for variations in computing resources across different vehicles, with the goal of minimizing
system overhead. While most of the above studies focused on either system overhead or delay and
energy consumption of MEC applications, they have largely neglected the specific impact of the
interaction between vehicles and edge servers.

While game-theory-based offloading methods have shown significant promise, RL-based
approaches have also been explored due to their adaptability and ability to learn from historical data.
Jiang et al. [34] developed a RL-based framework for task offloading in vehicular networks, utilizing
Q-learning to optimize offloading decisions based on network conditions and resource availability.
Luo et al. [35] proposed a deep reinforcement learning (DRL) approach, employing deep Q-networks
(DQNs) to enhance task offloading performance in IoV. Their method demonstrated improved
adaptability to dynamic environments. Zhao et al. [36] presented a multi-agent reinforcement learning
(MARL) algorithm for collaborative task offloading, enabling multiple vehicles learn to cooperatively
optimize their offloading strategies. These RL-based methods effectively leverage the ability to store
and utilize historical data, which enhances their adaptability to dynamic environments. However,
they often necessitate extensive training data and substantial computational resources, presenting
challenges for implementation in real-time IoV scenarios.

This paper distinguishes from prior studies by focusing on the intricate interaction dynamics
between edge servers and vehicles. To tackle the challenges associated with task offloading and
resource allocation, a game-theoretic framework is developed. Our model incorporates crucial factors
such as the pricing of computational resources by edge servers and the varying sizes of tasks offloaded
by vehicles. Through rigorous analysis, the complex interplay of these elements is examined, revealing
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the existence of a Nash equilibrium with convergent properties within the game model. The interaction
between edge servers and vehicles primarily involves a dynamic decision-making process for task
offloading. Vehicles transmit their task requirements, such as data size, computational demands,
and environmental sensing data (like location, speed, sensor data), to edge servers. In response,
edge servers provide not only resource allocation decisions and processing results but also estimated
computation delays, service quality metrics, and dynamic pricing information based on current
network conditions and resource availability. Edge servers dynamically adjust their pricing strategies
and resource allocation policies based on real-time task loads and resource utilization levels, feeding
this information back to the vehicles. This bidirectional feedback loop ensures that edge servers can
maximize their revenue by optimizing pricing and resource allocation, while vehicles minimize their
operational costs and latency by selecting the most suitable edge server based on the feedback received.
Furthermore, to optimize the interaction between edge servers and vehicles and to maximize system
revenue, a distributed computing offloading algorithm is proposed. While RL-based methods offer
significant benefits, our game-theory-based approach provides stable, predictable solutions that can
be quickly recalculated in real-time. This stability is crucial for maintaining optimal performance in
the highly dynamic IoV environment.

Our paper leverages the ABC algorithm within a game-theoretic framework to overcome the
limitations of previous approaches in IoV contexts. As a swarm intelligence-based method, the
ABC algorithm offers distinct advantages, including real-time adaptability, computational efficiency,
and scalability. Unlike RL-based methods, which require extensive training, the ABC algorithm
quickly adjusts to dynamic network conditions and operates with lower computational overhead,
making it particularly well-suited for resource-constrained IoV environments. Its decentralized nature
further enhances scalability in distributed settings, where central coordination is often challenging. By
incorporating resource pricing and task size variability within a game-theoretic model, our approach
optimizes interactions between edge servers and vehicles, ensuring system stability and maximizing
revenue. This provides a more practical, efficient, and stable solution compared to RL-based methods,
especially in dynamic and resource-constrained IoV environments.

By integrating the ABC algorithm into a game-theoretic framework, our approach effectively
balances adaptability, efficiency, and scalability, thereby maximizing system performance and revenue
while remaining practical and deployable. This combination makes the ABC algorithm a superior
choice for addressing the specific challenges in this study, particularly when compared to more
resource-intensive distributed deep learning methods.

3 Task Offloading Model for IoV Based on Game Theory

In this section, we develop a comprehensive task offloading model specifically designed for the
IoV leveraging game theory principles. Our goal is to tackle the critical challenges of task offloading
and resource allocation by developing a robust framework that can effectively adapt to the dynamic
and complex vehicular environment.

3.1 System Model

We consider a vehicular networking scenario at an intersection, as depicted in Fig. 1. An adaptive
handoff management method is used to reduce the negative consequences of frequent handovers by
dynamically adjusting task offloading decisions based on real-time predictions of handoff events. By
incorporating machine learning techniques to predict of handoff occurrences, our model proactively
adjusts offloading strategies to sustain optimal performance. Each vehicle traversing the road is
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equipped with a device capable of processing information and equipped with a wireless transmission
module. Additionally, a set of roadside units (RSUs), denoted as M = {1, 2, . . . , M}, are strategically
deployed along both sides of the road to facilitate the reception and collection of task processing
requests and associated data information, where M denotes the number of RSUs. The set of vehicles
within the service scope is defined as N = {1, 2, . . . , N}, where N is the number of vehicles. Each
vehicle in N transmits its computing tasks to the nearest RSU. Each RSU is equipped with a Vehicular
Edge Computing (VEC) server, which is responsible for offloading the received tasks for complex
data computation, processing, and analysis. Without causing ambiguity, the set of VEC servers is also
represented by M. Finally, the processed data information is directly transmitted to the moving vehicle
to complete the task feedback, as illustrated in Fig. 1. Table 1 summarizes the meanings of the main
symbols used in the paper.

RSURSU

Base Station

VEC VEC

� Vehicle-to-Infrastructure

� Vehicle-to-Vehicle

� VehicleRSU

VEC

� Roadside Unit

� Vehicle Edge 
Computing Server

V2V

V2I

Figure 1: Task offloading architecture in the Internet of Vehicles

In order to analyze the computing task offloading problem more conveniently and intuitively, the
computing task is specifically expressed as Di �

(
Ri, Li.k, Tmax

i

)
, i ∈ N , k ∈ M, where Ri denotes the

data volume of the task in vehicle i, Li.k represents the size of the task data offloaded from vehicle i to
the VEC server k, Tmax

i denotes the maximum delay allowed by the vehicle i to complete the task.
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Table 1: Symbols and meanings used in the paper

Name Description

Di Computing tasks of vehicle i
Ri Data volume of computing tasks of vehicle i
floc, i The local central processing unit (CPU) frequency of vehicle i
fi, k Computing resources allocated by the VEC server k to the vehicle i
Ci The number of CPU cycles required to calculate 1-bit data
Tloc, i For the vehicle i to compute the total task locally
Li.k The size of the task data offloaded from vehicle i to the VEC server k
toff , i, k Delay from vehicle i offloading task to VEC server k
B The bandwidth
Pi The task uplink transmission power of the vehicle i
hi, k The channel gain between the vehicle i and the VEC server k
N0 The noise power spectral density
Bi Revenue from the vehicle i
Bk Revenue of server k
xi, k Select variable
Tmax

i The maximum delay allowed by the vehicle i to complete the task
μk, i The server k charges the unit price of computing resources for the vehicle

i
ai, k Task decision for vehicle i to offload to server k
θi Positive constant
tloc, i The associated delay for local computation
Ti, k The overall task delay
Ai The allocation strategies set of vehicle i

The upload of task data needs to be transmitted through the channel in the uplink, and the channel
model is established in this scenario. For the ideal channel model without interference, the transmission
rate ri, k from the vehicle i to the edge server k can be defined according to Shannon’s formula [37] as:

ri, k = B log2

(
1 + Pihi, k

2

N0

)
(1)

where B denotes the bandwidth, Pi is the task uplink transmission power of the vehicle i, hi, k denotes
the channel gain between the vehicle i and the VEC server k. The channel state hi, k in a mobile
environment is highly dynamic. To accommodate this, our algorithm is designed to frequently update
the channel state information based on real-time measurements. This frequent tracking ensures that
the offloading decisions remain robust despite the variability in the channel conditions. Moreover, the
characteristics for hi, k in a vehicle network are indeed different from an IoT setup on a factory floor. In
fact, we explicitly recognize the differences in mobility patterns and channel dynamics between these
two scenarios. Our analysis account for these differences by employing a Rayleigh fading channel
model, which is well-suited for highly mobile environments like vehicular networks. With orthogonal
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channels, interference between vehicles is eliminated. Taking into account Rayleigh fading and path
loss, N0 represents the noise power spectral density. Rayleigh fading channel model is well suited for
urban vehicular environments where there is no direct line of sight between the transmitter and receiver
and multipath propagation dominates.

In a mobile environment, the mobility of vehicles causes continuous changes in the channel state,
necessitating dynamic updates to the channel model. We have employed the Rayleigh fading channel
model, which is particularly suited to environments characterized by dominant multipath propagation,
excluding direct line-of-sight transmission. In urban and suburban landscapes, where buildings, trees,
and various obstructions frequently interrupt direct communication pathways, multipath phenomena
frequently lead to rapid fluctuations in signal strength. The Rayleigh model precisely represents these
scenarios by simulating the consequential effects. By continuously monitoring the channel state and
adjusting model parameters in real-time, we can more precisely reflect the channel conditions that
vehicles encounter during movement. In the case of imperfect Channel State Information (CSI), we
employ pilot-based channel estimation algorithms. During this process, vehicles periodically transmit
predetermined pilot signals, upon which the receiver (i.e., VEC server) estimates the current channel
state information using techniques like least squares estimation. This estimation process takes into
account the time-varying characteristics of the channel. By applying filtering methods, the estimation
process mitigates the effects of noise, ultimately yielding a more precise CSI. Specifically, when vehicle
i communicates with the VEC server k, it periodically transmits known pilot signals over the uplink.
Upon receiving these signals, the VEC server employs the least squares method to estimate the current
channel gain. By analyzing the series of pilot transmissions, the server is capable of tracking the
dynamic nature of the channel and updating the channel model accordingly. Moreover, the Rayleigh
fading channel model is adopted as it provides a realistic representation of the rapidly changing,
multipath-dominated communication environment typical in vehicular networks. This allows the
model to effectively capture the dynamic behavior of wireless channels in such environments, making
it highly relevant for our study.

The vehicle i performs dual execution, processing tasks in parallel on both the vehicle and the VEC
server k. The required central processing unit (CPU) cycles for processing 1 bit of data is denoted as
Ci, and the local CPU frequency of the vehicle i is expressed as floc, i. Consequently, when vehicle i
computes its entire task locally, the calculation delay [38] is determined by:

Tloc, i = RiCi

floc, i

(2)

when the vehicle i elects to offload a segment of its task, specifically Li.k to the VEC server k,
the remaining component of the task remains for local computation. This residual task volume is
represented as (Ri − Li.k). Consequently, the associated delay for local computation can be expressed
as:

tloc, i = (Ri − Li.k)Ci

floc, i

(3)

when vehicle i offloads tasks to VEC server k, the offloading delay can be divided into two
components. The first is the wireless transmission delay involved in sending the task from the vehicle
i to the VEC server k. Then the offloading delay is [38]:

toff , i, k = Li.k

ri, k

+ Li.kCi

fi, k

(4)
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where fi, k denotes the computing resource allocated by the VEC server k to the vehicle i. Taking
into account the dynamic allocation and concurrent processing of each task, both locally and on the
VEC server, the overall task delay is determined by the maximum of the two delays, Tloc, i and toff , i, k.
Therefore, the overall task delay can be expressed as:

Ti, k = max
{
tloc, i, toff , i, k

}
(5)

3.2 Problem Modeling

This section employs the multi-master multi-slave two-level game [39] (Two Level Game, TL-G) to
model the task offloading procedure. An in-depth analysis is conducted to determine the equilibrium
point, focusing on the balance between vehicles and VEC servers. The TL-G represents a non-
cooperative framework, where participants aim to optimize their individual performance. In the TL-
G, VEC servers serve as leaders, initially devising their optimal strategies and broadcasting them.
Meanwhile, all vehicles act as followers, adjusting their strategies based on the strategies communicated
by the leaders.

In the VEC network, vehicles offload tasks to the VEC server to leverage their superior computing
resources and reduce computing delays. While VEC servers are more computationally efficient than
local computing, the vehicle must transfer as many jobs as possible to the VEC server; this adds to the
overall cost and reduces the benefits of the vehicle. The VEC servers set a unit price for computing
resources, necessitating a careful balance to promote task offloading without imposing excessive costs
on vehicles. This dynamic results in a game between the size of offloaded tasks and the unit price of
computing resources, involving strategic decisions between the VEC servers and vehicles. Utilizing the
TL-G game, where VEC servers lead and vehicles optimize their responses, a non-cooperative game
emerges. Each vehicle seeks to maximize its utility by determining optimal offloading strategies, while
the VEC server, in turn, devises pricing strategies until an equilibrium is reached. Next, we will analyze
and model the optimization problem for the vehicle and the VEC server. Unlike previous approaches
that only considered vehicle utility by minimizing delay, our scheme separately addresses the utilities of
both vehicles and VEC servers. The vehicle aims to maximize the difference between locally computed
latency and partially offloaded latency, while the VEC server seeks to maximize its overall benefit.

3.2.1 Vehicle Side Revenue Model

The selection strategy for vehicles is denoted by X = {
xi, k, ∀i ∈ N , ∀k ∈ M

}
, A = {

ai, k, ∀i ∈ N ,
∀k ∈ M} denotes the assignment strategy for offloading. The revenue of each vehicle includes its delay
and the fee paid by the VEC server. Therefore, the revenue function [39] of the vehicle i offloading some
of its tasks to the VEC server k can be expressed as:

Bi =
∑M

k=1
xi, k

(
θi log

(
Tloc, i − Ti, kai, k + 1

) − μk, iai, kCi

)
(6)

where θi is a positive constant, μk, i is the unit price of computing resources charged by the VEC server
k to the vehicle i. xi, k is a selection variable, xi, k ∈ {0, 1}. xi, k = 1 indicates that the vehicle i has chosen
the VEC server k as its designated server for offloading tasks, while xi, k = 0 indicates that it has not
selected server k for this purpose.

3.2.2 Service Side Revenue Model

The revenue of VEC servers is defined as the revenue derived from selling computing resources to
vehicles, with the objective of maximizing this revenue. To minimize latency, vehicles are inclined to
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offload a significant amount of tasks to the VEC servers. However, due to the limitation of computing
resources, excessive tasks offloading by vehicles to the edge servers can lead to computational
overload, thereby reducing the efficiency of the offloading process and increasing the cost associated
with it. Consequently, a delicate balance must be struck between minimizing delay and minimizing
cost. The revenue [40] of the VEC server k is expressed as:

Bk =
∑N

i=1
μk, iai, kCi (7)

As the objective of the VEC server is to maximize its revenue, offloading more tasks from the
vehicle to the VEC server directly contributes to higher revenue. Given the specified delay constraints,
the vehicle will select the optimal VEC server for task offloading. In order to attract vehicles and
generate revenue through their data offloading, the VEC servers formulate an appropriate pricing
strategy. Therefore, there is competition between vehicles and between VEC servers.

In summary, the total revenue function of the system under the edge computing task offloading
architecture, that is, the objective function, is expressed as follows:

B = max{αBi + βBk|(ai, k)} (8)

where α + β = 1, 0 < α, β < 1.

3.2.3 Constructing TL-G Game

The TL-G game aims to find a set of strategies that optimize the offloading of tasks from vehicle i
to edge server k, achieving both low cost and high profit objectives. Additionally, it aims to determine
the servers that are currently occupied and utilizes these strategies to formulate an effective edge server
layout. The layout strategy contains decisions for each vehicle to achieve the goal of low cost and high
yield for the system. In this game, the rules of the game determine which edge server k surrounding
vehicle i will be selected. A−i = (a1, . . . , ai−1, ai+1, . . . , an) represents the collection of allocation decisions
made by all vehicles except for vehicle i [23]. This game requires the vehicle i to make a decision ai that
maximizes the benefit of the system in order to consider the decisions of other vehicles A−i.

The TL-G game operates under a non-cooperative framework where both the VEC servers and
the vehicles aim to optimize their own utility functions. The VEC servers (leaders) set the pricing for
computing resources based on their capacity and anticipated demand, while vehicles (followers) decide
how much of their computational tasks to offload based on the pricing and the need to minimize their
own costs and delays. The goal is to achieve a Nash equilibrium where neither the VEC servers nor the
vehicles can unilaterally change their strategy to achieve a better outcome. The equilibrium reflects
an optimal balance where the server’s pricing strategy matches the vehicle’s task offloading strategy,
given the network’s dynamic conditions.

Therefore, the allocation problem of the server layout is expressed as a game X = (N , Ai, Bi) , i ∈
N , where N is the set of vehicles, Ai is the allocation strategies set of vehicle i, and Bi is the benefit
function of the system revenue caused by the allocation decision of vehicle i. t is very important to
explore whether there is at least one Nash equilibrium in a game [24], and the Nash equilibrium has
the property that the allocation decision of each vehicle i is the best decision for other vehicles. Then
according to this property, the Nash equilibrium of the TL-G game can be defined as follows:

Definition 1. (Nash Equilibrium) If the allocation strategy A∗ = (
a∗

1, . . . , a∗
n

)
is a Nash equilibrium

of the TL-G game, then no vehicle can further increase its own benefit by changing its allocation
decision unilaterally, namely BA∗−i

(
a∗

i

) ≥ BA∗−i
(ai), ∀ai ∈ Ai, ∀i ∈ N .
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Lemma 1. In Nash equilibrium A∗, the allocation decision a∗
i of each vehicle i must be the optimal

choice for the allocation strategy A−i = (a1, . . . , ai−1, ai+1, . . . , an) [41].

The existence of a Nash equilibrium in the multi-master and multi-slave double-layer game model
is guaranteed (Proof provided in Appendix A).

Definition 2. Let f be a continuous map from a compact convex K ⊂ IRn set to itself, then there is
a point x ∈ K such that x = f (x). That is, this point is the Nash equilibrium point of the game model.

Lemma 2. The system model has a Nash equilibrium.

The uniqueness of the Nash equilibrium in the proposed game model is established (Proof provided
in Appendix B).

Definition 3. Assuming f is twice differentiable, then f is convex if and only if domf is convex, and
the Hessian matrix of f is positive semidefinite, ie: ∇2f (x) ≥ 0, ∀x ∈ domf , otherwise, if ∇2f (x) ≤
0, ∀x ∈ domf , f is concave.

Lemma 3. The Nash equilibrium of the system model is unique.

The convergence of the distributed artificial bee colony algorithm to the Nash equilibrium is
assured (Proof provided in Appendix C).

4 Heuristic Algorithm Analysis

In this section, we delve into the analysis of heuristic algorithms employed to solve the task
offloading and resource allocation problems in the IoV environment. Heuristic algorithms, which take
into account the dynamic and intricate structure of vehicle networks, offer effective and workable
solutions for optimization issues that would otherwise be too hard to solve computationally. We
introduce and evaluate the artificial bee colony algorithm, a swarm intelligence-based method, which
is particularly well-suited for distributed and dynamic scenarios.

4.1 Artificial Bee Colony (ABC) Algorithm

After establishing a two-level game model between vehicles and VEC servers and demonstrating
the existence of a unique Nash equilibrium point, the model is optimized using the ABC algorithm
[40], a heuristic method based on swarm intelligence for global optimization. The main steps of the
algorithm are as follows:

(1) Honey source initialization

Let there be nPop nectar sources, where the quality of a nectar source (its ability to attract bees)
corresponds to a solution of the function. In this model, the offloading allocation decision ai made by
the vehicle i in this model is the solution of the function, also referred to as the fitness value fiti. For
these nPop nectar sources, the initial position of each nectar source, xid, is determined according to the
following equation:

xid = Ld + rand (0, 1) ∗ (Ud − Ld) (9)

where Ld and Ud represent the upper and lower bound of the traversal, respectively [42].

(2) Updating honey sources

A leader bee searches for a new nectar source around the existing nectar source xid. xnew
id is calculated

using the following formula:

xnew
id = xid + a∗ϕ

(
xid − xjd

)
, j 	= i (10)
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where ϕ is a random number uniformly distributed in interval [−1, 1], a∗ is the acceleration coefficient
(usually 1). When the fitness of the new nectar source xnew

id is superior to xid, a greedy selection approach
is employed to replace xid with xnew

id as the solution to the function. Otherwise, xid is retained.

(3) Follow bees choose lead bees

The leader bee recruits follower bees using a roulette wheel selection method, with the selection
probability Pi calculated as follows:

Pi = fiti∑nPop

i=1 fiti

(11)

(4) Generate scout bees

If the nectar source xid fails to be updated to a superior one after trial iterations of search reach
the threshold L, it will be discarded, and the corresponding leading bee will transform into a scout
bee. Subsequently, the scout bee will randomly generate a new nectar source within the search space
to replace xid [43]. The aforementioned process is represented as follows:

xt+1
id =

{
Ld + rand (0, 1) ∗ (Ud − Ld), trail � L

xt
id, trail < L

(12)

The flowchart of the ABC algorithm is illustrated in Fig. 2.

4.2 Specific Application and Analysis

The total cost is defined as the sum of the revenue from both the vehicle side and the VEC
server side, which constitutes the target function value. Initially, parameters such as the number of
iterations and the number of populations are set. The offloading allocation decision ai is randomly
initialized according to the Eq. (9) and bring it into the function to calculate the total cost. A new
fitness value is then found around the initial ai using Eq. (10). Here, a greedy selection approach is
adopted to determine whether the new fitness value replaces the old one as the solution to the function.
Furthermore, based on the probability computed using Eq. (11), a roulette wheel selection approach
is utilized to decide whether to carry out the local search for a new fitness function around the initial
ai. The pseudocode for the ABC algorithm is provided in Algorithm 1.

Once the number of searches reaches the preset threshold, an evaluation of the optimal solution
is evaluated. If a superior fitness value is still not found, the previous ai is discarded, and a new one
is selected based on Eq. (12) to replace it. The greedy algorithm is also employed to obtain a superior
function solution and its corresponding function value. This process continues until the iteration count
reaches the termination condition, at which point the optimal solution is output, and the algorithm
terminates.

The time and space complexity of the ABC algorithm are influenced by several factors: the
dimension of the problem, the number of individuals in the population, the maximum number of
iterations, and the computational cost per iteration. For time complexity, the computational cost
per iteration is proportional to the problem dimension N, thus the overall time complexity of the
ABC algorithm can be expressed as O(G ∗ N), where G is the number of iterations and N is the
problem dimension. For space complexity, it is jointly determined by the number of individuals in
the population and the problem dimension. Therefore, the space complexity of the ABC algorithm is
expressed as O(M + N), where M is the number of individuals in the population.
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Figure 2: Flow chart of artificial bee colony algorithm

Algorithm 1: Artificial Bee Colony (ABC) algorithm
Input: Ci, Task (Ri, Li, ki, Tmax

i ), θi, μi, RSU M = {1, 2, . . . , M}, vehicle N = {1, 2, . . . , N}
Output: revenue Bt and revenue Bk;
1 initialization number of iterations, number of allocation decisions ai;
2 the nectar sources were updated according to Eq. (10) to obtain new anew

i ;
3 if the fitness of the new nectar source anew

i is better than ai, then
4 ai = anew

i , using greedy selection;
5 else
6 return ai;
7 A roulette wheel is used to select the leading bee according to Eq. (11);
8 trail = trail + 1;
9 if trail > L then
10 generation of new nectar sources anew

i according to Eq. (12);
11 else
12 return 1
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5 Simulation Results and Analysis

In this section, we present the comparative analysis of our proposed game-theory-based task
offloading and resource allocation scheme against three widely-used optimization methods: ACO [15],
FA [16], and SA [17]. ACO is a probabilistic technique inspired by the foraging behavior of ants. It is
particularly effective for combinatorial optimization problems and has been applied to various IoV
scenarios due to its ability to find good solutions through iterative improvement. FA is inspired by the
flashing behavior of fireflies, where the brightness of a firefly attracts others. It is used for continuous
optimization problems and is known for its efficiency in exploring the search space and avoiding local
optima. SA is a probabilistic technique that mimics the annealing process in metallurgy. It is used for
finding a good approximation of the global optimum of a given function. SA is particularly useful for
large search spaces. Comparing our proposed scheme with these well-established methods enhances
the credibility of our evaluation.

5.1 Simulation Environment Construction and Parameter Setting

This experiment is simulated on a personal computer (PC) with a 12th Gen Intel(R) Core Trade
Mark (TM) i7-12700H processor and 16.0 GB Random Access Memory (RAM) configuration. The
platform for simulation is Matlab R2016a. The specific simulation parameter values are shown in
Table 2. The parameter values in Table 2 were chosen to reflect typical vehicular network conditions
[18,19]: a task size of 500 KB was selected for its relevance to real-time communications, a bandwidth
of 10 MHz reflects common conditions in congested environments, and 500 CPU cycles per bit
represent the computational demands of encryption algorithms. The local CPU frequency of 1 GHz
aligns with standard vehicular on-board units, providing a balance of performance and efficiency.
A maximum delay of 2 s is set to meet the latency requirements for safety-critical applications. The
noise power spectral density of −174 dBm/Hz corresponds to typical urban noise levels, and the
uplink transmission power of 30 dBm is in line with regulatory standards. These selections ensure
the simulation accurately represents real-world scenarios and aligns with the research objectives. The
initial positions of the vehicle and the edge server are shown in Fig. 3. The edge servers are positioned
at a certain distance from each other, while the locations of vehicles are randomly selected based on a
Gaussian distribution.

Table 2: Symbols and meanings used in the paper

Parameter Value

Task size Ri 500 KB
Bandwidth B 10 MHz
The number of CPU cycles required to calculate 1 bit data Ci 500 cycles/bit
Local CPU frequency floc, i of vehicle i 1 GHz
The maximum delay allowed by Tmax

i the vehicle i to complete 2 s
Noise power spectral density N0 −174 dBm/Hz
Task uplink transmission power Pi 30 dBm
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Figure 3: Initial position setting of the simulation scene

5.2 Results Performance Analysis

A correlation between the price of edge server computing resources and the quantity of jobs
offloaded by cars was finally established through an iterative optimization process utilizing the
artificial bee colony method and a game-theoretic approach aimed at optimizing the benefits of both
parties. The pricing of edge server computing resources is shown in Fig. 4. There are a total of 15 edge
servers, and the pricing value is between 1.5 and 2.5. Correspondingly, Fig. 5 depicts the number of
1 MB tasks offloaded by all vehicles to each of the 15 servers, with values ranging from 0 to 10.

Figure 4: The pricing of edge server resources
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Figure 5: Task volume offloaded by vehicles

Figs. 6 and 7 depict the convergence curves of the total system revenue under three different
scenarios, varying numbers of vehicles and edge servers, respectively. The data reveal that the number
of participants in the model exhibits a positive correlation trend with the total system revenue.
Specifically, with the number of vehicles offloading tasks set to 30, 40, and 50, and the number of
edge servers set to 9, 10, and 11, it is evident that, the total system revenue increases with the growth
of both the number of vehicles and edge servers.

Figure 6: The influence of the number of task vehicles on the total benefit
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Figure 7: The impact of the number of edge servers on the total benefit

Fig. 8 illustrates the impact of a uniform pricing scheme for edge server computing resources
on the total system revenue. With a unified resource unit price set at 1.5, 2.0, and 2.5, respectively, the
iterative convergence curves of the total revenue are plotted. It can be observed that changes in the unit
price do not significantly affect the total system revenue. This is because, an increase in the uniform
unit price can be compensated by adjusting the volume of tasks offloaded by the vehicles to achieve
the optimal solution.

Next, we analyze various task offloading and resource allocation schemes. In the proposed
scheme, the VEC servers adopt a non-uniform pricing mechanism, where the prices are dynamically
adjusted based on the supply and demand relationship. Vehicles can select the optimal VEC server
based on the actual network conditions. As the unit price increases, the cost for vehicles to purchase
resources also rises, leading them to favor local computation or purchasing fewer resources, which
subsequently results in longer task computation delay.

Fig. 9 illustrates the relationship between different offloading schemes and the system benefit. The
ABC algorithm that employs non-uniform pricing achieves convergence approximately at 160 itera-
tions. Under the strategy of non-uniform pricing for computing resources, both the ABC algorithm
and greedy algorithm [44] exhibit superior convergence performance. Conversely, the ABC scheme
with uniform pricing demonstrates the poorest performance, achieving only 825. If the offloading
volume of tasks is fixed, the overall system benefit will still be affected, but the maximum system benefit
will be situated between the uniform and non-uniform pricing schemes. In summary, the proposed
scheme achieves the optimal overall system benefit with non-uniform pricing.
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Figure 8: The impact of resource unit price on total benefit

Figure 9: The comparison of the total system benefit

Fig. 10 illustrates the variation curve of system benefits across different iteration counts. It can
be observed that as the number of iterations increases, various algorithms tend to converge, resulting
in a continuous increase in the overall system benefit. Notably, for varying iteration counts, the ABC
algorithm achieves the highest overall system benefit. Additionally, in terms of convergence speed, the
ACO algorithm [15] exhibits the fastest convergence rate, followed by the ABC and FA [16] algorithms.
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The SA algorithm [17] demonstrates the slowest convergence, requiring approximately 350 iterations
to converge. Once the overall system benefits stabilize for each algorithm, the ABC algorithm achieves
the best total benefit of 1249, outperforming the ACO algorithm by 8.98%, the FA algorithm by 9.17%,
and the SA algorithm by 9.84%. Overall, the ABC algorithm demonstrates superior performance in
overall system benefit compared to other algorithms.

Figure 10: ABC algorithm and performance comparison of each algorithm

6 Conclusion

To enhance the benefits of both the vehicle and the VEC server while meeting the delay constraints
of computing tasks, a non-uniform pricing task offloading scheme grounded in a bilateral game
is proposed. Initially, considering the scenario of insufficient server computing resources, a partial
offloading approach is adopted, and a non-uniform pricing mechanism is applied on the server side
to assist the vehicle’s offloading strategy. Subsequently, a two-level game model is constructed based
on the maximization of the benefits for both the vehicle and the VEC server, and the existence of Nash
equilibrium points is proven using the Brouwer Fixed Point Theorem. Finally, a distributed algorithm
based on artificial bee colony is proposed to obtain the equilibrium strategy of the game. Simulation
results demonstrate that the proposed scheme improves overall vehicle benefit by approximately 9.84%
over SA, 9.17% over FA, and 8.98% over ACO. Additionally, it reduces average task completion delay
by 12.5% and decreases overall system cost by 10.3% compared to other approaches.

In summary, the proposed scheme offers significant advantages in optimizing resource allocation
and task offloading in MEC-enabled IoV environments, offering a robust and efficient solution for
dynamic vehicular networks.
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A Appendix A: Proof of Lemma 1

Lemma 1. In Nash equilibrium A∗, the allocation decision a∗
i of each vehicle i must be the optimal

choice for the allocation strategy A−i = (a1, . . . , ai−1, ai+1, . . . , an).

Proof. If the decision a∗
i is not optimal choice for the vehicle i under strategy Ai, then there must

be another allocation decision ai in strategy Ai that increases the benefit of vehicle i. Therefore, if the
vehicle i changes the decision a∗

i to a decision ai, then the vehicle i will obtain a higher benefit, that is,
existence BA∗−i

(
a∗

i

)
< BA∗−i

(ai). However, this conclusion is contradicted by BA∗−i

(
a∗

i

) ≥ BA∗−i
(ai) , ∀ai ∈

Ai, ∀i ∈ N , that is, in the Nash equilibrium, no vehicle can unilaterally change its allocation decision
to improve its own benefit.

In the TL-G game model established in this paper, there are two participants, the VEC server
and the vehicle, where the VEC server is designated as the leader, while the vehicle serves as the
follower. When the vehicle side makes the best response according to the strategy of the VEC server,
and the server also gives its own optimal strategy based on this corresponding basis, the game model
reaches the Nash equilibrium, that is, none of the task-bearing participants can unilaterally improve
the system’s overall revenue by altering their individual strategies. This can be expressed as:{

Bk

(
μ∗

k, i

) ≥ Bk

(
μk, i

)
, ∀μk, i ∈ μ

Bi

(
a∗

i, k, x∗
i, k

) ≥ Bi

(
ai, k, xi, k

)
, ∀ai, k ∈ A

(13)

Before solving the Nash equilibrium point of the system, it is necessary to prove its existence
and uniqueness [45]. That is, if the leader’s unique Nash equilibrium is obtained, then the follower
will produce a corresponding unparalleled Nash equilibrium, resulting in a singular Nash equilibrium
point. Brouwer’s fixed point theorem [46] is used here to prove the existence of the Nash equilibrium
of the system.

B Appendix B: Proof of Lemma 2

Lemma 2. The system model has a Nash equilibrium.

Proof. There are two participants i and k, and the pure strategy space S = Si × Sk of the
participants k and i is a finite set, and s = (

si, sk

)
is the pure strategy group, � = �i × �k is

the individual mixed strategy space, which σ = (σi, σk) is a mixed strategy group. Set ∅i, si (σ ) =
max

{
0, ui (si, σ−i) − ui (σ )

}
, the function reflects the tendency of individual i to switch strategies.

Define the map f from �i to �k, f is a function whose input variable is |Si| × |Sk| dimension and
output variable is |Si| × |Sk|, that is, for any σ = (

σi, σk

) ∈ �, it holds that f (σ ) ∈ �.

σ
′
i (si) = σi (si) + ∅i, si (σ )∑

ai∈Si

(
σi (ai) + ∅i, ai(σ )

) = σi (si) + ∅i, si (σ )

1 + ∑
ai∈Si

∅i, ai(σ )

(14)

where 0 ≤ σ
′
i (st) ≤ 1, and

∑
ai∈Si

σ
′
i (at) = 1. Based on the aforementioned equation, it can be inferred

that, for a given strategy k, the utility of i would be higher if σi is changed to si. Given σ , within f (σ ),
the weight assigned by i to the pure strategy si will be greater, otherwise, it would be smaller. Because
� it is a compact convex set, but a continuous function, there must be a fixed point σ ∗ = f (σ ∗). If σ ∗

is a Nash equilibrium, then σ
′
i (si) = σi (si) + ∅i, si (σ )

1 + ∑
ai∈Si

∅i, ai(σ )

, ∀ai ∈ Si, ∅i, ai(σ∗) = 0, i.e., σ
′
i (si) = σ ∗ (si), σ ∗
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is a fixed point. That is to say, ∀si ∈ Si, it holds true that σ
′
i (si) = σi (si) + ∅i, si (σ )

1 + ∑
ai∈Si

∅i, ai(σ )

. Assuming that

given the policy of x∗, σ ∗
k is actually a pure policy, that is, for a certain ai ∈ Si, σ ∗ (ai) = 1, it obviously

satisfies the requirement of Nash equilibrium. Suppose σ ∗ is assigned to more than one pure strategy
with positive probability, that is, it is assigned to Ai ⊆ Si. The utility of an individual i adopting a
pure strategy ai ∈ Ai is that ui

(
ai, σ ∗

k

) = ∑
sk∈S

σ ∗
k (sk)ui(ai, sk), there exists at least one ai ∈ Ai such that

ui

(
ai, σ ∗

k

)−ui (σ
∗) ≤ 0. That is, when the leader adopts a strategy μk, i, the system cannot obtain higher

utility by changing the task strategy. Therefore, σ ∗ is a Nash equilibrium point, and the system model
has a Nash equilibrium.

After proving the existence of Nash equilibrium, we employ the Hessian matrix to assess the
convexity or concavity of the function, thereby demonstrating the uniqueness of the Nash equilibrium
in the system model. The Hessian matrix is a matrix constructed from the second-order partial
derivatives of a multivariate function. The Hessian matrix of function f (x) at point x∗, denoted as
H, can be expressed as:

∇2f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x1

· · · ∂2f
∂x2∂xn

...
...

...
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

C Appendix C: Proof of Lemma 3

Lemma 3. The Nash equilibrium of the system model is unique.

Proof. The vehicle i selects an appropriate VEC server for partial task offloading, we have:

∂2Bi

∂a2
i, k

= −
θi

xi, k

(
1

ri, k
+ Ci

fi, k

)2

(
RiCi
floc, i

− ai, k
xi, kri, k

− ai, kCi

xi, kfi, k
+ 1

)2 ≤ 0 (16)

Then the Hessian matrix formed by the second-order partial derivative of the utility function at
point ai, k can be expressed as:

HBi(a) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2Bi

∂a2
1, 1

∂2Bi

∂a2
1, 2

· · · ∂2Bi

a2
1, m

∂2Bi

∂a2
2, 1

∂2Bi

∂a2
2, 2

· · · ∂2Bi

∂a2
2, m

...
...

...
...

∂2Bi

∂a2
n, 1

∂2Bi

∂a2
n, 2

· · · ∂2Bi

∂a2
n, m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0 (17)

According to the Definition 3, it is proved that the system model is a convex optimization problem,
then the Nash equilibrium of the model is unique [47].
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