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ABSTRACT

To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection
on infrared images of wind turbine blades (WTB), this paper proposes a technique that combines morphological
image enhancement with an improved Otsu algorithm. First, mathematical morphology’s differential multi-scale
white and black top-hat operations are applied to enhance the image. The algorithm employs entropy as the
objective function to guide the iteration process of image enhancement, selecting appropriate structural element
scales to execute differential multi-scale white and black top-hat transformations, effectively enhancing the detail
features of defect regions and improving the contrast between defects and background. Afterwards, grayscale
inversion is performed on the enhanced infrared defect image to better adapt to the improved Otsu algorithm.
Finally, by introducing a parameter K to adjust the calculation of inter-class variance in the Otsu method, the weight
of the target pixels is increased. Combined with the adaptive iterative threshold algorithm, the threshold selection
process is further fine-tuned. Experimental results show that compared to traditional Otsu algorithms and other
improvements, the proposed method has significant advantages in terms of defect detection accuracy and reducing
false positive rates. The average defect detection rate approaches 1, and the average Hausdorff distance decreases
to 0.825, indicating strong robustness and accuracy of the method.
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1 Introduction

Monitoring and maintaining the health of WTB has long been one of the challenges facing the
global wind energy industry [1]. The blade is one of the core components of a wind turbine [2]. The
normal service life of a WTB is about 20 years [3]. Damage to WTBs significantly affects the efficiency
of power generation, leading to increased maintenance costs and potentially causing safety risks and
environmental issues. Severe damage to the blades may result in fracture or detachment, endangering
the surrounding environment and personnel safety, while also potentially increasing noise pollution
and adversely affecting the ecological environment. Therefore, timely and effective damage detection
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of WTB is crucial to avoid failures, formulate maintenance plans, and ensure the sustainable operation
of wind turbines. Common detection techniques such as acoustic emission, ultrasound, and infrared
thermography can effectively monitor the health status of the blades and prevent potential problems.
Furthermore, implementing a healthy maintenance management strategy can not only reduce labor
costs and minimize downtime but also prevent unnecessary replacements, thereby improving energy
harvesting efficiency [4].

In recent years, the field of defect detection has widely adopted deep learning and neural network
technologies [5–8]. Deng et al. [9] developed an enhanced S-U-Net network for denoising wind turbine
rotor blade images, employing weakly supervised convolutional neural network (CNN) and visual
geometry group 16 (VGG16) for feature extraction, and used an enhanced particle swarm optimization
(PSO) algorithm with K-means clustering algorithm for defect classification, enabling early defect
detection. Masita et al. [10] developed a high-accuracy defect detection technique for WTBs using
ResNet-based Convolutional Neural Networks (Res-CNN3), which processes drone-captured laser
and RGB images through a residual network and CNN, predicting defect areas with a selective
search algorithm to enhance maintenance strategies. Qiu et al. [11] introduced an effective small
target detection method using a YOLO model for the automatic visual inspection of WTBs. This
approach combines CNN with the YOLO framework to create a deep learning structure designed for
precise defect recognition. To address the challenge of detecting tiny defects, they developed YOLO-
based small object detection approach (YSODA), a YOLO-based technique that employs a multi-
scale feature pyramid to improve detection accuracy by leveraging features from various depths in the
network.

Otsu and its improved methods of defect detection techniques are widely used due to their
simplicity and efficiency, and they do not require the large amount of training data that deep learning
methods need, making them more practical compared to deep learning approaches. Otsu’s method,
also known as the maximum interclass variance method, was proposed by Otsu in 1978 traditional
Otsu thresholding method may fail. To address this challenge and improve the accuracy of target
segmentation, researchers have proposed various improved schemes. Mishra et al. [12] introduced an
improved Otsu thresholding technique that combines the IHS color space and a cylindrical model to
facilitate the integration and feature extraction of multi-sensor satellite images. They further refined
the selection of Otsu thresholds using a genetic algorithm and enhanced spatial details within the
cylindrical model to reduce bias indices. Researchers such as Hu et al. [13] proposed a quadtree-based
variant of the Otsu algorithm specifically for detecting cracks in caliper images. This algorithm first
divides the image, then calculates the second-order moment of the grayscale histogram to characterize
the complexity of image textures, selecting those regions with higher complexity as candidate regions.
The algorithm iterates over these regions to find blocks where the foreground-to-background ratio is
close, performing threshold operations to determine the optimal threshold. Truong et al. [14] proposed
a new improved algorithm based on Otsu’s method. This algorithm utilizes entropy theory and does
not require manual parameter adjustment, effectively detecting defect regions that are extremely
small compared to the product surface area. Xie et al. [15] primarily introduced an Improved Whale
Optimization Algorithm (IWOA), which was applied to the two-dimensional Otsu image segmentation
method in order to enhance the accuracy of steel plate surface defect image segmentation. However,
if the image is affected by uneven illumination, these methods may produce erroneous segmentation
results.

The curved geometric structure of WTB leads to uneven illumination in infrared images, and
the infrared images obtained under active thermal excitation have low clarity and blurred details,
which affect defect identification and accurate assessment. This study addresses the challenges of
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using infrared images to detect defects in WTBs by proposing a non-destructive testing method
that combines mathematical morphology with an improved Otsu algorithm. The method involves
preprocessing the images using differential multi-scale top-hat operations and grayscale inversion to
highlight defects, followed by optimizing the Otsu algorithm by increasing the target weight and using
adaptive iterative thresholding. Experimental results show that this method significantly improves
defect detection accuracy and reduces false positives, demonstrating its robustness and precision.

In the second section of this paper, we explore techniques related to image enhancement. The
third section provides a detailed description of the improved Otsu algorithm. Experimental results
and their analysis, based on infrared images, are presented in the fourth section. The final part of the
paper discusses the experimental findings and considers the potential impacts and significance of this
research in the future.

The main contributions of this paper can be summarized as follows: (1) Introduced the use of
differential multi-scale white top-hat and black top-hat operations from mathematical morphology
to enhance the infrared images of wind turbine blades. (2) Utilized entropy as an objective function
to guide the iterative process of image enhancement, ensuring that the enhancement highlights defect
characteristics effectively. (3) Modified the traditional Otsu algorithm by introducing a parameter K
to adjust the inter-class variance calculation, increasing the weight of target pixels, thus enabling the
algorithm to distinguish between defects and background more accurately. (4) Integrated an adaptive
iterative thresholding algorithm to further fine-tune the threshold selection process, improving its
precision and adaptability.

2 Image Preprocessing
2.1 Morphological Enhancement Operator

In the field of mathematical morphology, the dilation regions in an image by moving the dilation
process expands the bright regions in an image by moving a structuring element (SE) and selecting
the maximum values; conversely, the erosion process reduces these regions by choosing the minimum
values. Opening involves first eroding the image and then dilating it on the basis of the erosion; while
closing involves first dilating followed by erosion. These two operations provide crucial functions for
image processing. Here are the specific definitions of opening and closing [16]:

(f ◦ S) = (f ΘS) ⊕ S (1)

(f · S) = (f ⊕ S) ΘS (2)

where, Θ, ⊕, ◦ and · represent erosion, dilation, opening, and closing operations, respectively; S is the
SE; f are the original images.

The top-hat transform is a technique used to extract image details by utilizing basic morphological
operations such as erosion, dilation, opening, and closing. In morphological processing, the white
top-hat transform extracts bright details by calculating the difference between the original image and
the image processed by the opening operation. Conversely, the black top-hat transform extracts dark
details by subtracting the image processed by the closing operation from the original image. The
combination of these two transforms effectively captures fine features in the image. The following
formula represents the enhancement operator [17]:

fe = f + (f − f ◦ S) − (f · S − f ) (3)
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where, fe is the enhanced image. Researches by Kang et al. and He et al. [17,18] have shown that as
the scale of the structuring element increases, traditional enhancement operators can cause excessive
enhancement in images. To address this issue, a differential-scale morphological enhancement oper-
ator was proposed. Based on the definitions of white and black top-hat transforms, the following
differential top-hat transform is obtained:

ft(i+k) = f − (f ΘSi) ⊕ Si+k (4)

fb(i+k) = (f ⊕ Si+k) ΘSi − f (5)

where, ft(i+k) represents the differential white top-hat transform, fb(i+k) represents the differential black
top-hat transform, Si denotes the circular structuring element of scale i, and Si+k denotes the circular
structuring element of scale i + k. The differential multi-scale morphological enhancement operator
is as follows:

fe = f + (
ft(i+k)Θg − fb(i+k)Θg

)
(6)

where, g is a 3 × 3 structural element.

2.2 Adaptive Cutoff Threshold

In this section, the author discusses how to select an appropriate scale for structural elements
to achieve optimal image enhancement. Different scales of morphological enhancement operators
need further optimization to ensure the selection of the appropriate scale size. In the research on one-
dimensional signal operating, References [19–23] provided a thorough discussion on the performance
of structural elements with different sizes in extracting signal features. The findings indicate that as
the size of these structural elements increases, their ability to extract signal characteristics initially
improves and then gradually declines.

Román et al. [24] conducted a study in the field of two-dimensional image processing, exploring
the application of entropy ‘E’ in multi-scale morphological image enhancement. They proposed E as
a metric to evaluate the capability of image feature extraction. This paper selected infrared images
of laboratory-manufactured bubble defects and infrared thermal images of damaged WTBs as test
subjects to verify the applicability of entropy in this study of enhancing defect images. Fig. 1 illustrates
the trend of changes in E.

Fig. 1a,b respectively shows the normal image and infrared thermal image of a premade bubble
defect, while Fig. 1d,e respectively displays the normal image and infrared thermal image of a blade
crack defect. As demonstrated in Fig. 1, images captured using traditional camera techniques exhibit
certain limitations in revealing defects, with defect characteristics being notably obscure. This may
impact subsequent analysis and judgment processes. In light of this, the present study employs
infrared acquisition as a supplementary method. Infrared imaging technology, with its sensitivity to
temperature and thermal variations, effectively detects defects that are not easily identifiable in the
visible spectrum. The application of this method significantly enhances the accuracy and reliability of
defect detection, particularly when diagnosing surface and sub-surface damage in materials, where its
advantages are even more pronounced. Fig. 1c,f shows the fitted curves of entropy variations as the
structural elements gradually increase. The experimental results indicate that the trend of entropy is
similar to the trend of signal feature extraction capability. As the structural elements increase, the image
feature extraction capability first increases and then decreases, with an optimal scale range existing.
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Figure 1: The trend of entropy with changes in SE (a) Normal image. (b) Infrared image. (c) Entropy
and structural elements. (d) Normal image. (e) Infrared image. (f) Entropy and structural elements

Entropy, as a metric to gauge the richness of information in an image, is employed here as the
objective function for the adaptive differential multi-scale morphological enhancement algorithm.
Its core aim is to control the termination conditions of the iterative image enhancement process by
quantifying the amount of information in the image. This method leverages the characteristics of
entropy to adjust the degree of image enhancement, with the goal of optimizing image quality and
the readability of the information. High entropy values typically indicate that an image contains more
details and information, while low entropy values suggest that the image content is relatively uniform,
with less information. During the image enhancement process, by monitoring and controlling the
entropy of the image, the iteration can be effectively guided, ensuring that the image maintains detail
integrity and avoids noise amplification due to over-enhancement. Thus, entropy, as an objective
function, provides a precise control mechanism for image enhancement, aiming to achieve the
best possible image quality and information readability. Therefore, this paper proposes an iterative
thresholding method based on entropy to select the appropriate scale. Entropy is a measure used to
quantify the degree of disorder or complexity in an image. It is determined by calculating the histogram
distribution of the image to find the probability of occurrence for each pixel intensity value. The
formula is as follows [25]:

E (f ) = −
L−1∑
k=0

P (k) log2 (P (k)) (7)
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where, f represents the original image, k represents the pixel value in the image, and P (k) represents
the probability of that pixel value occurring in the image. When the input image is a grayscale image,
L = 2b (where b is typically 8). The higher the value of entropy, the richer the details and information
content in the image; conversely, lower entropy indicates relatively fewer details and less information
content in the image.

The experimental results indicate that determining the scale i value solely based on the maximum
value may lead to over-enhancement of the image. Therefore, we introduce a stopping criterion to
limit the number of iterations of the enhancement algorithm. At each step, by calculating the absolute
difference between the current and previous enhanced images E and dividing it by the absolute value of
the current iteration E, we obtain EI to measure the degree of contrast enhancement. The calculation
formula is as follows:

EI =
∣∣Ecurrent − Eprevious

∣∣
|Ecurrent| (8)

When the measure of contrast enhancement EI exceeds a user-defined constant ζ , the iterative
process is stopped. The index at this point corresponds to the most suitable structural element scale.

2.3 Adaptive Differential Multiscale Enhancement Algorithm Flow

The method proposed in this paper enhances image detail features by iteratively adjusting the
threshold of the objective function E to obtain the optimal scale interval. The specific process are as
follows:

Algorithm 1: Adaptive differential multiscale enhancement algorithm
1: Input the infrared defect image and convert it to a grayscale image.
2: Determine the scale range (choosing the number of iterations to be within forty).
3: Applying differential multi-scale white and black top-hat transforms on the original image to obtain
bright and dark detail images.
4: Using the differential multi-scale morphological operator for image enhancement.
5: Calculate the value of E corresponding to each scale.
6: Set the cutoff constant ζ . Determine the optimal scale.
7: Based on the determined optimal scale, enhance the original image using an improved differential
multi-scale morphological operator.

Note: The selection of the constant ζ follows these principles: Keeping the difference scale k
constant, gradually adjust the scale i of the structural elements and calculate the EI values at each
scale. The average of these EI values, EIA is obtained and set twice as a cut-off constant. If the EI
value for a scale exceeds this cut-off constant, then that value i is selected as the optimal scale. After
determining the best scale i and keeping it unchanged, the value of the differential scale k is then
selected in the same way. After selecting the optimal scale i, keep it constant and repeating the selection
of the value of the difference scale k. Usually, the largest EI value is chosen as the truncation constant
when selecting the difference scale k because the difference scale k tends to be smaller.

To better adapt to the defect detection algorithm, the enhanced image needs to undergo grayscale
inversion. The preprocessed image is shown in Fig. 2.
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(a) Original image (b) Enhanced image (c) Greyscale inversion

Figure 2: Preprocessed images (a) Original image. (b) Enhanced image. (c) Greyscale inversion

From Fig. 2b, it can be seen that morphological processing not only enhances the image contrast
but also improves the detail features, making the edge features of defects more prominent. Additionally,
grayscale inversion further optimizes the image quality, providing more suitable conditions for
subsequent threshold segmentation.

3 Improved Otsu Algorithm
3.1 The Traditional Otsu Algorithm

The Otsu method is a technique used to separate the target and background in an image. It
finds an optimal threshold by calculating the method that maximizes the between-class variance,
effectively separating the target and background pixels. During the segmentation process, the Otsu
method can automatically select the optimal threshold, thereby achieving image segmentation and
detection processing. The between-class variance is represented as [26]:

σ 2 = ω1 × μ2
1 + ω2 × μ2

2 (9)

where ω1 and ω2 are the weights of the target defect pixels and background pixels, respectively. μ1 are
μ2 the mean gray levels of the target pixels and background pixels, respectively.

If the between-class variance reaches its peak, the corresponding gray level is the threshold T
determined by the Otsu method. The specific mathematical expression is as follows [26]:

T = arg max
0<t<L

σ 2 (10)

3.2 Improved Otsu Algorithm

When detecting defects in infrared images of WTBs, the original Otsu thresholding method has
significant limitations. Due to the non-uniform brightness in the captured infrared images, the Otsu
method, which is based on grayscale contrast, struggles to accurately segment the defect areas from
the background on the blades. The segmentation result using the original Otsu algorithm is shown in
Fig. 3.

As shown in Fig. 3, the segmentation effect of the original Otsu algorithm is not ideal. The
segmentation threshold of this method is located on the right side of the peak in the histogram, while
the predicted optimal threshold is at the green line at the bottom left of the histogram. Consequently,
this algorithm incorrectly classifies some background pixels as crack targets, failing to accurately
separate the cracks.



940 CMC, 2024, vol.81, no.1

(a) Original image (b) Detection result (c) Histogram and threshold

Figure 3: Detection results of WTB cracks using the original Otsu algorithm (a) Original image. (b)
Detection result. (c) Histogram and threshold

To improve the accuracy of defect detection and reduce the impact of uneven brightness, this study
optimized the Otsu algorithm by increasing the weight of the target pixels. This adjustment makes the
threshold closer to the actual grayscale value of the defects, resulting in a more accurate display of
the defect locations and contours in the detection results. The calculation method of the inter-class
variance for the optimized algorithm is as follows:

σ 2 = k × ω1 × μ2
1 + ω2 × μ2

2 (11)

where k represents the cumulative gradient of the grayscale values.

Cumulative gradient refers to accumulating the histogram of the image to form a cumulative
gradient histogram. The peak in the cumulative histogram reflects the prominent features of the orig-
inal histogram. By examining the cumulative histogram, one can more accurately identify important
features in the image, thereby providing a more reliable basis for threshold selection. The calculation
process for k is as follows:

p (t) = N (t)
N

(12)

u (t) =| p (t + 1) − p (t) | (13)

k = 1 −
t∑

i=1

u (i) (14)

where, N (t) represents the number of pixels with a grayscale value of t, p (t) denotes the probability of
the grayscale value t, and u (t) indicates the gradient value of the probability p (t). The segmentation
result of the WTB infrared crack image using the improved Otsu algorithm is shown in Fig. 4.
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(a) Original image (b) Test result (c) Histogram and threshold

Figure 4: Segmentation results of the improved Otsu algorithm (a) Original image. (b) Test result. (c)
Histogram and threshold

As shown in Fig. 4, the results processed by the improved algorithm are superior to those of the
original algorithm. Fig. 4c demonstrates that the segmentation threshold of the improved algorithm
shifts to the left, closer to the optimal threshold. However, due to the low grayscale contrast between
cracks and the background in infrared images, as well as the presence of uneven brightness, accurate
segmentation of cracks cannot always be achieved. When the threshold is set too high, the detected
cracks may merge with the brighter parts of the background. To address this issue, this paper proposes
an adaptive threshold segmentation method to reduce the impact of uneven illumination, ensuring
perfect separation of the target and background during detection. Adaptive threshold computation
is widely used in the field of statistical signal processing, optimizing signal detection performance by
dynamically adjusting the threshold [16,17,27]. The main process of the algorithm is as follows:

Step 1: Perform image preprocessing using differential morphological enhancement and grayscale
inversion to enhance image detail features and reduce uneven brightness;

Step 2: Optimize the threshold selection process by using the threshold obtained from the
improved Otsu algorithm as the initial value, denoted as TS;

Step 3: Divide the infrared defect image into two categories, target and background, based on the
threshold TS, denoted as t and b, respectively;

Step 4: Calculate the average grayscale values of t and b, denoted as At and Ab, respectively, and d
use to represent the difference between At and Ab;

Step 5: The formula for the adaptive threshold calculation is as follows:

Tf = α ×
(

1 − 1
f (d)

)
× At +

(
1

f (d)

)
× Ab (15)

where, f (d) = log10 (10 + β × d). The value range of β is [0,10], and its value is positively correlated
with the average grayscale value of the image.

Step 6: If TS = Tf , then the final threshold value is T = Tf ; otherwise, assign the value of Tf to
TS, and repeat steps Step 3 to Step 5 until TS converges.

As observed from Fig. 5, the defect detection rate exhibits a trend with respect to the changes in
α and β. An increase in α leads to a decrease in the defect detection rate, while an increase in β results
in an enhancement of the defect detection rate. Although a lower value of α may yield marginally
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improved evaluation metrics, it could also compromise the complete detection of defects in images
with low contrast. In order to balance these considerations, this study has opted for an α value of 0.65
and a β value of 10.

Figure 5: The trend of defect segmentation rate with respect to α and β

By applying the adaptive threshold segmentation using the improved Otsu algorithm, the segmen-
tation effect of the improved algorithm in this paper is shown in Fig. 6.

(a) Original image (b) Test result (c) Histogram and threshold

Figure 6: Crack detection results of the improved algorithm in this paper (a) Original image. (b) Text
result. (c) Histogram and threshold

As shown in Fig. 6, the improved algorithm not only clearly identifies the cracks but also ensures
that the final threshold meets the optimal threshold criteria. Additionally, the algorithm demonstrates
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strong robustness when processing infrared images under conditions of uneven brightness, significantly
enhancing the accuracy of defect detection in WTBs.

4 Experiments and Analyses

To verify the effectiveness of the improved algorithm proposed in this paper for detecting defects in
WTBs, a comparison was made with the Otsu algorithm and the improved Otsu methods proposed by
References [14,15,28] and the improved algorithm proposed in this paper. A comprehensive evaluation
was conducted from both subjective and objective perspectives.

4.1 Experimental Apparatus and Dataset

The experimental dataset for this study was sourced from on-site collections at wind farms in
the Inner Mongolia region, as well as from pre-prepared samples in the laboratory. The dataset
encompasses a variety of blade defect types, specifically including cracks, wrinkles, and bubbles.
These defect types were captured using high-precision image acquisition devices to facilitate in-depth
analysis. This dataset provides detailed information under both practical and controlled conditions
for research into wind turbine blade damage detection techniques, thereby aiding in the development
and validation of algorithms and detection methods.

Our team has developed and manufactured a continuous thermal excitation infrared non-
destructive testing device, which is primarily used for blade inspection in wind farms. The experimental
setup consists of the following components:

a. Two halogen lamps (with a power of 1 kW) for providing the necessary thermal energy.

b. A specialized heatproof lamp cover to ensure safety and minimize heat loss.

c. An electronic control system to regulate and manage the operation of the entire device.

d. A small motor to drive any movable parts within the equipment.

e. A computer equipped with an i7 processor for data processing and analysis.

f. An infrared thermal recorder, model NECR300W2, was used to capture thermal images of the
inside of the blade.

4.2 Subjective Evaluation

To evaluate the performance of different algorithms in WTB detection. This study conducted
a comparative analysis using the Otsu method, Xiong’s algorithm, Truong’s algorithm and Xie’s
algorithm, and the improved algorithm proposed in this paper. The detection results of various
methods are shown from Figs. 7–10.

From Fig. 7, it can be observed that due to the low contrast between the cracks and the
background as well as the presence of uneven brightness, all three comparison methods resulted in
the cracks blending with the background, failing to effectively detect the crack defects. Fig. 7e is
particularly inapplicable, completely failing to detect any defects. In contrast, the method proposed in
this paper can effectively segment the cracks and avoid the issue of uneven brightness. However, due
to the small difference in grayscale values between the upper part of the crack and the background, it
is difficult for the algorithm to distinguish effectively. Although this issue affects the performance of
the method under specific circumstances, our approach still demonstrates good overall performance
in most standard tests.
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Figure 7: WTB crack detection results (a) Original. (b) Otsu. (c) Xiong. (d) Truong. (e) Xie. (f) Ours

Figure 8: WTB wrinkle detection results (a) Original. (b) Otsu. (c) Xiong. (d) Truong. (e) Xie. (f) Ours

Figure 9: WTB crack detection results (a) Original. (b) Otsu. (c) Xiong. (d) Truong. (e) Xie. (f) Ours
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Figure 10: WTB bubble detection results (a) Original. (b) Otsu. (c) Xiong. (d) Truong. (e) Xie. (f) Ours

In Figs. 8 and 9, in scenarios where there is a high contrast between leaf defects and their
background, the first three detection methods are all capable of identifying defects. However, these
methods retain excessive background pixels in their detection results. Notably, Figs. 8e and 9e still fail
to achieve effective defect detection. Compared to the other four detection techniques, the enhanced
Otsu algorithm proposed in this study demonstrates superior performance in detecting WTB defects.

In Fig. 10, due to the high brightness of the background area on the left side of the original image,
the algorithms in Fig. 10b,d only barely reveal the bubble contours, and their detection performance
is extremely poor; the algorithm in Fig. 10e fails to detect the bubble defects. The algorithm in
Fig. 10c detected the bubble defects’ contours well but included some false noise points within the
red rectangular box compared to our method; the algorithm in Fig. 10f. Our method clearly detected
the bubble contours without including noise points.

4.3 Objective Evaluation

This study employs the Average Hausdorff Distance (ADH), Defect Segmentation Rate (DSR),
Misclassification Error (ME) and structural similarity (SSIM) as evaluation metrics to objectively
assess the performance of the proposed algorithm. Unlike other metrics based on confusion matrices,
the Hausdorff Distance (HD) is a spatial distance-based metric. HD measures the distance between
actual and predicted segmentations by focusing on contour similarity. Since HD is sensitive to outliers,
most applications use the Average Hausdorff Distance. The defect segmentation rate quantifies the
effectiveness of segmenting defect areas, with values ranging from 0 to 1; higher values indicate better
detection performance. The higher the misclassification error, the worse the detection performance. If
the ME value is 1, it means that no defects were detected, whereas an ME value of 0 indicates excellent
detection performance. In the table, bold values represent the best metric values.

4.3.1 Average Hausdorff Distance

The Average Hausdorff Distance is a method for measuring the greater value between the directed
Hausdorff Distance d (A, B) and its reverse direction d (B, A). This metric is used to quantify the
maximum degree of mismatch between the segmentation result A and the ground truth B. A smaller
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AHD value indicates a smaller deviation between the segmentation result and the actual target, thereby
demonstrating high segmentation accuracy. Its expression is as follows:

d (A, B) = 1
N

∑
aεA

min
b∈B

‖a − b‖ (16)

AHD (A, B) = max (d (A, B) , d (B, A)) (17)

where, A and B denote the actual crack situation and the predicted segmentation results, respectively;
‖a − b‖ denotes the distance function between two points. The AHD and average values are shown in
Table 1.

Table 1: Different methods and their corresponding indicators

AHE DSR ME SSIM Time

Otsu 6.383 0.586 0.589 0.303 0.728
Xiong 3.263 0.899 0.142 0.428 1.162
Truong 6.847 0.423 0.465 0.243 0.822
Xie 13.819 0 0.962 0 4.947
Ours 0.825 0.975 0.017 0.571 0.984

4.3.2 Defect Segmentation Rate and Misclassification Error

The defect segmentation rate [25] is a key metric for evaluating the performance of an algorithm,
primarily used to measure the accuracy of the algorithm in identifying and locating defect areas. The
DSR assesses detection effectiveness by comparing the overlap between the defect areas detected by the
algorithm and the actual defect areas. The calculation formula is as follows:

DSR =
[

min (M0, MT)

max (M0, MT)
,

min (B0, BT)

max (B0, BT)

]
(18)

The misclassification error [29] represents the percentage of target pixels incorrectly classified
as background pixels or background pixels incorrectly classified as target pixels. Its mathematical
expression is as follows:

ME = 1 − | MO ∩ MT | + | BO ∩ BT |
| MO | + | BO | (19)

where, MO and BO represent the pixels in the target and background areas of the image obtained
by fixed threshold segmentation, respectively; MT and BT represent the pixels in the target and
background areas of the image obtained by using the improved threshold segmentation method,
respectively.

4.3.3 Structural Similarity

SSIM [30] is the primary metric used to evaluate the similarity between an original defect image
and a detected image. Its value ranges from 0 to 1, with a value of 1 indicating that the two images are
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identical, and a value of 0 indicating no similarity between the two images. The expression for SSIM
is defined as follows:

SSIM (x, y) = [
l (x, y)

]α [
c (x, y)

]β [
s (x, y)

]γ (20)

where, α, β and γ are all greater than 0. The brightness calculation l (x, y) compares the average
brightness of the images, the contrast calculation c (x, y) measures the variation in brightness through
the standard deviation, and the structural calculation s (x, y) uses covariance to assess the structural
information of the image regions. The defect detection rates and average values for different methods
on various images are shown in Table 1.

Table 1 provides a detailed comparison of the performance of five different algorithms, including
Otsu, Xiong, Truong, Xie, and our proposed algorithm, in detecting defects in WTB infrared thermal
images. The evaluation metrics cover five key aspects: AHE, DSR, ME, SSIM, and runtime. Among
these metrics, our method significantly outperforms the others in four major performance indicators:
AHE, DSR, ME, and SSIM. Specifically, the AHE value is only 0.825, indicating the smallest average
deviation between the segmentation results and the actual targets; the DSR value is as high as
0.975, indicating a very high detection success rate; and the ME value is 0.017, indicating very few
misclassifications.

Regarding the ME metric, our method achieved an 88.03% reduction compared to the Xiong
method, representing a significant improvement. In terms of the SSIM metric, our method also
performed best, reaching 0.571, which is a 33.41% improvement over the Xiong method. In terms of
runtime, our method achieved a time of 0.984 s, faster than all compared methods except the Truong
method. Although the Truong method has a shorter runtime, its results are far inferior to ours. Overall,
our proposed method significantly improves the accuracy and robustness of defect detection while
maintaining a high processing speed, reducing misclassifications, and demonstrating clear advantages
and potential applications in the field of WTB infrared thermal image defect detection.

5 Conclusion

To address the common issues of uneven brightness and blurred edges in infrared images of WTBs,
this study utilizes a differential multi-scale morphological enhancement operator to significantly
improve the contrast of defect areas and make defect edges clearer. Subsequently, grayscale inversion
processing is performed to adapt to the detection algorithm proposed in this study. On this basis, an
improved Otsu algorithm is used to detect defects in infrared images of WTBs. Experimental results
verify that this algorithm effectively overcomes the high false detection rate problem of the traditional
Otsu algorithm in infrared image detection, significantly improving the accuracy and reliability of
detection.

This method, with its efficient and accurate characteristics, shows broad application prospects.
With continuous optimization of technology and improvement of computing power, this technology
will be able to identify small defects in WTBs more quickly and accurately in the future, achieving
early intervention and reducing potential failure risks. At the same time, this technology will make
breakthroughs in intelligence and automation, combining artificial intelligence and machine learning
technologies to achieve automation and intelligence in the defect detection process, reducing the need
for manual operation and providing more stable and reliable detection results.
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