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ABSTRACT

Mural paintings hold significant historical information and possess substantial artistic and cultural value. However,
murals are inevitably damaged by natural environmental factors such as wind and sunlight, as well as by human
activities. For this reason, the study of damaged areas is crucial for mural restoration. These damaged regions differ
significantly from undamaged areas and can be considered abnormal targets. Traditional manual visual processing
lacks strong characterization capabilities and is prone to omissions and false detections. Hyperspectral imaging
can reflect the material properties more effectively than visual characterization methods. Thus, this study employs
hyperspectral imaging to obtain mural information and proposes a mural anomaly detection algorithm based on
a hyperspectral multi-scale residual attention network (HM-MRANet). The innovations of this paper include: (1)
Constructing mural painting hyperspectral datasets. (2) Proposing a multi-scale residual spectral-spatial feature
extraction module based on a 3D CNN (Convolutional Neural Networks) network to better capture multi-
scale information and improve performance on small-sample hyperspectral datasets. (3) Proposing the Enhanced
Residual Attention Module (ERAM) to address the feature redundancy problem, enhance the network’s feature
discrimination ability, and further improve abnormal area detection accuracy. The experimental results show that
the AUC (Area Under Curve), Specificity, and Accuracy of this paper’s algorithm reach 85.42%, 88.84%, and 87.65%,
respectively, on this dataset. These results represent improvements of 3.07%, 1.11% and 2.68% compared to the
SSRN algorithm, demonstrating the effectiveness of this method for mural anomaly detection.
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1 Introduction

A mural is a form of painting that is directly applied or inlaid on the surface of a building, has
a long history, and holds significant cultural value. As a unique form of artistic expression, murals
depict the religious, political, and social life of different historical periods through rich colors and
intricate details. However, murals are typically painted on the walls or ceilings of buildings, making
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them immovable and difficult to disassemble. Additionally, their large creation areas often occupy
entire walls or ceilings, resulting in harsh preservation environments. Exposure to natural elements
over many years, such as wind, sunlight, humidity changes, biological erosion, and human activities,
leads to varying degrees of damage on mural surfaces. These damaged areas differ from normal regions
and can be considered anomalies for detection. Anomalies on mural surfaces typically refer to changes
in the pigment layer or broken parts due to the aforementioned damage factors. These may manifest
as color changes, brightness alterations, black dirt, cracking, peeling, etc., as shown in Fig. 1, severely
affecting the aesthetics and integrity of the murals. Studying mural restoration methods can prolong
their lifespan, reveal their historical background and artistic value, and preserve them as treasures for
future generations to appreciate and study.

Figure 1: Types of mural damage: peeling (white frame), cracking (sky blue frame), and black spots
(red frame)

There are two main categories of methods used for mural-based anomalous region detection:
traditional machine learning methods, which can be broadly categorized into statistical methods,
representational models, and tensor decomposition [1]. Statistical methods usually assume that the
background adheres to a particular distribution, such as a multivariate Gaussian distribution, and
then use Mahalanobis distance or Euclidean distance to recognize anomalous objects differing from
the background distribution [2]. Among such methods, the RX (Reed-Xiaoli) detector is well known.
It takes the original image as a background, assumes it follows a Gaussian distribution, and uses
this to identify anomalous pixel points [3]. The Local RX (LRX) algorithm is an improved method,
which uses a specific neighborhood of the pixel to be tested as a background and estimates the
likelihood that the target pixel is an anomaly [4,5]. He et al. proposed a modified RX approach
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that incorporates extended multi-attribute profiles through an iterative process since most RX-type
methods focus excessively on spectral information and ignore spatial information [6]. Representation
model-based methods can perform anomaly detection without assuming the background distribution.
Li et al. applied a combined sparse representation model of the background to recognize hyperspectral
anomalies, working under the premise of a binary assumption [7]. The spatial and spectral features
of hyperspectral images are highly correlated, causing the background distribution to exhibit global
low-rank features, which allows the anomaly target to be localized with low-rank representation
[8]. Tensor decomposition-based methods: Hyperspectral images can be considered as a third-order
tensor cube, allowing better mining of spectral and spatial properties using tensor decomposition.
Qu et al. performed anomaly detection using spectral unmixing [9,10]. Ma et al. proposed a hyper-
Laplace regularized low-rank tensor decomposition method combined with a dimensionality reduc-
tion framework, accounting for both spatial and spectral information [11]. Li et al. proposed a Prior-
based Tensor Approximation (PTA) method that combines the advantages of low-rank, sparsity, and
smoothing in the tensor representation of hyperspectral images [12]. These traditional algorithms are
widely used, have low operating environment requirements, and do not rely on a large number of
training samples. However, due to the unevenness and variety of features in the damaged areas of
mural images, these traditional methods can usually only recognize certain types of damage, such as
single crack shapes and lacquer peeling. As a result, no single method can identify all abnormal areas
on diverse mural surfaces. These methods lack uniformity, require significant labor costs, have low
automation, and yield poor results.

The second category is deep learning-based methods. Traditional feature-based methods struggle
to adaptively extract features according to the characteristics of the data, a problem that deep learning
methods have effectively addressed. Deep learning-based anomaly detection methods are mainly
classified into two categories: methods based on Autoencoders (AE) and methods based on Gen-
erative Adversarial Networks (GAN). Zhao et al. developed a spectral-spatial stacking self-encoder
(LRaSMD-SSSAE) to extract deep features in the hidden space [13]. To reduce the dimensionality
of the data and eliminate degraded spectral channels, Xie et al. proposed a spectral adversarial
autoencoder (SC-AAE), which optimizes the model using adaptive weights and spectral angular
distances [14]. Fan et al. designed Robust Graph Autoencoders (RGAE), based on the structure of
the autoencoder, which substantially improved anomaly detection performance [15]. Based on the
Generative Adversarial Network, Arisoy et al. proposed an unsupervised anomaly detection method
for hyperspectral images [16]. Jiang et al. proposed a discriminative semi-supervised Generative
Adversarial Network with a dual RX structure [17]. Cheng et al. proposed a novel Deep Feature
Aggregation Network (DFAN) using an adaptive aggregation model, which combines an orthogonal
spectral attention module with a background-anomaly category statistics module, and designed a novel
multiple aggregation separation loss [18]. Lian et al. proposed a novel gated transformer network (GT-
HAD) for hyperspectral anomaly detection, introducing an adaptive gating unit that can effectively
differentiate between backgrounds and anomalies [19]. In deep learning anomaly detection, aside from
the two main categories mentioned above, there are also image classification-based anomaly detection
algorithms. These techniques differentiate between normal and anomalous data in a given feature
space by training classifiers, mostly with supervised learning [20]. For example, Li et al. explored
the effectiveness of transfer learning techniques for hyperspectral anomaly detection in a supervised
manner [21]. Zhang et al. proposed an unsupervised Convolutional Neural Network model for
extracting deep features from dictionary tensors [22]. Qiu et al. proposed a U-Net based extraction and
analysis algorithm that can be used for anomaly detection of artifacts [23]. To improve the efficiency of
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background modeling, Zhang et al. also proposed a Hyperspectral Anomaly Detection method based
on Attention-aware Spectral Difference Representation (HAD-ASDR) [24].

Mural paintings are difficult to access and require approval from the cultural protection depart-
ment, which leads to less anomaly detection work on murals, with most research based on RGB
images. Although RGB images conform to human visual perception, they contain only three bands
of information, which is insufficient for comprehensive analysis of anomalous areas in murals. RGB
images primarily rely on underlying features such as color and texture for anomaly detection. However,
in mural images, different types of anomalies may exhibit similar underlying features. For example,
black pigment in the mural and black spots caused by erosion may have similar color and texture
features. This similarity makes detection prone to misjudgment and omission. Additionally, since the
surface of the mural has many tiny cracks and slight color changes, the information in a standard
RGB image may not be sufficient to reflect these subtle material changes, thus affecting detection
effectiveness.

Through the above analysis, algorithms based on deep learning have become the mainstream
in current mural painting anomaly detection work and have achieved certain results. The current
problems faced by anomaly detection of murals using artificial intelligence are:

1) The difficulty of acquiring murals and the limited information provided by RGB images affect
the detection results;

2) Murals contain a large number of anomalies with irregular and unbalanced distribution, and
existing models lack the ability for complete contextual analysis, leading to suboptimal detection
results with small samples;

3) Traditional convolutional neural networks suffer from feature redundancy and irrelevant
feature interference, resulting in insufficient detection accuracy in complex backgrounds or noisy
situations.

Based on the advantages of hyperspectral images, we propose a mural anomaly detection algo-
rithm based on a hyperspectral multi-scale residual attention network (HM-MRANet). The major
contributions of this paper are as follows:

1) Establishing a mural hyperspectral dataset to address the insufficiency of information in
traditional RGB images for mural anomaly detection and to provide robust data support for detecting
anomalous regions.

2) Proposing multi-scale residual spectral and spatial feature extraction modules to better capture
multi-scale information, improve the network’s contextual analysis capability, and mitigate the impact
of small sample data on detection.

3) Proposing the Enhanced Residual Attention Module (ERAM) to address the feature redun-
dancy problem by simultaneously utilizing channel and spatial attention mechanisms, thereby enhanc-
ing the feature discrimination ability of the network and improving abnormal region detection
accuracy.

2 Methods

A hyperspectral image contains hundreds of consecutive bands of spectral information, with each
band reflecting different spectral characteristics. It has higher dimensions and a larger amount of
data, providing richer spectral information than ordinary images. Fig. 2 shows a hyperspectral image
of a mural, with three selected pixel points and their corresponding spectral characteristic curves
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displayed in Fig. 2a–c. Fig. 2a,c shows the spectral characteristic curves corresponding to pixel points
in abnormal regions. Fig. 2a corresponds to black spots in the mural image, and Fig. 2c corresponds to
pixel points where the material on the surface of the mural is abnormally detached. Fig. 2b shows the
spectral characteristic curve of normal pixel points, which appear similar in color to those in Fig. 2a
in the RGB image. However, their spectral characteristic curves show very clear differences. Therefore,
hyperspectral images allow us to obtain information that is difficult to acquire from ordinary RGB
images. By using hyperspectral imaging technology for anomaly detection in murals, we can extract
spectral information to classify pixels with different materials and varying degrees of aging, thereby
improving anomaly detection effectiveness. Moreover, due to the large number of anomalous points
and their scattered and uneven distribution in mural images, it is more suitable to detect anomalous
areas using the image classification method.

Figure 2: Examples of spectral curves for different types of pixel points in a mural hyperspectral image

In recent years, many classification networks based on hyperspectral images have been proposed
and have achieved excellent results. The main one is the CNN (Convolutional Neural Networks)
with three typical convolutional kernels. 1D CNN can only extract spectral curve information in one
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dimension, and 2D CNN can only extract spatial feature information in two dimensions. For complex
mural images, relying solely on spatial or spectral information alone is insufficient for accurate
pixel classification. However, 3D CNN can simultaneously extract spatial-spectral features in mural
hyperspectral images, making it suitable for anomaly detection tasks.

Hu et al. introduced convolutional neural networks into hyperspectral image classification, but
only used spectral information for classification [25]. Chen et al. proposed a 3D-CNN-based deep
feature extraction method, utilizing both spatial and spectral information for classification [26].
Zhong et al. proposed a deep residual network model with joint spatial and spectral features (SSRN),
which utilizes successive residual modules to learn spectral and spatial features separately, effectively
improving classification accuracy compared to the above methods [27]. Wei et al. designed a Residual
Dense Network model (ResDenNet) by combining residual and dense networks, which fully utilize
discriminative features and improve the stability of the classification method [28]. Ravikumar et al. pro-
posed a Deep Capsule Network (Deep Matrix Capsules) with an Expectation Maximization (EM)
routing algorithm, specifically designed to adapt to nuances in the image, achieving good classification
results [29]. Li et al. proposed a Central Vector Oriented Self-Similarity Network (CVSSN), based
on two similarity metrics, to achieve efficient spatial-spectral feature learning [30]. Li et al. devel-
oped a model for Deep Cross-Domain Few-Shot Learning in hyperspectral image classification
(DCFSL), employing the generative adversarial network approach for its design and training [31].
Zhang et al. proposed a Graph Information Aggregation Cross-Domain Few-Shot Learning method
to improve image classification results through graph information aggregation [32]. Qiu et al. proposed
an Extraction Algorithm Based on Multilayer Depth Features for Hyperspectral Images, which
establishes a multilayer feature extraction framework and optimizes the classification effect [33].
Zhao et al. proposed a method based on Grouped Separable Convolutional Visual Transformer
Network (GSC-ViT) for hyperspectral image classification, effectively capturing local spectral infor-
mation by designing a Grouped Separable Convolution (GSC) module, achieving strong classification
performance with relatively few training samples [34]. Ma et al. proposed a method based on Multi-
Domain Few-Shot Learning (MDFL) to improve image classification [35]. Jiang et al. proposed a new
graph-generated structure-aware transformer (GraphGST) that captures local-to-global correlations
[36]. Chen et al. proposed an unsupervised multivariate feature fusion network (M3FuNet), using
multiscale supervector correction (MSMC) and multiscale stochastic convolutional discretization
(MRCD) as the spectral and spatial feature extraction methods. The obtained spectral-spatial joint
features have high feature retention and strong spectral-spatial dependence, achieving very competitive
results in hyperspectral image (HSI) classification [37].

Although 3D CNN has some advantages in image classification, it still faces several problems in
anomaly detection of hyperspectral images:

1) Ordinary 3D CNN lacks multi-scale feature extraction, limiting its ability to fully explore
effective spatial and spectral information and preventing effective feature fusion.

2) The large number of bands in hyperspectral images requires significant computational resources
for anomaly detection using 3D CNN, and 3D CNN loses accuracy when learning from small
sample data.

3) The high correlation and redundancy between the bands of hyperspectral images lead to serious
overfitting problems during processing.
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2.1 Network Infrastructure

To achieve anomalous region detection of murals, we use hyperspectral imaging to obtain mural
information and conduct research based on 3D CNN. To solve the above problems of 3D CNN in
anomaly detection, we propose an improved 3D CNN model that introduces spatial and spectral
residual connectivity. We propose a multi-scale spectral and spatial feature extraction module to
further capture multi-scale information. For feature fusion, we propose an enhanced residual attention
module that uses the attention mechanism to select features more efficiently. To extract multi-scale
features, we enhance the original pooling method by incorporating a spatial pyramid pooling module.

Between the spectral and spatial feature learning modules, we use Group Normalization (GN)
[38] to replace the traditional Batch Normalization (BN) layer. Fig. 3 shows the overall flowchart of
the HM-MRANet in this paper, which is structured as follows:

Figure 3: Overall flowchart of the network

1) Multi-scale residual spatial-spectral feature extraction module, including spectral feature
learning module (Spectral Module) and spatial feature learning module (Spatial Module). In the
network, we use two Spectral Modules and two Spatial Modules, with each module containing two
convolutional layers and BN layers in loops for feature extraction. Each module contains residual
structures, shown by the red arrows in the figure, for skip connections to stabilize the training
process and accelerate convergence. We propose a multi-scale convolutional approach, using three
convolutional kernels of different sizes in each module to acquire different scales of spectral features
of the input image, thereby enhancing feature extraction capability.

2) Enhanced Residual Attention Module (ERAM), using both channel attention and spatial
attention mechanisms to adaptively assign attention weights to the feature map.
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3) The Spatial Pyramid Pooling (SPP) module [39] and the fully connected layer, performing
multi-scale feature aggregation and classification outputs, and finally obtaining a probability map
corresponding to each pixel point, with values ranging from 0 to 1.

CNN models face a problem where classification accuracy decreases as the number of convolu-
tional layers increases. This accuracy degradation can be mitigated by constructing residual modules
between layers. We propose spectral and spatial residual modules to address the issue of accuracy
degradation resulting from the increased number of convolutional layers. This work includes three
main feature extraction modules: the spectral feature extraction module, the spatial feature extraction
module, and the enhanced residual attention module. All these modules include consecutive 3D
convolutional layers sliding in spectral and spatial dimensions for convolutional operations, with
padding to ensure constant input and output dimensions, facilitating the implementation of residual
connections.

After preprocessing the original image, the hyperspectral image data inputted into the network has
dimensions of 9 × 9 × 128 (where the 3D neighborhood of each pixel is considered, with the center
pixel’s category serving as the label), and the original data contains both rich and redundant spectral
information. To eliminate this redundancy, we employed 28 convolutional kernels of size 1 × 1 × 7
to perform convolutional operations, aiming to reduce spectral dimensionality and data redundancy.
Following the convolution operation, 28 feature cubes of size 9 × 9 × 61 were generated. Subsequently,
two consecutive spectral residual blocks, each containing four convolutional layers and two constant
mappings, were added. In these blocks, all convolutional layers were padded to preserve the structure
of the output feature cubes. Finally, a convolution kernel of size 1 × 1 × 61 was used to maintain the
spectral features, followed by another dimensionality reduction operation to compress the data from
61 dimensions to 28 dimensions, ensuring it is suitable for input into the spatial feature learning stage.

In the spatial feature learning section, the structure is similar to that of the spectral feature learning
section, differing only in the size and structure of the data. Again, two spatial residual modules are
used. At the end of the two feature learning sections, the extracted spectral-spatial feature volume of
9 × 9 × 28 is converted to a one-dimensional feature vector using a spatial pyramid pooling layer to
generate the output values using a fully connected layer.

In the spectral and spatial feature learning module, we use two consecutive spectral and spatial
residual modules, and this design has the following three advantages over using only one residual
module: (1) Enhancing feature extraction ability: The main purpose of the spectral and spatial modules
is to extract useful features from the data. Two consecutive feature extractions, compared to a single
module, allow for deeper extraction, resulting in more refined and enhanced features. (2) Improving
model robustness: Using two modules consecutively makes it easier for the model to capture stable
features, suppress noise, and reduce information loss during feature extraction. (3) Promoting feature
fusion and interaction: Consecutive use of modules promotes the fusion and interaction between
different features, making the model more effective in integrating spectral and spatial information.
This approach allows the model to better understand and utilize the integrated features in the data,
thereby improving overall classification or detection performance.

Due to the large amount of data in hyperspectral images, model training often requires smaller
batch sizes compared to general image data. However, under conditions of small batch sizes, the
instability of batch normalization can easily lead to poor model training, whereas group normalization
can provide more stable normalization by grouping feature channels and normalizing within each
group.
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Secondly, the spatial and spectral features of hyperspectral data exhibit significant differences
across various scales, and the feature distributions during the learning process of spectral and spatial
features follow distinct statistical laws. Group normalization can better capture and fuse these features.
After comparing the experimental results, it was found that using group normalization between the
two modules resulted in a noticeable improvement compared to using batch normalization. However,
the benefits of group normalization in other areas were less pronounced. Therefore, we ultimately
chose to use the GN layer between the spectral and spatial feature learning modules instead of the
traditional BN layer for normalization.

After completing the extraction of spectral and spatial features, we set up an Enhanced Residual
Attention Module before the Pooling and Fully Connected Layers to strengthen the effect of
residual connectivity and introduce the attention mechanism before data output. This architecture
enables gradients in the higher layers to propagate back to the lower layers quickly, facilitating and
standardizing the model training process. In contrast to standard 3D CNN, the network mitigates
accuracy degradation by adding skip connections between each partitioned layer, formulating the
hierarchical feature representation layer as a continuous module of residuals.

2.2 Multi-Scale Residual Spatial-Spectral Feature Extraction Module

2.2.1 Residual Link

Deepening the layers of a deep learning network can improve its learning and feature expression
abilities, but experiments have shown that beyond a certain depth, increasing the number of layers
does not improve performance and can cause network degradation. As the number of layers increases,
accuracy will saturate or even decline. To solve the problem of network degradation, He et al. proposed
the method of residual learning [40]. As shown in Fig. 4, the network input is x, the desired feature
mapping is H(x), and after adding the residual connection, the original mapping is denoted as F(x) +
x. In the process of forward propagation, residual learning can realize constant feature mapping, thus
avoiding network degradation while increasing the number of layers.

Figure 4: Flowchart of the residual learning module

The residual connection is realized by the following equation:

y = F (x, {Wi}) + x (1)

2.2.2 Spectral Feature Extraction Module

Fig. 5 shows the multi-scale residual spatial-spectral feature extraction module of this paper, which
uses the above residual units in both the spectral and spatial feature extraction modules. It is designed
to solve the problem of gradient vanishing during the training process of deep networks.

Batch Normalization is applied after each convolutional layer using the following formula:

x̂(k) = x(k) − μB√
σ2

B+ ∈ (2)
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Figure 5: Flowchart of the spectral feature extraction module

Due to the wide range of bands, high spectral resolution, and strong spatial correlation of
hyperspectral images, this paper designs a multi-scale feature extraction module for both spectral and
spatial dimensions, adding a branching structure to the residual module. In each branch structure,
different sizes of convolution kernels are used to obtain different scales of features in the input
image. The output feature maps are then connected using the splicing operation, and the channels
are downscaled by a 1 × 1 × 1 convolution to achieve fusion with the shallow features. We incorporate
a batch normalization layer and a ReLU activation following each convolutional layer.

In the first convolution operation shown in Fig. 5, three different sizes of convolution kernels are
used for feature extraction: 1 × 1 × 3, 1 × 1 × 5, and 1 × 1 × 7. By adjusting their step sizes and edge
padding to ensure that the outputs have the same data size, when inputting S × S × L sized data with
a batch size of n, a batch size of 3n is obtained after the convolution operation with three convolution
kernels. Let the input data be xi, and the output data be xi+2, then there are:

xi+2 = xi + H {T [F1 (xi), F2 (xi) , F3 (xi)]} (3)

Fs(xi) (s = 1, 2, 3) in this equation denotes the nonlinear operation of the convolution kernel with
different spectral dimension sizes, T(•) denotes splicing the output data of the convolution layer, and
H(•) denotes the dimensionality reduction operation on the channel.

The spectral residual module and the spatial residual module contain two convolution operations.
The first is a multiscale convolution operation that sets the intermediate process data to xi+1. The two
convolution operations are used in the successive filter banks of the ith and (i+1)th layers, respectively.
The spatial dimensions of the three-dimensional feature cubes xi+1 and xi+2 are kept constant at S × S
× L by a specific padding strategy, and the residuals are constructed. The spectral residual architecture
can be expressed as follows:

xi+2 = xi + F
(
xi; θ

)
(4)

F
(
xi; θ

) = R
(
x̂i+1

) ∗ hi+2 + bi+2 (5)

x = R
(
x̂i

) ∗ hi+1 + bi+1 (6)

where θ = {hi+1, hi+2, bi+1, bi+2}, xi+1 denotes the input three-dimensional feature cube in layer i+1, and
hi+1 and bi+1, denote the spectral convolutional kernel and bias in layer i+1, respectively. In fact, the
convolution kernels hi+1 and bi+1 are composed of one-dimensional vectors and can be viewed as special
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cases of three-dimensional convolution kernels. The output tensor of the spectral residual module also
consists of n three-dimensional feature cubes.

2.2.3 Spatial Feature Extraction Module

As shown in Fig. 6, three convolution kernels of different sizes are also used for feature extraction
in the spatial residual module, for hyperspectral data with input size W × W × L, a convolution kernel
of size r × r × 61 (r = 3, 5, 7) is used for the unit with input xj and output X j+2, respectively, which
gives:

xj+2 = xj + H
{
T

[
D1

(
xj

)
, D2

(
xj

)
, D3

(
xj

)]}
(7)

where Ds(xj) (s = 1, 2, 3) denotes the nonlinear operation of the convolution kernel with different
spatial dimensions.

Figure 6: Flowchart of the spatial feature extraction module

In the spatial module, the focus is mainly on the continuous filter banks Hq+1 and Hq+2, and spatial
feature extraction is performed using 3D convolution kernels of different sizes, which have a spectral
depth d equal to the depth of the spectrum of the input 3D feature cube xq. The spatial sizes of the
feature cubes xq+1 and xq+2 are kept constant at W × W × L.

The spatial residual architecture can be expressed as follows:

xq+2 = xq + D (xq; ξ) (8)

D (xq; ξ) = R
(
x̂q+1

) ∗ Hq+2 + bq+2 (9)

x = R
(
x̂q

) ∗ Hq+1 + bq+1 (10)

where ξ = {Hq+1, Hq+2, bq+1, bq+2}, xq+1 denotes the three-dimensional input feature volume in layer q +
1, and Hq+1 and bq+1 denote the spatial convolution kernel and the deviation in layer q + 1, respectively.
In contrast to the spectral residual module, the convolution filter bank in the spatial residual module
contains the 3D tensor, and the output of this module is the 3D feature volume.

2.3 Enhanced Residual Attention Module (ERAM)

The traditional residual module is realized by skip connections, which effectively mitigates
problems such as gradient vanishing and gradient explosion in deep networks but does not account
for the importance differences between different channels. Based on this, this paper proposes an
enhanced residual attention module for adaptive feature extraction, as shown in Fig. 7. Building on
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the traditional residual module, channel attention and spatial attention mechanisms are introduced,
and different weights are assigned to each spectral and spatial channel. This improves the model’s
performance and representation ability in the following aspects:

1) Enhancing feature representation: Adaptively adjusting the weights of each channel through
the CBAM attention module allows the model to better focus on important features. This is especially
important for outlier detection in hyperspectral images, which usually have high dimensionality and
complex feature distribution.

2) Better feature reuse: The residual module combined with the attention module enables better
reuse of features, which enhances the model’s generalization capacity and stability. The residual
module mitigates the gradient vanishing problem in deep networks through skip connections, while
the attention module further enhances the flexibility of feature representation.

3) Enhancing the network’s selection ability: The module enhances the network’s selection ability
by introducing an attention mechanism that enables the network to dynamically adjust the feature
importance of each channel. This is a significant advantage for outlier detection in mural hyperspectral
images, which usually requires precise discrimination between important features and background
noise.

Figure 7: Flowchart of the enhanced residual attention module

In this paper, we improve the design of residual attention module based on Convolutional Block
Attention Module (CBAM) [41]. CBAM is a lightweight architecture, based on which we integrate the
residual connection as shown in Fig. 7, the channel attention module CAM, and the spatial attention
module SAM, defining their operations as AS(•) and AC(•), respectively, given an intermediate feature
map f x, we obtain the attention weight Matten as:

Matten = As (Ac (fx) ⊗ fx) (11)

where ⊗ denotes the element-by-element multiplication. Next, the attention weights are multiplied
with the original input features and then jump residual joining is performed so that a weighted
feature map f atten can be obtained, which assigns different weights to each channel and region,
thus favoring more important features and ignoring some minor features. This attention mechanism
module improves the network’s ability to learn important features by adaptively learning and assigning
attention weights, which helps to improve the classification results.

fatten = fx + Mattne ⊗ fx (12)

2.3.1 Channel Attention Module

The channel attention module CAM focuses on assigning adaptive weights to different feature
channels, and assigns different importance to each spectral dimension in the mural hyperspectral image
anomalous region detection task. As shown in Fig. 8, given the input feature map f h × w × c, the first
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step is to compress the features through the average pooling layer and the maximum pooling layer,
respectively, to obtain the average pooling feature AP(f ) and the maximum pooling feature MP(f ).

Figure 8: Flowchart of the channel attention module

Then, these two obtained features are transmitted to the shared network, defined as F(•), for
capturing the internal relationship between the feature channels. Finally, the channel attention vector
Ac(f ) = (0, 1)1×C, defined as σ (•), is obtained by the sigmoid operation, denoted as:

Ac (f ) = σ (F (AP (f )) + F (MP (f ))) (13)

2.3.2 Spatial Attention Module

As shown in Fig. 9, the spatial attention module SAM is able to assign different adaptive weights to
spatial feature regions, in which the two features generated by average pooling and maximum pooling
are jointly connected to a common convolutional layer, which is utilized to explore spatial relationships
in the data. The spatial attention graph can be represented as follows:

As (f ) = σ (Conv ([AP (f ); MP (f )])) (14)

Figure 9: Flowchart of the spatial attention module

2.4 Spatial Pyramid Pooling Module

The basic principle of the Spatial Pyramid Pooling (SPP) module is to generate a fixed-size feature
representation by capturing different scale features of an image through multi-scale pooling operations.
This approach allows the network to accept inputs of arbitrary size without cropping or scaling the
input image. The SPP module performs multi-scale pooling operations on the input feature maps and
then joins the pooled feature maps to form a fixed-length feature vector.

By performing pooling operations at multiple scales, the SPP module can capture feature
information at different scales, allowing the network to process input images of arbitrary size without
cropping or scaling the input images. Through multi-scale pooling operations, the SPP module can
improve the robustness of feature representation, enabling the network to perform better when facing
inputs of different scales. Compared to the fully connected layer, the SPP module reduces computation
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and improves performance in the feature extraction stage. In this model, the SPP module is applied at
the end of feature extraction to replace the pooling layer of the 3D CNN, converting the feature maps
of hyperspectral images into fixed-size feature vectors. The specific operation flow is as follows:

1) Feature extraction: The features of the hyperspectral image are extracted by the null spectrum
feature extraction module and the enhanced residual attention module to generate the feature map.

2) Multi-scale pooling operation: 1 × 1, 2 × 2, and 4 × 4 pooling scales are used in this model,
and the pooling operation of each scale generates corresponding feature vectors.

3) Feature connection and classification: The feature vectors pooled at different scales are
connected to form a fixed-length feature vector. Finally, the fixed-length feature vector output from
the SPP module is passed to the fully connected layer to complete the final anomaly detection task.

As shown in Fig. 10, the sizes of the SPP module used in this experiment are [1, 2, 4]. After three
different pooling operations, the input feature map x is pooled into different sizes, and the output
feature map is channel transformed by a 1 × 1 convolutional layer. Each pooled feature map is channel
transformed by a 1 × 1 convolutional layer to ensure that the size of the output feature map remains
unchanged. Each convolved feature map is then interpolated to the size of the original input feature
map, and all the interpolated multi-scale feature maps are spliced together in the channel dimensions
to form the final output feature maps, which are then passed to the fully connected layer. In this way,
the diversity and robustness of feature extraction are enhanced, making it suitable for hyperspectral
mural images with various anomalies and different sizes and patterns.

Figure 10: Flowchart of the SPP module

3 Experiments
3.1 Datasets and Evaluation Indicators

The datasets used in this experiment are all derived from mural data collected on-site by the self-
developed hyperspectral imaging instrument, as shown in Fig. 11, where the spectrometer adopts the
push-scanning imaging method for data acquisition. There are 50 hyperspectral images in this dataset,
in .raw format. Each hyperspectral image is 1392 × 1705 pixels, containing 128 channels. The acquired
hyperspectral data are manually labeled by professionals, classifying all pixel points in the images
into two categories: anomalies and background points. The labeled data were randomly divided into
training, testing, and validation sets with proportions of 70%, 20%, and 10%, respectively. Out of
a total of 50 images, 35 images were allocated to the training set, 10 images to the testing set, and 5
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images to the validation set. These data provide relatively rich and accurate information for subsequent
classification.

Figure 11: Mural hyperspectral image acquisition site, the equipment shown in the red area of the
figure is the spectrometer, consisting of horizontal and vertical rails, support components, lighting
components, cameras, etc.

In this paper, three evaluation metrics for anomaly detection, including ROC curve and AUC
value, Specificity, and Accuracy, are used to evaluate the anomaly detection performance of the model.
A visualization graph of the detection results is also included as an evaluation criterion.

1) Receiver Operating Characteristic (ROC) and Area Under Curve (AUC):

In this experiment, ROC and AUC are selected as quantitative metrics for measurement. Visual-
ized detection results are provided to comprehensively assess the efficiency of anomaly detection in
hyperspectral images.

The ROC curve is a graphical tool for evaluating the classification performance of binary
classifiers, commonly used in threshold selection and decision analysis. It represents the results
of multiple confusion matrices and demonstrates the performance of the model under different
thresholds, enabling a comprehensive assessment of the model’s classification ability rather than just
performance under a single threshold. It plots the True Positive Rate (TPR) and False Positive Rate
(FPR) at different judgment threshold levels. The formula is calculated as:

TPR = TP
TP + FN

(15)

FPR = FP
FP + TN

(16)
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True Positive (TP) refers to correctly identifying areas of an image that contain anomalies. False
Positive (FP) occurs when the model incorrectly marks normal regions as anomalies. True Negative
(TN) is when the model accurately recognizes normal regions as non-anomalous. Finally, False
Negative (FN) happens when the model fails to detect an anomaly and incorrectly classifies it as a
normal region.

The AUC value is an evaluation index calculated based on the ROC curve, taking a value from 0
to 1. The larger the AUC value, the more accurate the classification results. Conversely, the closer the
AUC value is to 0.5, the less accurate the results, indicating the prediction is similar to a coin toss and
has no reference value.

2) Specificity

Specificity, also known as the true negative rate, indicates the ability of the model to correctly
recognize negative samples. Specificity is defined as follows:

Specificity = TN
TN + FP

(17)

Specificity indicates the proportion of negative samples that are correctly identified as negative.

3) Accuracy

Accuracy is the percentage of all samples that are correctly categorized. The accuracy rate is
defined as follows:

Accuracy = TP + TN
TP + TN + FP + FN

(18)

4) Visualization of test results

In addition to the above quantitative metrics for qualitatively comparing the measurement
algorithms, pseudo-color plots of the dataset, labeled anomaly reference plots, and color images
representing the detection results of the various algorithms are included in this paper for visual
comparative assessment of the effectiveness of the methods.

3.2 Results

3.2.1 Parameter Settings

All experiments were conducted in the PyTorch framework and run on NVIDIA GeForce RTX
3080 GPUs. We tested the number of convolutional kernels from 8 to 32 to determine the optimal
configuration. BN, GN, and 50% dropout regularization methods were used to normalize the training
process. The batch size was set to 50. During the training process, we used BCEWithLogitsLoss as the
loss function and trained with the Adam optimizer, with a learning rate set to 0.001 for 30 iterations.
The loss function is defined as follows:

BCE With Logits Loss = 1
N

∑N

i=1
(yi · log (σ (pi)) + (1 − yi) · log (1 − σ (pi))) (19)

where σ (x) is the Sigmoid function, log is the natural logarithm, pi denotes the probability that the
sample is predicted to be a positive case, and yi is the true label of the sample, which in this experiment
is 0 and 1, indicating whether the sample belongs to a positive or negative case.

3.2.2 Ablation Experiment

To verify the effectiveness of the anomaly detection algorithms proposed in this paper, we set
up a series of ablation experiments for the multi-scale convolutional structures in the Spectral Feature
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Extraction module and Spatial Feature Extraction module, the Enhanced Residual Attention module,
and the Spatial Pyramid Pooling module. The results of the ablation experiments are shown in Table 1.

Table 1: Results of ablation experiments for all modules (%)

Modules Indicators

Baseline Multi-scale module ERAM SPP AUC Specificity Accuracy
√ × × × 80.31 85.60 82.49√ √ × × 83.58 84.73 83.73√ × √ × 81.64 85.72 85.15√ √ √ × 84.30 86.36 86.19√ √ √ √ 85.42 88.84 87.65

As seen in Table 1, after introducing multi-scale convolution, the AUC scores show a signifi-
cant improvement, demonstrating that the multi-scale convolution operation module can effectively
enhance the representation of the 3D CNN network and achieve more accurate detection. Although
Specificity decreases by less than one percent, it still provides a significant overall improvement in the
model’s effectiveness. Similarly, the introduction of the Enhanced Residual Attention module and the
SPP module both increase the efficiency of our network in detecting anomalies in mural hyperspectral
images.

3.2.3 Comparison Experiment

To demonstrate the effectiveness of the proposed method in this paper, we selected DCFSL [31],
CVSSN [30], 3D CNN [26], Deep Matrix Capsules [29], and SSRN [27] as comparison networks, all of
which are image classification networks that have shown good results on publicly available datasets. All
methods use the same dataset, preprocessing method, hyperparameters, and loss functions for model
training.

Table 2 shows the AUC value, Specificity, and Accuracy of our method compared to other
methods. Our method achieved AUC, Specificity, and Accuracy values of 85.42%, 88.84%, and
87.65%, respectively. Compared to other methods, these evaluation indexes show a certain degree of
enhancement, indicating the superiority of our method in detecting anomalies in hyperspectral images
of murals.

Table 2: Comparison of detection performance of different models (%)

DCFSL CVSSN 3D CNN Capsule network SSRN Our method

AUC 77.12 79.27 80.31 81.69 82.35 85.42
Specificity 83.05 86.93 85.60 82.96 87.73 88.84
Accuracy 79.35 84.36 82.49 79.58 84.97 87.65

To more intuitively represent the advantages of our model over other models, we selected four
representative images and plotted their ROC curves and visualized prediction images. Fig. 12 shows
the pseudo-color images of these four hyperspectral images. All four images are pseudo-color images
of Tang tomb murals captured by the mural hyperspectral image acquisition system. Each image has
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different degrees and types of anomalous regions, as shown in the red box, to verify the effect of
anomaly detection. In Fig. 12a, there is a large white shedding-like area in the upper right corner, which
is a special type of anomaly. In Fig. 12b, there are cracks in the lower left corner, and the colors of the
cracks are very close to the lines of the background image, making it difficult to distinguish whether it
is an anomaly or a normal pattern in an ordinary RGB image. In Fig. 12c, there is a continuous piece of
small black spots on the right side, and the colors are in different shades, but all of them are anomalous.
In Fig. 12d, there is a relatively large black contaminated area in the upper right corner, which could
be mistaken for the pattern in the mural, but can be distinguished using spectral information.

(d) Image 4: Image
containing black
contaminated area.

(c) Image 3: Image
containing small
black spots.

(b) Image 2: Image
containing cracks.

(a) Image 1: Image
containing white
shedding-like area.

Figure 12: Four images of Tang tomb murals for display

Fig. 13 shows the ROC curves of the detection results of the six models on the anomalous regions
of the four Tang tomb mural images mentioned above. The results indicate that the method proposed in
this paper has the best performance in the detection task on all four images. Fig. 14 lists the visualized
prediction maps of our method and each comparison method on the four mural images. The color of
each pixel in the prediction map indicates its probability of being an anomaly: dark blue represents
a probability of 0, and red represents a probability of 1. The closer the color is to red, the higher the
probability that the network considers it an anomaly.

(a) ROC curve of Image 1 (b) ROC curve of Image 2

Figure 13: (Continued)
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(c) ROC curve of Image 3 (d) ROC curve of Image 4

Figure 13: ROC curves of anomalous region detection results of six models on four Tang tomb mural
images

From the figure, it can be seen that all six models have some effect on the detection of anomalous
regions of the mural, but their performance varies significantly. Among them, the DCFSL algorithm
misidentifies the largest black spot area as a normal area in Fig. 14d, recognizes many normal line
patterns as anomalies in Fig. 14a, and has more misdetections in the other two images, proving
ineffective. 3D CNN, as a more classical image classification network, is able to detect most anomalies,
but in each image, a certain number of false detections existed. CVSSN performed similarly, detecting
more normal lines as anomalies. Deep Matrix Capsules had a more significant improvement compared
to the previous networks, but many pixel points were detected close to the middle of the range
and could not achieve good differentiation. SSRN’s detection was more desirable, but none of these
contrasting models did a good job of detecting anomalies in the smaller anomalous regions.

The method in this paper achieves the best detection results compared to the labeled images. In
Fig. 14a, our model achieves high accuracy compared to the other models, and there are few pixels
with intermediate values in the result graph, indicating that the model’s discriminative performance is
stronger than that of the comparison models. In Fig. 14b, the percentage of black thick line patterns
classified as anomalous regions by our method is the least compared to other models. In Fig. 14c,
although there is some degree of misdetection, such as misdetecting parts of the black thick lines as
anomalies, it has good detection results for most regions. In Fig. 14d, SSRN and our model have the
best detection effect on large black spots, but SSRN’s detection result has more probable pixel points
with intermediate values, while our model has higher accuracy and is more stable.

Due to the introduction of a multi-scale spectral and spatial feature extraction module, the multi-
scale information in mural hyperspectral images is captured effectively. Compared to single-scale or
simplistic feature extraction methods used in other models, our multi-scale feature extraction module
captures anomalous regions at various scales more comprehensively, particularly when addressing
small and scattered anomalies, demonstrating a significant advantage and resulting in high recognition
accuracy in the initial images. The incorporation of residual structures and attention modules allows
the model to concentrate on key feature regions and enhances its discriminative ability, particularly in
addressing the issue of false detections prevalent in other models when detecting small areas.
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In summary, our model can effectively overcome the fragmented distribution of anomaly regions
in mural hyperspectral images, has stronger feature extraction and discrimination ability compared
with other models, and can maintain good detection results with a small number of samples, possessing
stronger robustness than other models.

Figure 14: (Continued)
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Figure 14: Visualization of anomalous region detection results of six models on four Tang tomb mural
images. (a) The results of Image 1. (b) The results of Image 2. (c) The results of Image 3. (d) The results
of Image 4

4 Conclusion

1) To address the limited information provided by ordinary RGB images for mural painting
anomaly detection, we adopt hyperspectral imaging. We propose a mural anomaly detection algorithm
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based on a hyperspectral multi-scale residual attention network (HM-MRANet), construct a mural
painting database, and carry out research on a hyperspectral dataset to leverage the information-rich
advantage of hyperspectral data to improve anomaly region detection.

2) To address the small number of hyperspectral image samples and insufficient contextual
expression ability of existing models, we propose a multiscale residual null spectrum feature extraction
module to better capture multiscale information and improve feature extraction on small samples.

3) To address the widely distributed and cluttered anomalies in mural painting hyperspectral
images, we propose the enhanced residual attention module and SPP pooling module. These modules
enhance the network’s ability to learn global context information through channel and spatial dual-
attention mechanisms, further improving feature extraction efficiency. The pooling module improves
the characterization capability of the 3D CNN, enhancing the network’s performance in detecting
anomalous regions in mural hyperspectral data with minimal increase in computational cost.

Experimental results show that our multi-scale residual feature extraction module and attention
mechanism are of great importance in hyperspectral image restoration.

During the research, the following deficiencies were identified and need further study in the future:

1) The number of databases is limited. We will continue to construct richer datasets in the future
to create conditions for detecting anomalous areas of murals using deep learning methods.

2) We will further optimize the network structure by reducing the number of layers and the size
of convolutional kernels. We will also explore model compression techniques such as pruning and
knowledge distillation, and consider advanced convolutional neural network architectures to develop
a lighter network while enhancing its performance.

3) Since the research is currently conducted only on indoor murals, the network’s generalization
ability needs to be verified and strengthened. Future research will adapt to a wider range of application
scenarios and more complex environmental conditions, while exploring the potential of the model
in multi-task learning and cross-modal learning, to better assist archaeologists in restoring mural
paintings.
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