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ABSTRACT

The proposed study focuses on the critical issue of corrosion, which leads to significant economic losses and safety
risks worldwide. A key area of emphasis is the accuracy of corrosion detection methods. While recent studies
have made progress, a common challenge is the low accuracy of existing detection models. These models often
struggle to reliably identify corrosion tendencies, which are crucial for minimizing industrial risks and optimizing
resource use. The proposed study introduces an innovative approach that significantly improves the accuracy
of corrosion detection using a convolutional neural network (CNN), as well as two pretrained models, namely
YOLOv8 and EfficientNetB0. By leveraging advanced technologies and methodologies, we have achieved high
accuracies in identifying and managing the hazards associated with corrosion across various industrial settings.
This advancement not only supports the overarching goals of enhancing safety and efficiency, but also sets a new
benchmark for future research in the field. The results demonstrate a significant improvement in the ability to detect
and mitigate corrosion-related concerns, providing a more accurate and comprehensive solution for industries
facing these challenges. Both CNN and EfficientNetB0 exhibited 100% accuracy, precision, recall, and F1-score,
followed by YOLOv8 with respective metrics of 95%, 100%, 90%, and 94.74%. Our approach outperformed state-
of-the-art with similar datasets and methodologies.
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1 Introduction

In Saudi Arabia, combating corrosion in critical sectors such as oil and gas is an immensely
challenging task. Corrosion predominantly affects metals under specific environmental conditions:
high humidity, wetness, elevated temperatures, exposure to hazardous chemicals, galvanic reactions,
ultraviolet (UV) light, and pollution [1]. These elements lead to rapid structural degradation, resulting
in significant economic and environmental impacts, as observed in pipeline failures and infrastructure
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deterioration. To counter this issue, a study introduces an innovative application of deep learning,
a form of artificial intelligence that replicates the human brain’s ability to recognize patterns. This
approach represents a marked departure from the slow, unsafe, and often inaccurate traditional
manual methods of corrosion inspection [1]. Through the application of advanced image recognition
algorithms in deep learning, the research aims to revolutionize the early detection of corrosion,
improving safety, accuracy, and efficiency. This research stands out for its automation of a labor-
intensive process, addressing a critical gap in current methodologies with a more reliable and efficient
AI-driven approach. The serious impact of corrosion, which includes frequent structural failures
and economic losses, emphasizes the urgent need for enhanced detection methods. Existing studies
have limitations as they mostly concentrate on specific areas for corrosion detection, such as bolts,
pipelines, and selected industrial parts, rather than covering the general types of corrosion. This
new approach targets the detection of any kind of corrosion from industrial images. This study
aims to reduce incidents of undetected corrosion, enhancing safety, preserving the environment, and
providing economic benefits. Based on the literature, YOLOv8 and EfficientNet are identified as
promising techniques for image processing and corrosion detection. The study contributes to existing
knowledge by conducting a comprehensive literature review to identify research gaps. Three candidate
techniques, including a convolutional neural network (CNN) developed from scratch and two pre-
trained models (YOLOv8 and EfficientNetB0), are shortlisted. An augmented dataset comprising
publicly available and locally obtained industrial data is used to train the models. The proposed models
are comprehensively analyzed against state-of-the-art techniques in the literature, and the results are
described.

The remaining part of the paper is structured as follows: Section 2 covers related work in the
literature on corrosion detection. Section 3 details the materials and methods utilized in the study.
Section 4 presents the results and discussion, while Section 5 concludes the paper.

2 Literature Review

In their research, Bondada et al. [2] used an automated technique to detect corrosion in industrial
pipes. This approach uses machine vision principles to not only identify corrosion, but also measure
the resulting damage. The process starts by identifying scene constraints to guide effective vision
processing. Next, the image of the corroded parts is captured, and noise is removed using appropriate
filtering methods. Converting the color space to HSI enhances corrosion identification. Corrosion is
then detected by calculating the mean saturation value, and measures are applied to evaluate the extent
of corrosion. The experimental results showed that this method accurately identifies and measures the
level of corrosion on the pipeline surface.

Yao et al. [3] proposed a new method using convolutional neural networks (CNNs) to detect and
recognize corrosion damage in marine structures, to prevent catastrophic accidents. They utilized
a dataset of 330 high-resolution hull plate images, and before training, the data was processed to
have a zero mean to improve the model’s convergence properties. Their CNN model was based on
the Alexnet architecture, along with an overlap-scanning sliding window algorithm to recognize and
locate the position of corrosion damage. The model achieved an accuracy of 98.9% in recognizing and
labeling corrosion damage, with the best recognition results obtained from the highest light intensity
images. Bastian et al. [4] published an interesting work on corrosion detection as well. They developed
a computer vision-based system for detecting corrosion in pipelines. To aid in this task, they gathered
a comprehensive collection of over 140,000 optical pictures of pipelines displaying various phases of
corrosion development. Their method included the deployment of a custom CNN specifically created
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for the categorization of pipeline photos based on their corrosion levels. Remarkably, the model
achieved a classification accuracy rate of 98.8%, demonstrating the ability to distinguish between
photos of corroded pipelines and those of rust-free pipelines with patterns resembling corrosion
features. Notably, the suggested CNN model outperformed most state-of-the-art classifiers in this
domain. Additionally, they presented a localization technique based on a recursive region-based
methodology, with the objective of locating corroded spots within a given image with greater precision.

In their study, the authors of [5] proposed a novel approach to address the challenge of detecting
pitting corrosion. They integrated history-based adaptive differential evolution with linear population
size reduction (LSHADE), image processing techniques, and the support vector machine (SVM).
The study involved capturing a total of 213 images representing both corroded and non-corroded
metal structures in Danang City, Vietnam. These images underwent a rigorous region of interest
(ROI) extraction process. The researchers used various techniques to optimize and preprocess the
dataset images, including multilevel image thresholding, morphological operations, and the LSHADE
metaheuristic. Subsequently, texture computation was carried out using statistical measurements
from color channels, GLCM, and LBP descriptors. The evaluation results were impressive, with the
LSHADE-SVC-PCD method demonstrating a classification accuracy rate of 91.80%, precision of
91%, recall of 94%, negative predictive value of 93%, and an F1-score of 92%. However, the authors
noted the limited amount of data in the dataset and the computational expense of the LSHADE
metaheuristic. They also suggested utilizing deep learning models with a larger number of images.

The article [6] introduced a new deep learning structure called Densely Connected Cascade Forest-
Weighted K Nearest Neighbors (DCCF-WKNNs) to model data related to corrosion and extract
knowledge about corrosion. The study begins by collecting corrosion samples of low-alloy steels
and describes the methods used, including the combination of RF-WKNNs, random forests-K, and
DCCF-WKNNs. The results of this approach show that it outperforms commonly used methods
such as artificial neural networks (ANN), support vector regression (SVR), random forests (RF), and
cascade forests (cForest) in predicting corrosion rates. Additionally, the method can predict corrosion
rates based on variations in individual environmental variables, allowing for the identification of
specific values for each variable beyond which the rate of corrosion could undergo significant changes.
Another related study [7] explored corrosion detection on metals with a focus on quick and safe
inspections. According to Katsamenis et al., the major limitation of image analysis approaches that
involve bounding boxes to identify corroded areas is that they are insufficient for in-depth structural
analysis and innovative construction techniques such as prefabrication. After comparing the deep
learning models for corrosion detection—FCN, U-Net, and Mask R-CNN—the study found that
while these models were not adequate for structural analysis, they exhibited superior accuracy and
efficiency compared to traditional approaches. To enhance accuracy, the study proposes a data
projection technique that combines contour segmentation with processed deep learning masks [7].

Matthaiou et al. [8] conducted a study on automated corrosion detection solutions, focusing
on utilizing visual attributes of corrosion and artificial intelligence techniques for image analysis.
They employed three approaches for corrosion detection: texture-based using convolutional neural
networks, color-based using color algorithms, and a single shot detector using transfer learning on
real-world images. The study revealed that deep learning approaches, specifically the use of single
shot detectors, produced better results compared to other methods, making them more suitable for
real-world applications. Zuchniak et al. [9] carried out a study to demonstrate the effectiveness of
proposed CNN architectures in non-destructive aircraft fuselage inspection methods. The images
used in the study were obtained through the DAIS (Digital Automated Inspection System) imaging
system, which is a non-invasive imaging approach used in technical inspections in Polish aircraft
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systems maintenance. The study’s methodology involved using a multi-teacher/single-student strategy
combined with an ensemble learning scheme and a new version of knowledge distillation. The
proposed project utilized an ensemble of CNN models to enhance the system’s classification accuracy.
The study found that the geometric student distillation model performed the best, detecting 100% of
the “moderate corrosion” class and outperforming other metrics such as accuracy, recall, precision,
and F1-score. However, the study had a relatively small dataset, which may limit the generalizability
of the findings. Additionally, evaluating the performance of the proposed methodology in comparison
to others presented a challenge.

A study by Brandoli et al. [10] aimed to identify corrosion in aircraft fuselage images. The dataset
includes 210 fuselage joint images from Boeing 727 and Airbus 300 aircraft models. The images of
corroded and non-corroded sections were captured using a DAIS sensor. The experiment used five-fold
cross-validation, image cropping, resizing, and various pre-trained architectures such as Inceptionv3,
ResNet-101, NasNet, SqueezeNet-201, and DenseNet-121. Data augmentation techniques like shear-
ing and scaling were also used. According to the findings, DenseNet achieved an accuracy of 92.2%,
while SqueezeNet had an accuracy of 91.6%.

Another study [11] introduced a deep learning model, AMCD, for real-time corrosion detection
on Micro Aerial Vehicles (MAVs). The model is based on the YOLOv3-tiny architecture with advanced
DSConv layers for efficiency. The dataset comprised 5625 images categorized into four types of
corrosion: nubby, bar, exfoliation, and fastener. Several enhancements were implemented, such as
the convolutional block attention module (CBAM), three-scale object detection, focal loss, and an
improved spatial pyramid pooling (SPP) module. The model achieved a mean average precision (mAP)
of 84.96% and outperformed other models like YOLOv2-tiny, YOLOv3-tiny, YOLOv4-tiny, Single-
shot object detection (SSD) network, and RetinaNet in terms of accuracy rate, model size, and speed of
detection. Ahuja et al. proposed an optimized deep-learning framework for corrosion detection using
image segmentation in their study [12]. Their research primarily aims to predict the course of corrosion
based on the relationship between the shape and size of corrosion pits and their conditions. They
employed a Residual UNet model together with a Bidirectional Convolution LSTM (BCLSTM) for
the detection and classification of pitting corrosion. Furthermore, image processing techniques were
used to explore the corrosion’s varied color and textural properties. The study was implemented in the
MATLAB platform and utilized SEM image-based datasets. The experimental findings demonstrated
an accuracy rate of 94%, showcasing the suitability of the proposed strategy for corrosion detection.
In a separate study, Forkan et al. [13] introduced CorrDetector, a structural corrosion detection
framework developed for drone imagery. Their framework is based on CNN models and is aimed at
detecting structural corrosion in civil engineering. Their dataset comprised 573 high-resolution photos
capturing unique views and lighting situations relevant to telecommunication towers. The results of
their model are impressive, with an accuracy of 92.5% and an F1-score of 98%, showing significant
improvements over existing approaches. Comparative studies highlighted the enhanced performance
features of the proposed model compared to contemporaneous state-of-the-art.

In their study [14], the researchers aimed to develop a robust system for accurately detecting
and assessing damage and corrosion in civil infrastructure using machine learning (ML) and image
processing techniques. The final dataset consisted of 1300 images, each with dimensions of 4864 × 3648
pixels. The process involved initial image processing followed by data augmentation, which was applied
sixteen times to improve model generation. The authors utilized a modified deep hierarchical CNN
(HCNN), CycleGAN, and U-Net architecture, as well as convolutional neural network, U-Net, along
with various tools and functions for training the data. Additionally, they used conditional random
field (CRF)-based Fusion and Multi-Level Feature Aggregation (MLFA) to enhance predictions and
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learning during training. The model was then compared against industry standards such as PSPNet,
DeepLab, and SegNet. The results were promising, with the model achieving a global accuracy of
98.9%, class average accuracy of 93.1%, Mean IOU of 87.8%, Precision of 84.9%, Recall of 81.8%, and
an F-score of 83.3%. Despite these positive outcomes, the authors encountered challenges including
the limited diversity in training datasets, environmental conditions and camera angles affecting model
accuracy, the requirement for specialized knowledge in ML and image processing, as well as the
high costs associated with acquiring and maintaining the necessary equipment for ML-based damage
detection.

Nash et al. [15] conducted a study on corrosion detection using deep learning. In their work,
they proposed a method based on deep learning for identifying corrosion regions through pixel-level
segmentation. They also introduced three Bayesian variations to provide uncertainty estimates and
confidence levels for each pixel, aiming to enhance decision-making. The study involved a dataset
of 225 photographs from an industrial site, captured in visible light using a consumer digital SLR
camera and saved as compressed JPEGs. The dataset was manually labeled by experts with per-pixel
“corrosion” and “background” labels. Due to the limited size of the dataset, the researchers used 10-
fold cross-validation for training. According to the results, all three model variations achieved higher
accuracy in corrosion detection compared to human-level performance, with the maximum F1-score
reaching 93%.

The study referenced in [16] presented an automated solution for addressing corrosion detection
challenges. They developed RustSEG, a corrosion segmenter, using a CNN model and a “Classify,
localize, refine” approach, along with heatmaps from Grad-CAM++ to pinpoint corrosion loca-
tions. However, Grad-CAM++ produced false positive regions for classification, which the authors
addressed by integrating heatmaps with final pixel-level segmentation and refining the mask using a
CRF. RustSEG achieved promising results without the need for per-pixel labeled datasets. To prevent
overfitting, data augmentation techniques were used. The training dataset consisted of 7000 corrosion
and 9000 non-corrosion images from publicly available photos on flickr.com (accessed on 10 July
2024), and an additional balanced set of 600 images per category for testing, along with 1200 expertly
labeled images from various platforms. The model achieved an accuracy of 77.83%, an Area Under the
Curve (AUC) of 86.17%, a precision rate of 81.27%, a recall rate of 72.33%, and an F1-score of 76.54%.
For the Flickr Test Dataset, the model’s accuracy was 86.81%, with an AUC of 94.82%, a precision
of 89.38%, a recall of 83.86%, and an F1-score of 86.53%. Additionally, the researchers provided an
interactive platform to ensure accessibility for all users.

A study referenced in [17] explored the potential of secure coatings based on two-dimensional
materials. These coatings are known for their strong bonding with metals and their ability to be
functionalized. The study highlights the success of graphene coatings and mentions the exploration
of other two-dimensional materials such as hexagonal boron nitride and molybdenum disulfide as
promising alternatives. However, limited experimental data makes training classifiers challenging and
often leads to overfitting. To tackle this issue, the article investigates the use of deep learning data
augmentation methods, specifically variation autoencoder (VAE) and generative adversarial network
(GAN), to create synthetic electrochemical data resembling the training data. These techniques were
applied to a few-layered graphene on copper surfaces. The results show that the synthetic data
generated by GAN outperformed VAE in terms of neural network system performance, achieving an
accuracy of 83%–85% compared to VAE’s 78%–80%. However, when using XGBoost, VAE-generated
data performed better with a 90% accuracy compared to GAN’s 84%–85%. In conclusion, the study
illustrates that synthetic data generated using VAE and GAN models can be valuable for training
machine learning models focused on developing corrosion-resistant two-dimensional coatings.

http://flickr.com
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A study by Lemos et al. [18] used unmanned aerial vehicles (UAVs) and artificial intelligence to
automatically detect corrosion on metal sandwich panels of large industrial buildings. The dataset
includes 8400 high-resolution aerial images of metallic roofing systems of industrial facilities in
northern Portugal. The images were captured at high sunlight exposure from a height of 12–15 m using
a drone. The data was augmented using techniques like flipping and rotating before being divided into
three parts for training, validation, and testing, respectively. The study used a deep learning algorithm
called Mask R-CNN for instance segmentation. After conducting a sensitivity analysis, the results
showed a precision of 85.8% and recall of 84.0% for all identified corrosion instances. In another
research by Guzmán-Torres et al. [19], machine learning and computer vision techniques were used
for concrete visual inspection and damage detection in real-time. The study aimed to demonstrate
how machine learning and computer vision can be used to identify and analyze complex patterns
of structural damage, with a focus on early detection of corrosion in concrete structures. The initial
dataset included 159 images and was augmented to a total of 790 images. The training process involved
using transfer learning with medium-and high-resolution training images, implementing the YOLOv3
algorithm based on Darknet-53, and applying data augmentation techniques to generate a robust
model. By experimenting with 30 hyperparameter combinations, the authors identified optimal values
for learning rate, momentum, patience, and weight decay to address overfitting. With the adjusted
model, the study achieved a high precision of 82.12% in detecting corrosion damage.

A similar study in [20] addressed the continued dominance of fossil fuels in the global energy
supply, despite significant investments in renewable energy. It specifically focuses on the corrosion-
related failures, particularly pitting corrosion, in offshore oil and gas pipelines. To predict the maxi-
mum depth of pitting corrosion in these pipelines, the paper briefly covers the use of Generalization
and Generalization-Memorization models. These models are trained using various variables, including
soil properties and types of protective coating on the pipes. Deep neural networks are utilized, and the
mean squared error of prediction for training data is 0.0055, while for test data it is 0.0037. These
results indicate that deep learning models outperform empirical, and hybrid models used in earlier
experiments with the same dataset. In summary, the deep learning model proposed in this study has
the potential to predict pipeline failures caused by external corrosion, thereby enhancing the security
and reliability of oil and gas infrastructure.

In the study referenced in [21], researchers tackled the challenge of detecting corrosion, a task
that is risky and difficult for humans and often yields results with poor accuracy. Moreover, it is
costly. They proposed an alternative approach for automated corrosion detection on steel structures.
The methodology included data preprocessing, training, and hyperparameter tuning. By leveraging
drone technology and CNN methodologies, they employed the MobileNet model for setting CNN
hyperparameters. The relatively small dataset comprised 200 corrosion images collected from Google
Images and ITS, which were split into 85% for training and 15% for testing. Data augmentation was
used to increase the number of images, and data labeling was applied to assist CNN in recognizing
corrosion objects. The training process updated the CNN model parameters until optimal results
with a slight loss were achieved. The study successfully reached its goals with a total loss of 1.673
and an accuracy of 84.66%. The authors made several recommendations for future work to enhance
the detection accuracy of the CNN model. These encompass increasing the number and diversity
in the dataset by incorporating various colors, texture variations, and environmental conditions
such as wind speed, humidity, and temperature. Moreover, optimizing crucial parameters such as
batch size, drone speed, learning rate, and observational distance can substantially improve corrosion
detection accuracy. Tan et al. [22] proposed a multitask deep learning approach called detection and
segmentation network (DSNet) for corrosion detection and segmentation. The approach achieved the
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highest detection precision, recall, and F1-score, with values of 94.3%, 98.1%, and 96%, respectively.
Additionally, it achieved the best segmentation results with a mean Average Precision (mAP) of 0.786.
The dataset used in the study was obtained from a public repository, and the focus of the approach
was on corrosion detection from bolts.

Table 1 provides a summary of the related work, including the methods used, dataset sizes, and
results.

Table 1: Summary of the literature review

Study Technique/s Dataset size Results

[2] 2018 Color space
transformation to HSI

– Identify and measure the
corrosion level on the
pipeline surface with high
accuracy.

[3] 2019 CNN model based on
Alexnet alongside an
overlap-scanning sliding
window algorithm

A total of 330 raw images
(4032 × 3024) of hull
structural plate corrosion
damage are collected under
different conditions.

Accuracy of 98.9%.

[4] 2019 A custom CNN 60,000 images The model achieved a
classification accuracy rate
of 98.8%.

[5] 2020 Support Vector Machine
(SVM), linear population
size reduction (LSHADE)
Metaheuristic

213 image Accuracy rate of 91.80%, a
precision of 91%, a recall
of 94%, a negative
predictive value of 93%,
and an F1-score of 92%.

[6] 2020 ANN, support vector
regression (SVR), random
forests (RF), and cascade
forests (cForest)

409 LAS corrosion samples The weighted combination
model assigns different
values to the base tree
models to weaken the
influences of low accuracy
tree.

[7] 2020 Comparing the deep
learning models for
corrosion detection: FCN,
U-Net, and Mask R-CNN.

Contains 116 images of
various resolutions

Proposed models exhibited
superior accuracy and
efficiency as compared to
traditional approaches

[8] 2021 Texture-based, using CNN;
color-based, using color
algorithms; and the use of
a single shot detector using
transfer learning

Real world images The use of single-shot
detectors yielded better
results as compared to
other methods, making
them more apt for
real-world applications.

(Continued)
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Table 1 (continued)

Study Technique/s Dataset size Results

[9] 2021 Used a multi-
teacher/single-student
strategy combined with an
ensemble learning and a
new knowledge distillation
version

Dataset consisting of
1.3 · 104 320 × 240 images
of various fuselage parts
from several aircraft types,
brands, and service life

The geometric student
distillation model
performed best, detecting
100% of the “moderate
corrosion” class and
outperforming other
metrics like accuracy,
recall, precision, and
F1-score.

[10] 2021 DenseNet a pretrained
neural network
architecture

210 images An accuracy of 92.2%.

[11] 2021 Deep Learning-based
Metallic Corrosion
Detector (AMCD)

5625 images mAP 84.96%, AMCD
model outperformed other
models like YOLOv2-tiny,
YOLOv3-tiny,
YOLOv4-tiny, SSD, and
RetinaNet.

[12] 2021 Residual UNet model with
a Bidirectional
Convolution LSTM

– An accuracy rate of 94%.

[13] 2021 CNN 573 high-resolution images Accuracy of 92.5% and
F1-score of 98%.

[14] 2022 Deep Hierarchical CNN,
CycleGAN, U-Net
Architecture.

1300 images Global Accuracy of 98.9%,
Class Average Accuracy of
93.1%, Mean IOU of
87.8%, Precision of 84.9%,
Recall of 81.8%, and an
F-score of 83.3%.

[15] 2022 Three deep learning
Bayesian variations

225 images The maximum F1-score of
93%.

[16] 2022 CNN model Flicker dataset: 1600
images, corrosiondetector
dataset: 1200 images

Model’s accuracy at
86.81%, with an AUC of
94.82%, a precision of
89.38%, a recall of 83.86%,
and an F1-score of 86.53%.

(Continued)
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Table 1 (continued)

Study Technique/s Dataset size Results

[17] 2022 Namely variation
autoencoder (VAE) and
generative adversarial
network (GAN)

The size of the dataset is
49. Synthetic data
generated by VAE and
GAN

GAN data performance
(83%–85% accuracy), VAE
data performance
(78%–80% accuracy). But,
VAE data performed better
(90%) than GAN data
(84%–85%) with XGBoost.

[18] 2023 Deep learning algorithm
called Mask R-CNN

The database contains
8400 images, with a 2000 ×
2000 dimension

Precision of 85.8% and
recall of 84.0%.

[19] 2023 Implemented the YOLOv3
algorithm based on
Darknet-53

The initial dataset with 159
images. Augmented dataset
with 790 images

Precision of 82.121%.

[20] 2023 Generalization and
Memorization models

– Mean squared error of
prediction of 0.0055 in
training data and 0.0037 in
test data.

[21] 2023 Deep learning: CNN with
the MobileNetV1 SSD

200 corrosion images Total loss of 1.673 and an
accuracy of 84.66%.

[22] 2024 DSNet a deep learning
apporach

1441 images of size 640 ×
640

Precision, recall and
F1-score of 94.3%, 98.1%
and 96%. mAP score 0.786.

3 Proposed Techniques

The diagram in Fig. 1 illustrates the methodological steps that were utilized in the proposed study.

Figure 1: Methodological steps

3.1 You Only Look Once–Version 8 (YOLOv8)

YOLOv8 is the latest version of the YOLO model, known for its accuracy in important computer
vision tasks such as object detection, image classification, and instance segmentation. Developed by
Ultralytics, YOLOv8 is an improvement on YOLOv5, featuring enhancements to the model’s structure
and usability. YOLO was first introduced in 2015 by Joseph Redmond, and it quickly became known
for its ability to balance accuracy and computational efficiency, making advanced computer vision
accessible to many developers. YOLOv8 continues this tradition of high accuracy, as confirmed by
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metrics from sources like Microsoft COCO, while still being trainable on a single GPU. YOLOv8
stands out with its unique architecture, consisting of two main components: the Backbone and Head.
The model uses an anchor-free approach and separates the head to handle detection, classification, and
regression tasks independently, allowing for specialized optimization for each function and improving
the model’s accuracy [23].

3.2 Convolutional Neural Networks (CNNs)

CNNs are a type of deep learning model specifically designed to analyze structured grid data,
such as images and videos. They are widely used in computer vision tasks. The fundamental building
blocks of CNNs are convolutional layers, which apply filters or kernels to input data and extract
relevant information like edges, patterns, and formations in images. The resulting feature maps are then
down sampled using pooling layers to minimize computing complexity, reduce spatial dimensions, and
improve the network’s resilience to input changes. CNN models create connections between neurons
in successive layers and typically include one or more fully connected layers for handling classification
or regression problems. Activation functions, such as Rectified Linear Units (ReLUs), introduce non-
linearity into the network and aid the learning process by enabling the network to recognize complex
patterns. CNNs are trained using optimization techniques like gradient descent and back-propagation,
in which network weights and biases are adjusted to minimize a specified loss function. Normalization
and augmentation are common data preprocessing strategies used to maximize training and improve
the network’s generalization capacity. CNNs are also used in transfer-learning paradigms, which
reduce training time and data requirements by optimizing pre-trained models for specific tasks. CNNs
represent a revolutionary force in computer vision and have significantly advanced the discipline. They
are still the focus of ongoing research and development, with their basic function in contemporary
image recognition systems serving as evidence of their lasting significance [24].

3.3 EfficientNetB0

EfficientNetB0 is a series of CNN models designed to efficiently utilize computational resources
while delivering high accuracy. What makes it unique is its use of a compound coefficient to effectively
scale up CNNs across depth, width, and resolution in a balanced manner. The initial model for this
family of models is the EfficientNetB0 model, which combines squeeze-and-excitation blocks with
inverted bottleneck residual blocks from MobileNetV2. The architecture’s scaling technique allows for
uneven scaling of network dimensions, setting it apart from existing CNNs and improving efficiency
and speed. One of the key concepts of EfficientNetB0 is the use of compound scaling, employing a
coefficient to systematically scale the model’s dimensions rather than arbitrarily scaling these factors.
This results in improved performance without increasing computational cost. EfficientNetB0 can
be used practically as a feature extractor in transfer learning processes. For instance, custom layers
tailored to the number of classes in a new dataset can replace the top layer of a model pre-trained on
datasets like ImageNet [25].

3.4 Dataset Description

The dataset for the corrosion detection project was created using two main sources: an open-source
website [26] and contributions from an author of a relevant study [4]. It consists of a total of 1000
images. These images were carefully split to meet the requirements for a robust deep learning project:
70% of the images are for training the models, 20% for validation to fine-tune model parameters,
and the remaining 10% for testing to evaluate the models’ performance. This structured division
aims to enhance the accuracy of the models (CNN, YOLOv8, and EfficientNet0) in distinguishing
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between corroded and non-corroded surfaces. Fig. 2 shows a sample of random images selected from
the dataset.

Figure 2: Sample of the dataset

3.5 Performance Evaluation

The model’s predictive accuracy will be rigorously assessed using a suite of key performance
indicators. Accuracy measures the fraction of predictions that the model made correctly out of the
total number of predictions. The Loss Value will also be carefully examined to capture how frequently
the model makes errors when tested against the dataset. Precision is important for determining the
model’s reliability in identifying images that show corrosion. Additionally, the recall metric will be used
to evaluate how well the model identifies instances of corrosion in the images. Furthermore, the F1-
score, which is a harmonic mean of precision and recall, provides a balanced performance evaluation
considering both types of prediction errors. These evaluation criteria offer a detailed and stringent
appraisal of the model’s performance. The Eqs. (1)–(4) use TP (true positive), TN (true negative), FP
(false positive), and FN (false negative) as of [27–30].

Accuracy = TP + TN
TP + TN + FP + FN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

F1 − score = 2 × Precision × Recall
Precision + Recall

(4)

4 Results and Discussion
4.1 CNN

The lines labeled ‘Accuracy’ and ‘val_accuracy’ in Fig. 3 represent the model’s accuracy on the
training and validation sets (y-axis), respectively in terms of number of epochs given on the x-axis.
These lines rise quickly and level off close to 100%, indicating high accuracy across both datasets. This
suggests that the model is not overfitting and can effectively generalize to new data, as seen by the
convergence of training and validation accuracy near 100%.

In Fig. 4, the lines ‘loss’ and ‘val_loss’ represent the training loss and validation loss (y-axis),
respectively in terms of number of epochs given on the x-axis. The validation loss is calculated on
a separate set of data that the model did not see during training, while the training loss represents
the model’s error on the training dataset. Both loss metrics sharply fall and converge to a low value
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near zero, indicating efficient learning and effective generalization without overfitting. Examining the
hyperparameters, ‘adam’ is used as the optimizer, ‘binarycrossentroy’ as the loss function, and a batch
size of 22. As shown in Table 2, the CNN model performed flawlessly in every metric. It accurately
classified each instance with 100% accuracy. Additionally, precision reached 100%, indicating no false
positives, and all predictions of the target class were accurate. Similarly, recall was 100%, meaning no
instances of the target class were missed. The F1-score is 100%, showing ideal balance between recall
and precision and demonstrating the model’s promising performance.

Figure 3: CNN accuracy curve

Figure 4: CNN loss curve
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Table 2: CNN evaluation results

Accuracy Precision Recall F1-score

CNN 100% 100% 100% 100%

4.2 YOLOv8

The left graph shows the training loss, indicated by the orange dotted line, which smooths the
trend. The actual loss values throughout epochs are represented by the blue line. The model seems to
be reaching a stable learning point from the training data. This is evidenced by the first large drop,
indicating quick learning, followed by a steadier descent and then a leveling out. The top right graph
displays the validation loss, which shows a significant initial decline leveling out as epochs increase,
like the training loss. Regarding hyperparameters, the optimizer function used is ‘adamw’ with a
batch size of 44. Although the actual loss values (blue) vary, the smoothing trend (orange) remains
generally constant, indicating consistent performance on the validation set. In Fig. 5, the graph on
the bottom left shows the top 1 accuracy measure on the training data. The blue line represents the
real data, exhibiting significant changes as training progresses. The model may have reached a point
during training where it no longer performs well in generalizing, as seen by the slight decrease in top
1 accuracy shown by the smoothed orange line. The graph on the bottom right displays the top 5
accuracy metrics, with the blue line demonstrating that the true class is almost always within the top
5 predictions made by the model. This shows that the model consistently achieves near-perfect top 5
accuracy with minimal fluctuation across the epochs (Fig. 5). Table 3 illustrates the YOLOv8 model’s
exceptional performance in detecting corrosion, with an accuracy of 95%, ensuring that almost all its
predictions are correct. Its precision stands at an impeccable 100%, meaning it has zero false positives;
no non-corroded instances are wrongly identified as corrosion. While it misses 10% of actual corroded
instances, as indicated by the 90% recall, the model still captures most corrosion cases. The F1-score of
94.74% confirms the model’s effectiveness in balancing precision and recall, making it a reliable tool
for corrosion detection.

Figure 5: (Continued)
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Figure 5: YOLOv8 performance curves

Table 3: YOLOv8 evaluation results

Accuracy Precision Recall F1-score

YOLOv8 95% 100% 90% 94.74%

4.3 EfficientnetB0

In Fig. 6, we can observe the training progress of the EfficientNetB0 model over 30 epochs.
It shows consistent improvement and eventual perfection. Initially, the model was trained for 20
epochs, reaching a certain level of accuracy. To further enhance its performance, it underwent an
additional 10 epochs of training (Fig. 7). The graphs demonstrate a clear contrast between the training
and validation accuracy and loss, which eventually converge. The hyperparameters used include the
‘adam’ optimizer and ‘categoricalcrossentropy’ loss function, with a batch size of 22. This convergence
indicates the model’s increasing generalizability and stability over time. As shown in Table 4, the
model ultimately achieved a flawless 100% score across accuracy, precision, recall, and F1-score.
This remarkable achievement underscores the model’s ability to classify every image in the test set
correctly, with precision signifying no false positives and recall indicating that every positive instance
was captured. The F1-score of 100% demonstrates a perfect balance between precision and recall,
which is an ideal outcome for any classification model. These impressive results suggest that the
additional epochs were highly beneficial, allowing the model to refine and adjust its parameters to
better understand the complexities of the dataset.
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Figure 6: EfficentNetB0 accuracy curve

Figure 7: EfficentNetB0 loss curve
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Table 4: EfficentNetB0 evaluation results

Accuracy Precision Recall F1-score

EfficientNetB0 100% 100% 100% 100%

4.4 Comparison with State-of-the-Art

The proposed scheme has been compared to similar studies and schemes in the literature from
2021 to 2023. For the comparison, the schemes were selected based on the algorithms used, dataset,
and target industrial images. Fig. 8 illustrates the comparison.

0

20

40

60

80

100

CNN YOLOv8 EfficientNetB0 Hoang
(2020)

Munawar et al.
(2022)

Burton et al.
(2022)

Accuracy Precision Recall F1 Score

Figure 8: Comparison with state-of-the-art [5,14,16]

It is evident that the proposed schemes CNN and EfficientNetB0 outperform the state-of-the-art
in all four metrics. The studies chosen for comparison are SVM [5], Deep CNN with transformers [14],
and CNN [16] for common grounds. The key differences lie in the set of hyperparameters, method-
ology (data augmentation), and feature selection used. The scheme in [16] exhibited relatively lower
performance compared to all the proposed schemes, including CNN, YOLOv8, and EfficientNetB0.
The scheme in [5] exhibited similar behavior, except it had 4% better recall compared to YOLOv8.
The scheme in [14] underperformed in all metrics, except that the accuracy was comparable to the
proposed schemes, just 1.1% lower compared to CNN and EfficientNetB0, while being 3.9% better
than YOLOv8.

4.5 Discussion

The research focuses on utilizing deep-learning methods to identify corrosion in industrial images.
The study uses an augmented dataset compiled from open sources and local images. The CNN and
two pre-trained models, YOLOv8 and EfficientNetB0, show promise compared to existing studies.
The learning rate is adjusted during training to manage the model’s learning pace, controlling the
number of steps taken in the learning process. Additionally, variable-sized batches are used during each
iteration to improve weight updating. Techniques such as mini-batch gradient descent and stochastic
gradient descent are used to achieve this. Intelligent tuning of the learning rate, typically set around
0.001, promotes progressive learning and helps to avoid overfitting. Adding a momentum parameter
enhances the model’s resistance to getting stuck in local minima, preventing stagnation and improving
its learning dynamics. These measures contribute to the model’s robust validation process and its ability
to generalize effectively. The complexity of the deep learning models is primarily expressed in terms of
learning rate, batch size, number of epochs, and training time, which are typically performed offline.
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Testing, on the other hand, happens in real-time [28]. In this case, the method shows polynomial
complexity in both time and space, with the size of the image (in 3 dimensions) being expressed as
O(x ∗ y ∗ z). As for the study’s limitations, it primarily focuses on detecting corrosion in images from
the oil and gas industry, encompassing a wide range. However, it does not consider other industries
such as manufacturing. Additionally, environmental conditions and camera angles may impact the
model’s accuracy. In future studies, other sectors could also be joined. Furthermore, additional deep
learning models such as YOLOv9 and Federated learning could be explored for further improvement
and understanding [31,32].

5 Conclusions

The study aims to detect corrosion using deep learning and transfer learning models. Our
comprehensive evaluation of CNN, YOLOv8, and EfficientNetB0 models in corrosion detection
demonstrates impressive results. Both models achieved perfect scores in accuracy, precision, recall, and
F1-score, showcasing their ability to accurately identify instances of corrosion without overfitting. This
marks a significant technological advancement in detection, providing reliable solutions for industrial
challenges. The YOLOv8 model achieved 95% accuracy and 100% precision, but its recall was slightly
lower. However, it displayed a strong capability in minimizing false positives, which is essential for
practical applications. These results underscore the model’s reliability in detecting corrosion with
high precision. These findings highlight the potential of deep learning techniques in transforming
corrosion detection and setting new standards for accuracy and reliability. We also discovered that
the strategic use of these models not only advances the field but also indicates their readiness for real-
world application, promising to improve safety and efficiency in industries facing corrosion challenges.
Moreover, it may be beneficial to explore hybrid intelligent systems with diverse datasets to further
advance research in this area.
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