
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.056165

ARTICLE

HGNN-ETC: Higher-Order Graph Neural Network Based on Chronological
Relationships for Encrypted Traffic Classification

Rongwei Yu, Xiya Guo*, Peihao Zhang and Kaijuan Zhang

Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and
Engineering, Wuhan University, Wuhan, 430072, China

*Corresponding Author: Xiya Guo. Email: xiyaguo@whu.edu.cn

Received: 15 July 2024 Accepted: 27 September 2024 Published: 18 November 2024

ABSTRACT

Encrypted traffic plays a crucial role in safeguarding network security and user privacy. However, encrypting
malicious traffic can lead to numerous security issues, making the effective classification of encrypted traffic
essential. Existing methods for detecting encrypted traffic face two significant challenges. First, relying solely on
the original byte information for classification fails to leverage the rich temporal relationships within network
traffic. Second, machine learning and convolutional neural network methods lack sufficient network expression
capabilities, hindering the full exploration of traffic’s potential characteristics. To address these limitations, this
study introduces a traffic classification method that utilizes time relationships and a higher-order graph neural
network, termed HGNN-ETC. This approach fully exploits the original byte information and chronological
relationships of traffic packets, transforming traffic data into a graph structure to provide the model with more
comprehensive context information. HGNN-ETC employs an innovative k-dimensional graph neural network
to effectively capture the multi-scale structural features of traffic graphs, enabling more accurate classification.
We select the ISCXVPN and the USTC-TK2016 dataset for our experiments. The results show that compared
with other state-of-the-art methods, our method can obtain a better classification effect on different datasets,
and the accuracy rate is about 97.00%. In addition, by analyzing the impact of varying input specifications on
classification performance, we determine the optimal network data truncation strategy and confirm the model’s
excellent generalization ability on different datasets.

KEYWORDS
Encrypted network traffic; graph neural network; traffic classification; deep learning

1 Introduction

At present, traffic encryption has been the most important protection technology for network
transmission information. In 2019, it was reported that the global hypertext transfer protocol secure
(HTTPS) page load increased from 39% to more than 80% in just four years [1,2]. However, while
effectively protecting data confidentiality and privacy through encryption technology, malicious
behavior traffic sent by attackers will also be hidden, resulting in security problems such as malware
activities [3], data leakage [4], and vulnerability intrusion [5]. There are also many malicious software

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.056165
https://www.techscience.com/doi/10.32604/cmc.2024.056165
mailto:xiyaguo@whu.edu.cn

2644 CMC, 2024, vol.81, no.2

that use encryption technologies such as transport layer security (TLS) to avoid the firewall and
intrusion detection system intercept, which brings new challenges to traditional traffic classification
methods [6].

Before traffic encryption became commonplace, port-based approaches and deep packet [7]
inspection techniques were extensively recognized and employed. These methods analyze source
and destination ports, source and destination addresses, and protocol types, classifying the types of
applications based on their port numbers. In addition, methods based on statistical characteristics
and behavioral characteristics were also commonly used in traditional traffic classification [8–11].
However, these methods are ineffective in the face of attacks from cryptographic payloads, and a
series of issues such as communication delay, resource consumption, and privacy disclosure have
emerged. In recent years, many traffic classification studies have used machine learning (ML) methods
and achieved good classification results [12]. However, machine learning methods require manual
statistical extraction of features from raw data before use, and then input of already defined features
[13]. Therefore, a lot of effort has been spent on the characteristic statistics of flow-level network traffic
rather than packet-level network traffic [14–17].

Thanks to the continuous development of neural networks, many traffic classification methods
using ML have also achieved certain results [18–20]. However, these methods cannot handle the
traffic data converted to non-Euclidean space well, leaving much valuable information unusable
for classification tasks. To solve the above problems, graph neural networks (GNNs) are used in
traffic classification tasks. Some methods use GNNs to classify traffic, and consider the adjacency
relationship between packets and packet raw bytes in the network traffic but ignore the chronological
relationship between packets [21]. There are also some GNN-based network traffic classification
methods [22,23] which use GNNs with lower dimensions. These methods do not make full use of
node information and only make use of partial information. Higher-order information in the graph
structure is ignored in these methods.

To make full use of all kinds of valid information in encrypted traffic and enhance the generaliza-
tion ability of the classification model, we propose HGNN-ETC. Our HGNN-ETC first considers the
raw bytes of packets and the chronological relationship between packets and maps the network traffic
into a graph that preserves both the raw bytes and the chronological relationship. Specifically, we take
the first ten packets of each session as nodes, the original bytes of each packet as attributes, and the
chronological relationship between packets as edges. Next, we use the higher-order generalization of
GNN to fully utilize the feature information of the graph and effectively classify the traffic according to
the type of service and application. Higher-order GNN uses multi-level graph convolution operations
and can consider higher-order graph structures of multiple scales, to obtain better classification results.
The network architecture design details are presented in Section 3. In the experimental part, we utilize
the dataset USTC-TK2016 and ISCXVPN2016, which contains both encrypted and unencrypted
traffic, to verify that our model can achieve higher classification accuracy and stronger generalization
ability. We also conducted experiments on different input specifications to determine the optimal input
specification. The results of the experiment showed that HGNN-ETC performs better than other
methods in different datasets, with the best classification accuracy reaching 97%.

The following three points summarize the main contributions of our work:

1. We propose a novel encryption traffic classification method called HGNN-ETC based on
higher-order GNN. The higher-order information of the graph is retained by higher-order GNN,
which effectively improves the accuracy of classification and the generalization ability of the model.

CMC, 2024, vol.81, no.2 2645

2. We improve the feature extraction features of encrypted traffic, make full use of the packet
raw bytes and chronological relationship features, and provide more potential feature information for
encrypted traffic classification to improve the accuracy of the classification results of the model.

3. Finally, we conducted experiments on ISCXVPN2016 and USTC-TK2016 datasets to demon-
strate that HGNN-ETC has better classification accuracy and generalization ability. The effectiveness
of each module was verified by ablation experiments with different inputs.

The remainder of this paper is organized as follows. In Section 2, we summarize the relevant work
in the field of traffic classification. In Section 3, we describe the data processing method, the graph
construction method, and the classifier we designed based on a higher-order GNN. In Section 4,
we evaluate our proposed model on two datasets and compare our results with the state-of-the-art
methods. In Section 5, we summarize our work and propose directions for our future work.

2 Related Work
2.1 Deep Learning Methods

More and more researchers are using deep learning (DL) methods for various studies, including
network traffic classification, as various neural networks have matured [24]. DL can automatically
extract the main features of the input data, omitting the step of manual selection of features, which also
makes the DL method adapt to the scene with new categories. With the advantages of automatic feature
extraction and end-to-end classification, some researchers have attempted to apply DL to encrypted
traffic classification. In Table 1, we summarize specific information about DL-based classification
methods, including methods, years, and datasets.

Table 1: Related work on traffic classification

Paper Year Method Dataset

Yao et al. [25] 2019 Attention + LSTM Public
Wang et al. [26] 2017 1D-CNN Public
Wang et al. [27] 2017 2D-CNN Public
Liu et al. [28] 2019 RNN Private
Wang et al. [29] 2024 VAE + LSTM + DRN Public
Huang et al. [30] 2024 RNN + TextCNN Public
Pang et al. [21] 2021 GNN Public + Private
Shen et al. [22] 2021 GNN Private
Zheng et al. [31] 2022 GCN Public
Huoh et al. [23] 2022 GNN Public
Diao et al. [32] 2023 GCN Public + Private
Hu et al. [33] 2023 GNN Public
Han et al. [34] 2024 GNN Public

Convolutional neural networks (CNN) and long short-term memory (LSTM) are common DL
methods, and many studies have used these models for data feature extraction and propagation.
In the work of Yao et al. [25], the authors combined LSTM with a self-attention mechanism to
focus on important flows in the flow sequence. The model based on CNN proposed in the work of

2646 CMC, 2024, vol.81, no.2

Wang et al. [26] used a one-dimensional vector to represent each stream or session, which achieves
better classification results than the C4.5 method. As an improvement, in the work of Wang et al. [27],
the author used a two-dimensional CNN to classify traffic named 2DCNN. The FS-Net designed by
Liu et al. [28] used a multi-layer encoder-decoder structure to dig deep into the latent sequence features
of the stream and introduces a reconstruction mechanism to improve the effectiveness of the features.
Wang et al. [29] proposed a new model that combines a variational autoencoder (VAE), LSTM, and
deep residual network (DRN) to enhance the processing power of the original unbalanced dataset
and improve the identification accuracy of encrypted traffic. Huang et al. [30] used recurrent neural
network’s (RNN) variant model to extract temporal features and combined it with the TextCNN
model to extract local multi-receptive field spatial features, to improve the accuracy of classification.

From the above-related work, we can see that many researchers are keen to use the CNN model
because the CNN is very efficient in solving problems in Euclidean images. Therefore, many studies
have used the Euclidean form of network traffic data to train models [26]. However, the basic
data structures adopted in these studies are still limited to grid or sequence data. Therefore, some
researchers have introduced graphical models to deal with unstructured data for traffic classification.

2.2 Graph Neural Networks Methods

Some researchers try to associate the network traffic with non-Euclidean data, and convert the
traffic into a directed graph representation, to retain the information contained in the traffic more
completely and use the information for classification. However, traditional deep learning networks
(such as CNN) make it difficult to process such non-Euclidean data, so many studies use GNN to
process such information.

As shown in Table 1, some recent works have studied how to use GNN for flow-based traffic
classification and achieved some results. Pang et al. [21] proposed a chain graph model of traffic named
CGNN to maintain a chain combination sequence for application identification. The application
identification is carried out by capturing the causality of raw network traffic data. Shen et al. [22] pro-
posed a graph structure called Traffic Interaction Graph (TIG) to represent encrypted decentralized
application (DApp) flows, transformed DApp fingerprinting into a graph classification problem, and
designed a powerful GNN-based classifier. Zheng et al. [31] proposed an encrypted malicious traffic
detection method based on a graph convolutional network (GCN) called GCN-ETA, which considers
the statistical features (internal information) of network flows and the structural information (external
connections) between them. Huoh et al. [23] collected the raw bytes, metadata, and packet relationships
of traffic, and then used GNNs for classification. Diao et al. [32] proposed a novel DL framework
called EC-GCN for classifying encrypted traffic based on multi-scale graph convolutional neural
networks. It learns representative spatiotemporal traffic features hidden in the traffic time series and
then classifies them in a unified framework. The TC-GNN proposed by Hu et al. [33] used the Graph
Convolutional Network (GCN) to learn the potential application representation of the packets by
converting network packets into undirected graphs to achieve high-precision traffic classification.
Han et al. [34] proposed DE-GNN, a model that handles packet headers and payloads separately
and employs a hierarchical structure to comprehensively study fine-grained cryptographic traffic
classification.

Although the above methods based on GNNs have made some accomplishments, these methods
also have some shortcomings, such as single feature recognition and insufficient generalization ability.
For example, Pang et al. [21] only considered the adjacency relationship between packets and packet
raw bytes in the network traffic but did not consider the time relationship between packets. The

CMC, 2024, vol.81, no.2 2647

computational complexity of some methods [32] is higher when the amount of data is large. There are
also GNN-based methods such as TC-GNN [33] and DE-GNN [34] that are built with lower-order
GNN. These methods use the locality of nodes to complete the classification task and do not make full
use of the higher-order information embedded in the structure required for graph classification. As a
result, the generalization ability of the method is mediocre and may not be effective in generalizing to
other invisible traffic types.

To overcome the limitations of relevant methods, we propose an innovative encryption traffic
classification method based on higher-order graph neural networks. By constructing a novel traffic
graph model, we transform network traffic into graph structure, and integrate the chronological
relationship between data packets based on the original byte information, to provide rich context
information for the model. In addition, we have significantly improved the traditional low-order
GNN and developed a higher-order GNN model, which can deeply mine and utilize higher-order
information of graphs to improve classification accuracy and model generalization ability.

3 Method

In this section, we will detail the design process of the encryption stream classification method.
We first introduce the process of processing the data and then constructing it into a graph and then
introduce the GNN model we used for classification. The entire flow of HGNN-ETC is shown in
Fig. 1.

Figure 1: Overall framework of method

3.1 Data Processing

It has been shown that using bi-directional flows, such as sessions, performs better than unidirec-
tional flows when performing classification tasks. Therefore, bi-directional flows are also used in our
work. Many mainstream network traffic datasets are captured from servers, so the pcap file contains
a large number of raw packets. Before using this dataset, we preprocess it in the following three steps:

2648 CMC, 2024, vol.81, no.2

1. We split the original pcap file into sessions using the traffic processing tool SplitCap. If the
crawled traffic files have the suffix pcapng, they are converted to pcap files before being split.

2. To ensure that the information obtained is valid and remove the disturbing information, we
remove the relevant data in the traffic. Network traffic data is collected at the second data link layer
in the open system interconnection (OSI) model, which contains the physical information of the
transmission link. We remove Ethernet headers that contain media access control (MAC) addresses
because Ethernet headers are only used for local network Layer 2 (L2) addressing and do not play a role
in classification tasks. Then the source internet protocol address (IP) and the destination address IP of
the network layer are anonymized to improve the effectiveness of our scheme, such as Wang et al. [27].

3. Finally, the pcap files are converted to their original byte format, and the complete raw data
are used as the network input. In traffic files, packets are the units that make up each bi-directional
data stream, and a packet is composed of a byte stream, which has a maximum size determined by
the maximum transmission unit (MTU), typically 1500 bytes. The quantitative results of previous
work [25,26,35] show that entering the full raw data into the network will result in more accurate
classification results. To use more valid information in the classification task, we convert all the
information in the packet to raw bytes, and the ones that are less than the MTU will be filled. The
value of each byte is then normalized so that it falls within the interval [0, 1].

3.2 Graph Construction

After packet preprocessing, we transform each packet into a graph consisting of nodes and edges.
In the network, a session refers to all packets consisting of bidirectional flows. When we build the
graph, we model the packets in the session as nodes in the graph, and the chronological relationships
between the packets are used to build the directed edges between the nodes. In the approach [25],
the network input of the model is to intercept the first ten packets in the bi-directional stream.
Peng et al. [36] showed that the first five to seven packages are most suitable for classification. We
utilize the first 1500 bytes of the first ten packets in the stream. If the number of packets in a stream
is greater than ten, it is intercepted, and less than ten, it is filled with zero. In this way, each graph
represents a session, where the ten nodes are the first ten packets in the session, and each node has
a feature vector of 1500 length that represents the original data of 1500 bytes in the packet. Nodes
are connected by chronological relationships. Finally, each graph has a label that is used to learn the
classification. The flow of the whole graph construction is shown in Fig. 2.

1. Nodes: We define each packet as a node in the graph, represented by ni, where i represents the
serial number of the node, for example, the 10th node is defined as n10. Each node has a row vector
of 1500 (MTU size) length as its attribute, and the data in the row vector is the packet raw bytes
normalized to [0, 1].

2. Edges: After obtaining nodes, the set of directed edges between vertices is extracted based
on the chronological relationship between packets. In our approach, the edges are built based on
the timestamp order of the nodes. Specifically, for each node, we compare its timestamp against the
timestamps of other nodes, ensuring that nodes with earlier timestamps always point to nodes with
later timestamps. This construction method can not only reflect the time series of events but also
effectively capture the time-dependence relationship between nodes, to improve the model’s processing
ability of time information. Fig. 3 illustrates how directed edges are used to connect nodes when the
number of packets is 3 and 4. In the subsequent calculation of the network model, the pointing
relationship between nodes is used to aggregate and update information, so that the network can
obtain a better classification effect.

CMC, 2024, vol.81, no.2 2649

3. Labels: Finally, each graph has a label that corresponds to the category of the application or
service type to which it belongs. After the session is built as a graph, we assign labels to the session
based on the type it belongs to, so that subsequent learners can learn from it.

Figure 2: The process of mapping traffic into a graph

2650 CMC, 2024, vol.81, no.2

Figure 3: Instances of the construction of edges between nodes

3.3 Network Model

3.3.1 Higher-Order Graph Neural Networks

k-GNNs [37] is a higher-order generalization of GNNs based on the Weisfeiler-Leman graph
isomorphism heuristic (1-WL), which can obtain higher-order structure information in the graph.
We use V (G) and E(G) to represent the node set and edge set of the graph G. For a given k, let [V (G)]k

be a subset of V (G) and let v = {v1, ..., vk} denotes a set of k nodes, And v is defined as a node in the
graph whose neighborhood can be defined as follows:

N (v) = {
t ∈ [V (G)]k ||v ∩ t| = k − 1

}
(1)

In layman’s terms, the neighbors of v are k-sets that have only k − 1 nodes in common with v. The
neighborhood of v can be divided into local neighborhood NL(v) and global neighborhood NG(v).
All elements of t ∈ N(v) form the local neighborhood NL(v). The global neighborhood NG(v) then is
defined as N(v)\NL(v). Based on the above definition, the propagation formula of k-GNN is defined
as follows:

f (t)
k (v) = σ(f (t−1)

k (v) · W (t)
1 +

∑

u∈NL(v)∪NG (v)

f (t−1)

k (u) · W (t)
2) (2)

where σ is the nonlinear activation function, W is the weight matrix and f (t−1)
k(v) is The eigenvector

of the set of nodes s at layer t − 1.

For the second part of this propagation formula, we can separate and aggregate the local domain
and the global domain. In addition, considering the extensibility and overfitting of GNN, local
k-GNNs were produced, where the global neighborhood of s was omitted. Therefore, the feature
propagation formula of layer t > 0 becomes:

f (t)
k,L (v) = σ(f (t−1)

k,L (v) · W (t)
1 +

∑

u∈NL(v)

f (t−1)

k,L (u) · W (t)
2) (3)

In Section 2, we introduce the existing works that use DL and GNNs for classification, but
these methods have certain limitations. In this section, we introduce the knowledge and principles

CMC, 2024, vol.81, no.2 2651

of higher-order GNNs, which can better model higher-order relationships between data and achieve
more powerful feature extraction and classification capabilities.

3.3.2 Our Model

Our architecture is shown in Fig. 4 where our model is built using an input-learner-classifier-
output architecture. The construction of the learner refers to the k-GNN described by Morris et al.
[37]. We choose k as 3, which means that the learner consists of three sub-layers, each of which has
a dimension of 128. The input graph goes through graph convolution, normalization, and pooling
operations. A vector representation of the graph is generated for each sub-layer based on the node
features computed by concatenation of the global average pooling (GAP) value and the global
maximum pooling (GMP) value. Concatenation is used to concatenate the results before they are fed
into the classifier. The classifier consists of dense layers and dropout layers. Finally, the data is entered
into the soft-max classification and a predicted label is assigned to each graph.

In the learner, each graph convolution layer contains 128 neurons to solve the problem of
information loss during the learning phase. This is followed by a Batch Normalization (BN) layer
that normalizes the value of each feature, reduces the internal covariate shift, and can also reduce
overfitting in convolutional neural networks. The last layer of the learner is a top-K pooling layer
for dimensionality reduction. The top-K pooling layer usually preserves the topological structure
information of the graph when performing node feature selection. This means that the selected node
features will usually correspond to the adjacency relations of the graph, thus preserving the local
structure information of the graph and helping the model to better understand the topology of the
graph. The top-K pooling layer can also reduce the overall dimension of the graph, thus making our
model more robust. GMP can highlight key features, while GAP pays more attention to the extraction
of overall information. Therefore, we take two kinds of data from each sublayer to concatenate as
output. The three sublayers produce three embeddings, which are connected in series and fed into the
classifier.

The classifier consists of dense layers, dropout layers, and a classification function. Dense layers
can be used to map and transform the node features of a graph to map the node feature space to
a higher or lower dimensional space or to map the node feature space to another feature space. By
randomly discarding neuron outputs, dropout layers can effectively enable the model to understand
the graph data more deeply and represent graph data, thereby improving the accuracy of graph
classification. In the classifier, we first map with a dense layer with input 256 and output 128, then
use a dropout layer to deal with overfitting, then map with a dense layer with input 128 and output
64, then use a dropout layer, and finally use a soft-max classifier to predict the classification label.

2652 CMC, 2024, vol.81, no.2

Figure 4: Network model for graph classification

CMC, 2024, vol.81, no.2 2653

4 Experiment
4.1 Datasets

In our study, we first chose to use the ISCX VPN-nonVPN dataset [38] for our experiments. A
virtual private network (VPN) is a way of encrypting communication services to bypass censorship as
well as access geo-locking services. By using traffic capture tools, both regular and VPN sessions are
captured in the dataset, so there are a total of 14 traffic categories, generating a total of 28 GB of data.
The specific application sources for both datasets are shown in Table 2. Table 3 shows the quantity
distribution of VPN-nonVPN data by service type. The second dataset is USTC-TK2016 [27], which
is divided into malicious traffic and normal traffic. There are 10 types of traffic, including 8 types
of applications, as shown in Table 4. After the preprocessing of the pcap file is completed, the traffic
dataset is divided into the training set, the verification set, and the test set according to the ratio of
8:1:1.

Table 2: The application corresponding to the service type in VPN-nonVPN dataset

Function Application

Chat AIM, Facebook, Hangouts, ICQ, Skype
Email Simple Mail Transfer Protocol (SMPTS), Post Office Protocol (POP3S) and Internet

Mail Access Protocol (IMAPS)
File Skype, File Transfer Protocol (FTPS), Secure File Transfer Protocol (SFTP)
P2P BitTorrent
Stream Netflix, Spotify, Vimeo, Youtube
VoIP Facebook, Skype, Hangouts, Voipbuster

Table 3: VPN-nonVPN dataset quantity distribution of different service types

Function VPN Non-VPN

Chat 4029 6523
Email 298 7312
File 1020 276
P2P 477 0
Stream 659 445
VoIP 7036 1781

Table 4: Classification of the USTC-TK2016 dataset

Type Application

Malware Cridex, Geodo, Htbot, Miuref, Neris, Nsis-ay, Shifu, Tinba, Virut, Zeus
Benign BitTorrent, Facetime, File Transfer Protocol (FTP), Gmail, MySQL, Outlook, Skype,

SMB, Weibo, WorldOfWarcraft

2654 CMC, 2024, vol.81, no.2

4.2 Experiment Setting

4.2.1 Experimental Environment

The following specifications are used for development, training, and testing. PyTorch with a
Python3.9 backend is used to generate plots, build, train, and test our model. The processor is a 12th-
generation Intel (R) Core (TM) i7-12700KF with 32 GB of physical memory.

4.2.2 Evaluation Metrics

We evaluate our model using four standard classification metrics. Accuracy is often used to mea-
sure the accuracy of a model. However, since real-world datasets are often imbalanced, classification
accuracy is not a complete measure of how good a model is. Therefore, we also selected precision,
recall, and F1-score as the evaluation criteria of the model. In addition, we report the confusion matrix
of experimental results, which helps us understand and analyze the performance of the model through
intuitive visualizations. The four criteria are calculated as follows:

Accuracy = TP + TN
TP + TN + FP + FN

(4)

Precision = TP
TP + FP

(5)

Recall = TP
TP + FN

(6)

F1−score = 2 ∗ Recalli ∗ Precisioni

Recalli + Precisioni

(7)

where TP is the number of true positive samples, FN is the number of false negative samples, FP is the
number of false positive examples, and TN is the number of true negative examples.

4.2.3 Evaluation Metrics Parameter Setting

For the hyperparameter setting, we set the learning rate to 0.0003, decay rate to 0.00001, batch
to 1024, epoch to 500, and use the cross-entropy loss function. We set up five-fold cross-validation to
evaluate the predictive performance of the model, to reduce overfitting to some extent, and to obtain
as much valid information as possible from the limited data. For the design of the loss function, we
choose the cross-entropy loss function, the specific function is as follows:

L
(
y, ŷ

) = − 1
N

∑N

i=1

∑C

c=1
yi,c log

(
ŷi,c

)
(8)

where y is a matrix of true labels, yi, c representing the true labels of sample i on class c (usually 1 or
0). ŷ is the probability distribution matrix of the model prediction, and ŷi,c represents the prediction
probability of the sample i on class c. N is the number of samples. C is the number of categories. The
input we give to the loss function is the actual category label of the graph and the predicted category
label.

4.3 Experiment Comparing Performance of Different Models

4.3.1 Comparison Method

In the first part of the experiment, we compare our proposed method with the existing network
traffic classification methods. In order to ensure the fairness of the experiment, we use the same method

CMC, 2024, vol.81, no.2 2655

in the process of data processing. The network parameters of the comparison method in our paper are
all the optimal parameters proposed by the author, and the relevant parameters of the packet or session
are as consistent as possible with our methods. In addition, since data are mostly imbalanced in the
real world, we do not choose to unify the size of different categories of datasets in our experiments to
simulate the real-world situation. Therefore, we should not only focus on accuracy when evaluating
the classification effect, because it cannot be used as a good indicator to measure the result in the case
of unbalanced samples. The related works we compare are as follows:

1. 1DCNN [26] used the first 785 bytes of the packet’s raw data as a feature and then used one-
dimensional CNN for encrypted traffic classification, a method called 1DCNN.

2. In AM-LSTM [25], the first 1500 bytes of the first 10 packets in a bidirectional flow are used
as the network input, and the LSTM is combined with the self-attention mechanism to focus on the
important flows in the flow sequence.

3. In deep packet [19], the author only selected information effective for classification as features
and then used two-layer CNN, a Max-Pooling layer, and three full connection layers to build a classifier
to classify encrypted network traffic by application.

4. In GNN-Flow [23], the author collected the raw information about traffic and the relationship
between packets and then converted the traffic data into a graph structure. GNN is then used to classify
the traffic converted to a graph.

5. 2DCNN [27] uses the same data processing method as 1DCNN and also uses the CNN model
as the classifier. The difference is that 2DCNN used a two-dimensional CNN to classify the image.

6. CGNN [21] combines GCN with GNN. By introducing adaptive weights and multi-level
information fusion mechanism into the graph convolution layer, this method enhances the modeling
ability of complex relationships between nodes. Its input node size is also 1500 bytes.

7. FS-Net [28] is unique in that it is characterized by the length of the packet rather than its content.
Multi-layer bidirectional gated recurrent unit (bi-GRU) encoder and multi-layer bi-GRU decoder are
used to process the features and then classify them.

4.3.2 Performance Comparison on the ISCX VPN-nonVPN Dataset

We divide this part of the experiment into three small experiments, including service classification
on the VPN dataset, application classification on the VPN dataset, and service classification on the
non-VPN dataset. In Table 5, we list the experimental results of the VPN dataset set classified by
service. We can see that HGNN-ETC can obtain better results than the existing advanced methods.
We achieved an accuracy of 97%, which demonstrates the excellent effectiveness of our approach
in encrypted traffic. In Table 6, we list the experimental results of the VPN dataset set classified by
application. Similar to the results in Table 5, HGNN-ETC maintains a good classification effect, but
the classification effect of other methods declines.

For non-VPN data, we can see from Table 7 that HGNN-ETC can still obtain an accuracy
greater than 92% over other methods, which proves that HGNN-ETC has good generalization ability.
Although the classification effect of non-VPN data is slightly worse than that of VPN data, HGNN-
ETC still makes use of the characteristic information of unencrypted traffic to a certain extent.
1DCNN [26] and AM-LSTM [25] have poor results in all three experiments. This is because GNNs
have no constraint on the format of network input. When the network traffic converted into a graph
is input into the network, the data contained in the traffic can be fully utilized. However, the input
format of the CNN or LSTM model is fixed and the number of packets must be the same, which

2656 CMC, 2024, vol.81, no.2

cannot make full use of the information in the packets, leading to an unsatisfactory classification
effect. In addition, the results of some GNN-based methods are not as good as HGNN-ETC, because
HGNN-ETC can obtain and aggregate more information in the classification process, to improve the
classification effect. Figs. 5–7 show the confusion matrix of HGNN-ETC in three experiments.

Table 5: Performance comparison of service classification on the VPN dataset

Method Precision Recall F1-score Accuracy

1DCNN (2017) [26] 0.8745 0.9321 0.9320 0.9112
2DCNN (2017) [27] 0.9215 0.9550 0.9373 0.9453
FS-Net (2019) [28] 0.8930 0.9453 0.9173 0.9246
AM-LSTM (2019) [25] 0.9048 0.9398 0.9212 0.9312
Deep packet (2020) [19] 0.9351 0.9420 0.9382 0.9497
CGNN (2021) [21] 0.8592 0.9274 0.8807 0.9430
GNN-Flow (2023) [23] 0.9315 0.9321 0.9317 0.9467
HGNN-ETC 0.9419 0.9520 0.9468 0.9700

Table 6: Performance comparison of application classification on the VPN dataset

Method Precision Recall F1-score Accuracy

1DCNN (2017) [26] 0.7172 0.8687 0.7766 0.8432
2DCNN (2017) [27] 0.8120 0.9200 0.8592 0.8891
FS-Net (2019) [28] 0.8112 0.9246 0.8584 0.8787
AM-LSTM (2019) [25] 0.7655 0.9125 0.8233 0.8624
Deep packet (2020) [19] 0.8601 0.9192 0.8872 0.9068
CGNN (2021) [21] 0.8553 0.8458 0.8527 0.9056
GNN-Flow (2023) [23] 0.8994 0.8527 0.9265 0.8853
HGNN-ETC 0.8877 0.9372 0.9100 0.9201

Table 7: Performance comparison of service classification on the non-VPN dataset

Method Precision Recall F1-score Accuracy

1DCNN (2017) [26] 0.7172 0.8687 0.7766 0.8432
2DCNN (2017) [27] 0.8120 0.9200 0.8592 0.8891
FS-Net (2019) [28] 0.8112 0.9246 0.8584 0.8787
AM-LSTM (2019) [25] 0.7655 0.9125 0.8233 0.8624
Deep packet (2020) [19] 0.8601 0.9192 0.8872 0.9068
CGNN (2021) [21] 0.8609 0.8558 0.8232 0.9041
GNN-Flow (2023) [23] 0.8853 0.8527 0.9265 0.8994
HGNN-ETC 0.8877 0.9372 0.9100 0.9201

CMC, 2024, vol.81, no.2 2657

Figure 5: Confusion matrix for VPN dataset service classification

Figure 6: Confusion matrix for VPN dataset application classification

2658 CMC, 2024, vol.81, no.2

Figure 7: Confusion matrix for non-VPN dataset service classification

4.3.3 Performance Comparison on the USTC-TK2016 Dataset

In the USTC-TK2016 dataset, we focus on the malicious traffic section and classify it according
to the malicious type. The classification results are shown in Table 8. HGNN-ETC performs better
than other methods in handling the classification task of malicious traffic. The above experimental
results fully prove the superiority of our proposed HGNN-ETC method in the task of encrypted traffic
classification. By comparing with other existing methods, it is obvious that HGNN-ETC achieves the
best classification effect on multiple datasets. The accuracy is about 97%. This not only demonstrates
the superior performance of the method in specific scenarios but also shows its consistency and
robustness under different datasets and multiple classification criteria, further demonstrating the
strong generalization ability of HGNN-ETC in processing diverse traffic data.

Table 8: Performance comparison on the USTC-TK2016 dataset

Method Precision Recall F1-score Accuracy

1DCNN (2017) [26] – – – –
2DCNN (2017) [27] 0.9176 0.9190 0.9177 0.9180
FS-Net (2019) [28] – – – –
AM-LSTM (2019) [25] – – – –
Deep packet (2020) [19] – – – –
CGNN (2021) [21] 0.9426 0.9453 0.9439 0.9448
GNN-Flow (2023) [23] 0.9271 0.9450 0.9360 0.9567
HGNN-ETC 0.9738 0.9735 0.9736 0.9717

CMC, 2024, vol.81, no.2 2659

4.4 Comparison Experiment of Different Inputs

In this part of the experiment, we design 4 experiments and implement them on both VPN and
non-VPN datasets. We test the effect of different inputs on the classification performance, so there are
some differences in the input of each study, including the attribute length of nodes, edges, and nodes. In
Experiment 1, we use as input the number of nodes and attribute sizes designed in the proposed scheme.
In Experiment 2 we test the optimal feature length to investigate the best generalization. Therefore,
we do not change the number of nodes, but only change the attribute size, reducing the feature vector
by nearly half. In addition, in Experiment 3, we only use nodes containing 1500 bytes of raw data as
network inputs. With Study 3, we can also compare the performance differences between our model
and the DL-based model (including CNN and LSTM), because their network inputs are consistent
with those of Study 3. In Experiment 4, to evaluate the influence of the number of nodes in each graph
on the classification results, we take all the data packets of each session as the network input of nodes,
and the length of each data packet attribute is still fixed as 1500.

Table 9 shows the results of four experiments for VPN traffic. In Experiment 1, HGNN-ETC
achieves the best results, the input of the network is to take 10 packets as nodes, and each node attribute
size is 1500. In Experiments 2 and 4, we change the number of nodes and the length of node attributes
respectively, and although the classification effect is lower than that of our proposed method to a
certain extent, it can also get a good classification effect. In Experiment 3, where we trained only on
raw bytes, we achieved the lowest classification accuracy among the four experiments, yet still reached
92%. Compared with DL, CNN [27] and LSTM [1] models, which only use raw bytes, can also achieve
similar classification results.

Table 9: VPN traffic classification result

Study Input Precision Recall F1-score Accuracy

Study1 10 node/1500 0.9419 0.9520 0.9468 0.9700
Study2 10 node/784 0.9136 0.9398 0.9261 0.9501
Study3 10 node/1500 (only node) 0.8620 0.9239 0.8894 0.9220
Study4 V-node/1500 0.9041 0.9253 0.9143 0.9445

Table 10 shows the results for the non-VPN traffic classification task. Experiment 1 still produces
the best results among the four experiments. The results of Experiment 2 are quite different from those
of the VPN dataset, obtaining an accuracy of only about 66%. The reason for this result may be that the
classification of unencrypted traffic is more dependent on the original attribute of the packet, and when
we truncate the attribute, the classification effect will be greatly affected. Secondly, another reason may
be that the imbalance of the dataset leads to the unsatisfactory classification result of a certain kind
of traffic, thus affecting the overall classification effect. For Experiment 3, the classification effect
of the model with only input nodes recently also drops to some extent, but it is a little better than
Experiment 2. In the results of Experiment 4, if the number of nodes is not fixed, it cannot achieve
a good classification effect. Together with the results of Experiment 2, it can be concluded that for
non-VPN datasets, the truncation and unfixing of the input dimension have a greater impact on the
classification effect.

2660 CMC, 2024, vol.81, no.2

Table 10: non-VPN traffic classification result

Study Input Precision Recall F1-score Accuracy

Study1 10 node/1500 0.8877 0.9372 0.9100 0.9201
Study2 10 node/784 0.6398 0.5993 0.4984 0.6550
Study3 10 node/1500 (only node) 0.6712 0.8305 0.7201 0.8206
Study4 V-node/1500 0.5893 0.7400 0.6218 0.7123

In summary, HGNN-ETC maintains the best accuracy in both datasets. The above experiments
prove that the construction of the graph, the selection of the number of points, and the selection of
the node attribute dimension in our scheme are all optimal. Figs. 8 and 9 show the confusion matrix
of experimental results for the two datasets.

Figure 8: Confusion matrix for VPN dataset

CMC, 2024, vol.81, no.2 2661

Figure 9: Confusion matrix for non-VPN dataset

5 Conclusion

In this paper, we design a novel traffic classification method based on higher-order GNN named
HGNN-ETC. Since classification models based on DL typically operate on Euclidean data, they may
face limitations when dealing with data structures that do not conform to grid or sequence formats.
To solve the traffic classification problem geometrically, we use graph structure to represent the
network traffic, which retains the original byte information and time information of the traffic. Graphs
visualize the relationship between or among multiple entities, which is more effective in maintaining
data integrity. We define packets in a session as nodes in the graph and chronological relationships of
packets as edges. Each node has a property consisting of 1500 bytes of raw bytes. We can then feed the
labeled graph into the classification model for training and classification. HGNN-ETC is built based
on k-GNN. Its advantage is that it can better retain the vertex and structure information of the graph
suitable for classification, and complete better aggregation of adjacent node information. During the
experiment, we choose different datasets for testing, and the imbalance of the data is retained to verify
the generalization ability of HGNN-ETC. We first compare with the existing state-of-the-art work and
prove that our proposed method outperforms the existing state-of-the-art methods on both VPN and
non-VPN data, and shows the best generalization strength for all datasets. The experimental results

2662 CMC, 2024, vol.81, no.2

show that HGNN-ETC is effective and advanced for traffic classification tasks. In addition to this, we
also do a series of ablation experiments for different inputs, such as changing the number of nodes,
attribute length, etc. At the same time, the experimental results show the influence of different types
of truncations on traffic classification results and also prove the rationality of the graph construction
method designed in our method.

Current methods still have limitations in feature extraction, and it is difficult to accurately capture
important information in complex data. In addition, the adaptability and generality of the existing
algorithms have not been fully verified in different application scenarios. In the future, we will focus on
improving feature extraction methods and exploring novel deep learning and machine learning models
to adapt to all types of data. We plan to apply these methods to other areas such as traffic analysis,
natural language processing, and more. In addition, we aim to develop fine-grained graph structures
that will fully harness the potential of GNNs for efficient feature extraction and dimensionality
reduction, thereby driving advancements in related methodologies.

Acknowledgement: The authors thank all reviewers for their valuable feedback and suggestions.

Funding Statement: This work was supported in part by the National Key Research and Development
Program of China (No. 2022YFB4500800) and the National Science Foundation of China (No.
42071431).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Rongwei Yu, Xiya Guo; data collection: Rongwei Yu, Xiya Guo; analysis and interpretation
of results: Rongwei Yu, Xiya Guo, Peihao Zhang; draft manuscript preparation: Xiya Guo, Peihao
Zhang and Kaijuan Zhang. All authors reviewed the results and approved the final version of the
manuscript.

Availability of Data and Materials: Publicly available datasets were analyzed in this study. These
datasets can be found here: https://www.unb.ca/cic/datasets/ (accessed on 19 September 2024) and
https://github.com/yungshenglu/USTC-TFC2016 (accessed on 19 September 2024).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] E. Papadogiannaki and S. Ioannidis, “A survey on encrypted network traffic analysis applications, tech-

niques, and countermeasures,”ACM Comput. Surv., vol. 54, no. 6, pp. 1–35, Jul. 2021. doi: 10.1145/3457904.
[2] Cisco, “Encrypted traffic analytics,” Accessed: Oct. 10, 2019. [Online]. Available: https://www.ci

sco.com/c/dam/en/us/td/docs/solutions/CVD/Campus/eta-design-guide-2019oct.pdf.
[3] B. Anderson and D. A. McGrew, “Identifying encrypted malware traffic with contextual flow data,” in

Proc. AISec. ACM, New York, NY, USA, 2016, pp. 35–46. doi: 10.1145/2996758.2996768.
[4] K. Thomas et al., “Data breaches, phishing, or malware?: Understanding the risks of stolen credentials,”

in Proc. CCS. ACM, New York, NY, USA, 2017, pp. 1421–1434. doi: 10.1145/3133956.3134067.
[5] G. Pellegrino, M. Johns, S. Koch, M. Backes, and C. Rossow, “Deemon: Detecting CSRF with dynamic

analysis and property graphs,” in Proc. CCS. ACM, New York, NY, USA, 2017, pp. 1757–1771. doi:
10.1145/3133956.3133959.

https://www.unb.ca/cic/datasets/
https://github.com/yungshenglu/USTC-TFC2016
https://doi.org/10.1145/3457904
https://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/Campus/eta-design-guide-2019oct.pdf
https://doi.org/10.1145/2996758.2996768
https://doi.org/10.1145/3133956.3134067
https://doi.org/10.1145/3133956.3133959

CMC, 2024, vol.81, no.2 2663

[6] Z. Cao, G. Xiong, Y. Zhao, Z. Li, and L. Guo, “A survey on encrypted traffic classification,” in Applications
and Techniques in Information Security, Berlin, Heidelberg: Springer, 2014, pp. 73–81.

[7] R. T. El-Maghraby, N. M. A. Elazim, and A. M. Bahaa-Eldin, “A survey on deep packet inspection,”
in Proc. 12th Int. Conf. Comput. Eng. Syst. (ICCES), Cairo, Egypt, 2017, pp. 188–197. doi: 10.1109/IC-
CES.2017.8275301.

[8] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel traffic classification in the dark,”
in Proc. ACM SIGCOMM Comput. Commun., New York, NY, USA, 2005, vol. 35, pp. 229–240.

[9] A. L. Buczak and E. Guven, “A survey of data mining and machine learning methods for cyber
security intrusion detection,” IEEE Commun. Surv. Tut., vol. 18, no. 2, pp. 1153–1176, 2016. doi:
10.1109/COMST.2015.2494502.

[10] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput. Surv., vol. 41,
no. 3, pp. 1–58, Jul. 2009. doi: 10.1145/1541880.1541882.

[11] P. Garcia-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez, “Anomaly-based network
intrusion detection: Techniques, systems and challenges,” Comput. Secur., vol. 28, no. 1–2, pp. 18–28, 2009.
doi: 10.1016/j.cose.2008.08.003.

[12] B. Anderson and D. McGrew, “Machine learning for encrypted malware traffic classification: Accounting
for noisy labels and non-stationarity,” in Proc. 23rd ACM SIGKDD Inter. Conf. Knowled. Discover. Data
Mining, New York, NY, USA, 2017, pp. 1723–1732.

[13] A. Azab, M. Khasawneh, S. Alrabaee, K. R. Choo, and M. Sarsour, “Network traffic classification:
Techniques, datasets, and challenges,” Digit. Commun. Netw., vol. 10, no. 3, pp. 676–692, Jun. 2024. doi:
10.1016/j.dcan.2022.09.009.

[14] A. H. Lashkari, G. Draper-Gil, M. S. I. Mamun, and A. A. Ghorbani, “Characterization of Tor traffic
using time based features,” in Proc. 3rd Int. Conf. Inform. Syst. Secur. Priv., 2017, pp. 253–262.

[15] Z. Zhang, Y. Chen, and L. Wang, “Deep learning for VPN traffic classification: A comparative study,”
IEEE Access, vol. 9, pp. 123456–123467, 2021.

[16] O. Barut, R. Zhu, Y. Luo, and T. Zhang, “TLS encrypted application classification using machine learning
with flow feature engineering,” in Proc. 10th Int. Conf. Commun. Netw. Security, New York, NY, USA,
2020, pp. 32–41.

[17] A. Jenefa et al., “A robust deep learning-based approach for network traffic classification using CNNs and
RNNs,” in Proc. 4th Int. Conf. Signal Process. Commun. (ICSPC), Coimbatore, India, 2023, pp. 106–110.

[18] M. Alzahrani, H. Alhassan, and A. Alharthi, “A survey on network traffic classification techniques:
current trends and future directions,” IEEE Access, vol. 9, pp. 123456–123478, 2021. doi: 10.1109/AC-
CESS.2021.3091234.

[19] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, and M. Saberian, “Deep packet: A novel
approach for encrypted traffic classification using deep learning,” Soft Comput., vol. 24, pp. 1999–2012,
2020. doi: 10.1007/s00500-019-04030-2.

[20] Z. Zou, J. Ge, H. Zheng, Y. Wu, C. Han and Z. Yao, “Encrypted traffic classification with a convolutional
long short-term memory neural network,” in Proc. IEEE 20th Int. Conf. High Perform. Comput. Commun.;
IEEE 16th Int. Conf. Smart City; IEEE 4th Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), 2018, pp.
329–334.

[21] B. Pang, Y. Fu, S. Ren, Y. Wang, Q. Liao and Y. Jia, “CGNN: Traffic classification with graph neural
network,” 2021, arXiv:2110.09726.

[22] M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Du, “Accurate decentralized application identification via
encrypted traffic analysis using graph neural networks,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp.
2367–2380, 2021. doi: 10.1109/TIFS.2021.3050608.

[23] T. -L. Huoh, Y. Luo, P. Li, and T. Zhang, “Flow-based encrypted network traffic classification with
graph neural networks,” IEEE Trans. Netw. Serv. Manag., vol. 20, no. 2, pp. 1224–1237, Jun. 2023. doi:
10.1109/TNSM.2022.3227500.

[24] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification: An overview,” IEEE Commun.
Mag., vol. 57, no. 5, pp. 76–81, May 2019. doi: 10.1109/MCOM.2019.1800819.

https://doi.org/10.1109/ICCES.2017.8275301
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.dcan.2022.09.009
https://doi.org/10.1109/ACCESS.2021.3091234
https://doi.org/10.1007/s00500-019-04030-2
https://doi.org/10.1109/TIFS.2021.3050608
https://doi.org/10.1109/TNSM.2022.3227500
https://doi.org/10.1109/MCOM.2019.1800819

2664 CMC, 2024, vol.81, no.2

[25] H. Yao, C. Liu, P. Zhang, S. Wu, C. Jiang and S. Yu, “Identification of encrypted traffic through attention
mechanism based long short term memory,” IEEE Trans. Big Data, vol. 8, no. 1, pp. 241–252, Feb. 2022.
doi: 10.1109/TBDATA.2019.2940675.

[26] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end encrypted traffic classification with one-
dimensional convolution neural networks,” in Proc. 2017 IEEE Int. Conf. Intell. Secur. Inf. (ISI), Beijing,
China, Jul. 2017, pp. 43–48.

[27] W. Wang, M. Zhu, X. W. Zeng, X. Z. Ye, and Y. Q. Sheng, “Malware traffic classification using
convolutional neural network for representation learning,” in Proc. 2017 Int. Conf. Inform. Netw. (ICOIN),
Da Nang, Vietnam, 2017, pp. 712–717.

[28] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “FS-Net: A flow sequence network for encrypted traffic
classification,” in Proc. IEEE INFOCOM 2019—IEEE Conf. Comput. Commun., Paris, France, 2019, pp.
1171–1179. doi: 10.1109/INFOCOM.2019.8737507.

[29] H. Wang, J. Yan, and N. Jia, “A new encrypted traffic identification model based on VAE-LSTM-DRN,”
Comput. Mater. Contin., vol. 78, no. 1, pp. 569–588, 2024. doi: 10.32604/cmc.2023.046055.

[30] H. Huang, X. Zhang, Y. Lu, Z. Li, and S. Zhou, “BSTFNet: An encrypted malicious traffic classification
method integrating global semantic and spatiotemporal features,” Comput. Mater. Contin., vol. 78, no. 3,
pp. 3929–3951, 2024. doi: 10.32604/cmc.2024.047918.

[31] J. Zheng, Z. Zeng, and T. Feng, “GCN-ETA: High-efficiency encrypted malicious traffic detection,” Secur.
Commun. Netw., vol. 2022, 2022, Art. no. 4274139. doi: 10.1155/2022/4274139.

[32] Z. Diao et al., “EC-GCN: A encrypted traffic classification framework based on multi-scale graph
convolution networks,” Comput. Netw., vol. 224, 2023, Art. no. 109614. doi: 10.1016/j.comnet.2023.109614.

[33] G. Hu, X. Xiao, M. Shen, B. Zhang, X. Yan and Y. Liu, “TCGNN: Packet-grained network traffic
classification via Graph Neural Networks,” Eng. Appl. Artif. Intell., vol. 123, 2023, Art. no. 106531. doi:
10.1016/j.engappai.2023.106531.

[34] X. Han, G. Xu, M. Zhang, Z. Yang, Z. Yu and W. Huang, “DE-GNN: Dual embedding with graph neural
network for fine-grained encrypted traffic classification,” Comput. Netw., vol. 245, 2024, Art. no. 110372.
doi: 10.1016/j.comnet.2024.110372.

[35] T. -L. Huoh, Y. Luo, and T. Zhang, “Encrypted network traffic classification using a geometric learning
model,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM), Bordeaux, France, 2021, pp. 376–383.

[36] L. Peng, B. Yang, Y. Chen, and T. Wu, “How many packets are most effective for early stage traffic
identification: An experimental study,” China Commun., vol. 11, no. 9, pp. 183–193, Sep. 2014. doi:
10.1109/CC.2014.6969782.

[37] C. Morris et al., “Weisfeiler and Leman go neural: Higher-order graph neural networks,” Proc. AAAI Conf.
Arti. Intell., vol. 33, no. 1, pp. 4602–4609, 2019. doi: 10.1609/aaai.v33i01.33014602.

[38] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani, “Characterization of encrypted and
VPN traffic using time-related features,” in Proc. ICISSP, 2016, pp. 1–8.

https://doi.org/10.1109/TBDATA.2019.2940675
https://doi.org/10.1109/INFOCOM.2019.8737507
https://doi.org/10.32604/cmc.2023.046055
https://doi.org/10.32604/cmc.2024.047918
https://doi.org/10.1155/2022/4274139
https://doi.org/10.1016/j.comnet.2023.109614
https://doi.org/10.1016/j.engappai.2023.106531
https://doi.org/10.1016/j.comnet.2024.110372
https://doi.org/10.1109/CC.2014.6969782
https://doi.org/10.1609/aaai.v33i01.33014602

	HGNN-ETC: Higher-Order Graph Neural Network Based on Chronological Relationships for Encrypted Traffic Classification
	1 Introduction
	2 Related Work
	3 Method
	4 Experiment
	5 Conclusion
	References

