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ABSTRACT

Real-time detection of unhealthy fish remains a significant challenge in intensive recirculating aquaculture. Early
recognition of unhealthy fish and the implementation of appropriate treatment measures are crucial for preventing
the spread of diseases and minimizing economic losses. To address this issue, an improved algorithm based on the
You Only Look Once v5s (YOLOv5s) lightweight model has been proposed. This enhanced model incorporates a
faster lightweight structure and a new Convolutional Block Attention Module (CBAM) to achieve high recognition
accuracy. Furthermore, the model introduces the α-SIoU loss function, which combines the α-Intersection over
Union (α-IoU) and Shape Intersection over Union (SIoU) loss functions, thereby improving the accuracy of
bounding box regression and object recognition. The average precision of the improved model reaches 94.2% for
detecting unhealthy fish, representing increases of 11.3%, 9.9%, 9.7%, 2.5%, and 2.1% compared to YOLOv3-tiny,
YOLOv4, YOLOv5s, GhostNet-YOLOv5, and YOLOv7, respectively. Additionally, the improved model positively
impacts hardware efficiency, reducing requirements for memory size by 59.0%, 67.0%, 63.0%, 44.7%, and 55.6%
in comparison to the five models mentioned above. The experimental results underscore the effectiveness of these
approaches in addressing the challenges associated with fish health detection, and highlighting their significant
practical implications and broad application prospects.
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1 Introduction

Intensive recirculating aquaculture brings advantages, such as energy efficiency, environmental
friendliness, and controllable water quality. However, the most serious disadvantage is that fish become
unhealthy and even die due to the deterioration of water quality, the closed breeding system, and
high breeding density. Fish mortality is particularly high when abnormal states occur. Currently, fish
status detection heavily depends on manual observation and aquaculture personnel’s experiences, it
will require more time and labor resources, leading to inefficiency and inaccuracy. Therefore, it is
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necessary to introduce a method of real-time and accurate detection of fish status to enhance the level
of automation in intensive recirculating aquaculture [1].

Computer vision technology, known for its extensive application in image classification, target
detection, and tracking, has gained significant traction within the aquaculture industry, encompassing
tasks like fish classification, identification, counting, behavior analysis, and prediction of water quality
parameters. The researchers from Nanyang Technological University proposed a novel end-to-end
deep visual learning pipeline, Aqua3DNet, to estimate fish pose. Additionally, they implemented a
depth estimation model utilizing Saliency Object Detection (SOD) masks to track the 3D position
of fish, and their method achieved the expected performance [2]. The researchers in [3] employed
computer vision technology for the fully automated identification of Atlantic salmon based on the
dot patterns on their skin. This approach provides a non-invasive alternative to traditional invasive
fish tagging and opens new possibilities for individual management. Their method was tested on 328
individuals, achieving an identification accuracy of 100%. The authors in [4] proposed an automated
method for identifying individual brown trouts based on deep learning. They extracted multi-scale
convolutional features to capture both low-level attributes and high-level semantic components for
embedding space representation and the identification method distinguished individual fish with
94.6% precision and 74.3% recall on a dataset NINA204. Additionally, the authors in [5] introduced
a Residual Network50 Long-Short-Term-Memory (Resnet50-LSTM) algorithm designed for iden-
tifying fundamental behaviors during fish breeding, demonstrating remarkable detection efficacy,
robustness, and effectiveness, particularly in breeding settings characterized by low light intensity, high
breeding density, and complex environmental conditions.

With the rapid development of deep learning and the continuous improvement of the accuracy of
the target detection algorithm, the improved YOLO algorithm is widely used in aquaculture. To reduce
the false detection of small fish and the ability to detect fish appearance in a dynamic environment,
researchers from Bangladesh proposed a fish detection model based on deep learning, YOLO-Fish.
YOLOv3 has been enhanced by fixing the upsampling step and adding spatial pyramid pooling [6,7].
Researchers from Egypt proposed a combination of color Multi-Scale Retinex color enhancement
technology and YOLO algorithm to achieve maximum detection accuracy and combined the box
size of detected objects with an optical flow algorithm to extract the trajectory of fish accurately
[8–10]. In recent years, by reducing the number of parameters, calculations, and weight size of the
model, YOLO’s lightweight structure has gradually become popular. Some researchers, based on
YOLOv3, proposed a lightweight target detection network Tuna-YOLO for mobile devices. They
used MobileNetv3 as the backbone structure to reduce parameters and the number of calculations.
Then, the SENET (Squeeze-and-Excitation Networks) module replaced the CBAM attention module
to further improve the feature extraction capability of tuna, but the detection speed decreased [11–13].
Researchers proposed a lightweight and high-precision detection model based on an improved version
of the YOLOv5. In this model, GhostConv and C3Ghost modules were integrated into the YOLOv5
network to reduce the number of parameters meanwhile ensuring detection accuracy. In addition,
the Sim-SPPF (Simplified SPPF) module was adopted to replace SPPF (Spatial Pyramid Pooling–
Fast) in the YOLOv5 backbone network. To improve the computational efficiency and accurate
target detection ability, researchers constructed a slim scale detection model to achieve the aims.
However, it brought a huge demand for GPU (Graphics Processing Unit) resources [14–16]. To sum
up, in the process of target detection, detection speed, and detection accuracy are always the criteria
for evaluating a model. Through constructing more deeper network, the improvement of accuracy
usually can be obtained bringing with the problem of decreased detection speed, and huge demand
for hardware.
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In this study, the authors propose an improved YOLOv5s-based lightweight model to balance the
detection accuracy, detection speed, and demand for hardware in intensive recirculation aquaculture.

2 Materials and Methods
2.1 Descriptions of Data Acquisition

The objective of this study is to detect fish unhealthy states, particularly rollover, during the
aquaculture process. Due to the challenge of obtaining a sufficient number of image samples of fish
anomalies from existing databases and real farming environments, it is essential to collect and label
the data ourselves. In order to gather the real-scene dataset, a modular system is employed for data
acquisition, as depicted in Fig. 1.

Figure 1: Structure of data acquisition system

This system consists of a data acquisition module, a data transmission module, and a data pro-
cessing module. Sensor nodes are employed for the real-time monitoring of water quality parameters
in aquaculture areas. The collected data is transmitted to ZigBee coordinator nodes, which package
it according to predefined protocols. Subsequently, the packed data is sent to the monitoring center
via routers and wireless bridges. In parallel, image capture devices with cameras continuously gather
real-time images of the aquaculture area, which are then transmitted to the monitoring center through
Ethernet ports, routers, and wireless bridges. This comprehensive setup allows aquaculture personnel
to monitor crucial information such as water quality, fish population, and other vital factors in
real-time. The monitoring center acts as the central hub of the system, responsible for receiving,
displaying, and analyzing both sensor data and image information. It assists aquaculture personnel
in comprehending and analyzing water quality details, while also enabling control commands for
adjusting cameras and monitoring the operation of image capture devices for underwater observation.
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2.2 Data Preparation

The system is deployed at Ruoyu Lake in Changzhou City, China (E119°56′55′′, N31°41′15′′). A
total of 1312 images depicting unhealthy states of fish were obtained. The deployment location and
the selections of fish’s unhealthy states are illustrated in Figs. 2 and 3.

Figure 2: Deployment location

Figure 3: (Continued)
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Figure 3: Selections of unhealthy fish

Due to the challenges in acquiring a sufficient number of images for model training, even from
well-established datasets such as COCO and ImageNet, suitable training images are often lacking.
Consequently, the authors have to create their own dataset. Dying fish were placed in the target lake
referenced in the study and utilized a camera connected to a computer to capture images at varying
distances and under diverse backgrounds by adjusting the focus. Because of the limited number of
target samples collected from images showing fish in unhealthy states, it is essential to augment the
dataset to enhance the model’s generalization ability and prevent overfitting. Alongside traditional
methods like mirroring, flipping, and rotation, this study simulated environmental factors such as
time and weather conditions to expand the dataset to 2000 images. Techniques such as blurring,
adding noise, and adjusting brightness were applied for this purpose [17,18]. The acquired images
were manually annotated using Labelimg software, and the annotations were formatted in text files
suitable for the YOLOv5s algorithm. The label “warning-fish” was assigned to denote instances of
fish’s rollover behavior. For the experiment, the dataset was split into 1600 images for training, 200 for
validation, and 200 for testing purposes.

2.3 Descriptions of the Methods

In this study, a new model, YOLOv5s-CBAM-BackboneFaster, is proposed for detecting
unhealthy (rollover) fish, the construction process of the new model is depicted in Fig. 4.

(1) The model’s backbone network is optimized with the FasterNet module to improve the
standard convolutional blocks for lightweight purposes. Furthermore, the new CBAM is introduced
before the SPPF feature fusion module to enhance feature extraction capabilities, resulting in the
YOLOv5s-CBAM-BackboneFaster model.

(2) To enhance detection accuracy, the α-SIOU loss function is proposed by combining α-IoU and
SIOU. α-IoU focuses on precise object localization by penalizing inaccurate bounding box predictions,
while SIOU refines object localization by considering the spatial context.



2442 CMC, 2024, vol.81, no.2

Figure 4: Framework and process of the mode

Enhancements in network architecture and loss function design are essential for enhancing the
performance of the YOLOv5s model, which is specifically optimized for detecting fish unhealthy states
such as rollovers. This approach not only improves feature extraction capabilities but also fine-tunes
the loss function to achieve more precise and reliable unhealthy detection results.

2.3.1 Updated Network for YOLOv5s

The FasterNet module, as depicted in Fig. 5, introduces a new structure called Partial Convolution
(PConv). PConv works by applying a regular convolution on a portion of the input channel for spatial
feature extraction and leaving the rest of the channels intact. For continuous or regular memory access,
the first or last contiguous channel represents the entire feature map. The input and output feature
maps have the same number of channels without losing generality. Therefore, the FLOPs (Floating
Point Operations) of PConv are only h × w × k2 × c2

p, and for a typical r = 1/4, the FLOPs of PConv
are only 1/16 of that of regular Conv. In addition, PConv has a more minor memory access only
h × w × 2cp + k2 × c2

p ≈ h × w × 2cp, and for r = 1/4, it is only 1/4 of the regular convolution.

PConv convolution reduces the amount of memory access, optimizes the number of parameters
caused by redundant calculation, and dramatically improves the ability to capture spatial features, as
shown in Fig. 6. FasterNet is constructed based on PConv and 1 × 1 convolutional structure, and its
types include FasterNet-T0, FasterNet-T1, and FasterNet-T2, and the number of model parameters
is from small to large.

CBAM is a module that multiplies attention mapping by input feature mapping for adaptive
feature refinement [19,20]. CBAM consists of two sequential submodules: the Channel Attention
Module (CAM) and the Spatial Attention Module (SAM), as shown in Fig. 7.

The SAM mainly uses average pooling and maximum pooling to aggregate spatial feature
information on the input image to obtain a one-dimensional feature map and bring spatial attention
feature map through convolution calculation and sigmoid nonlinear processing Ms(F) ∈ R1×H×W ,
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where H × W represents the height and width of the feature map, and is aggregated into a one-
dimensional feature map Fmax ∈ R1×H×W and Favg ∈ R1×H×W , the

Ms (F) = σ
(
f 7×7 ([Avgpool (F); MAXpool (F)])

) = σ(f 7×7([Fs
avg ,Fs

max])) (1)

In Eq. (1), σ represents the sigmoid activation function and f 7×7 represents the convolutional
kernel of size 7 × 7.

Figure 5: FasterNet module

Figure 6: PConv convolution block

Figure 7: The overview of CBAM
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The CAM mainly obtains the feature descriptors of the image through maximum pooling and
average pooling: Fc

avg and Fc
max, and inputs them into the multi-layer convolutional network at the same

time to get the channel attention feature map MC(F) ∈ RC×1×1. The channel attention feature map is
obtained through the multi-layer convolutional network and sigmoid nonlinear activation function
MC(F) ∈ RC×1×1, channel attention feature diagram Mc(F) is shown in Eq. (2).

Mc (F) = σ (MLP (Avgpool (F)) + (MLP(MAXpool (F))) = σ(W1

(
W0

(
Fc

avg

)) + W1

(
W0

(
Fc

max

))
(2)

In Eq. (2), σ represents the sigmoid activation function, MLP (Multilayer Perceptron) represents
the multilayer perceptron, the weights are W 0 and W 1, respectively, Fc

avg and Fc
max represent the average

and maximum pooling operations, respectively.

In this study, a novel detection algorithm, YOLOv5s-CBAM-BackboneFaster, is developed, and
the new network structure is illustrated in Fig. 8. Initially, the original Conv module in YOLOv5s
is replaced with the FasterNet module. Subsequently, the FasterNet is integrated into the original
C3 module, resulting in the creation of a new C3-Faster module. Additionally, the CBAM attention
mechanism module is incorporated before the SPPF layer to analyze the feature map generated by
the backbone network. The SPPF module comes from the enhanced SPP (Spatial Pyramid Pooling)
module utilized in YOLOv4. This improved module substitutes three parallel max-pooling operations
with serial ones, employing a 5 × 5 pooling kernel for each operation. This modification significantly
reduces computational demands while maintaining detection accuracy. In comparison to the SPP
module, the SPPF module enhances the model’s detection speed. Fig. 9 illustrates the structural
diagram of the SPPF module. Experimental comparisons reveal that the enhanced YOLOv5s model
exhibits significantly improved detection performance and training speed compared to the original
model.

2.3.2 Updated IoU Loss Function for YOLOv5s

In object detection, IoU is used to measure the accuracy of the location information of the
prediction result. IoU processes the predicted image by calculating the deviation between the target
location indicated by the model and the actual location of the target [21]. As shown in Eq. (3), the
more significant the overlap between the exact area of the target and the predicted area, the greater its
value, 0 ≤ IoU ≤ 1. The closer the value of IoU is to 1, the better the effect, and the larger the value of
IoU, the more accurate the location of the predicted area. In the following formula, A ∩ B represents
the overlapping area between the actual and indicated size of the target, A ∪ B represents the space
occupied by the exact spot and the predicted area as a whole, and the calculation of the overlap area
loss is shown in Eq. (4).

IoU = |A ∩ B|
|A ∪ B| (3)

LIoU = 1 − IoU (4)

In fish’s states detection, instances arise where two or more regression frames, in proximity to
the target, intersect, giving rise to multiple boxes. While considering factors such as the intersection
union ratio, center distance, and aspect ratio between the prediction box and the target box, there
is a tendency to overlook the actual values of width and height. The effective optimization of the
network model can be impeded when the aspect ratio remains constant, but discrepancies exist in the
width and height values. Such scenarios pose a challenge to the efficient functioning of the model
and underscore the need for a more comprehensive consideration of all relevant factors in fish state
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detection algorithms. The loss function given in the YOLOv5s model is CIoU (Complete-loU), and
its loss function is defined as Eqs. (5)–(7) are descriptions of Eq. (5).

LIoU = 1 − IoU + ρ2 (b, bgt)

c2
+ βv (5)

β = v
(1 − IoU) + v

(6)

v = 4
π 2

(
arctan

wgt

hgt
− arctan

w
h

)2

(7)

where b is the center point of the prediction box, bgt is the center point of the actual box, ρ is the
Euclidean distance between the two center points, c is the diagonal length of the minimum bounding
box, and ρ is the weight parameter, as shown in Eq. (6), v is used to measure the consistency of the
aspect ratio, as shown in Eq. (7), w, h, wgt and hgt, respectively represent the width and height of the
prediction box and the real box, respectively. CIoU does not consider the direction of the mismatch
between the actual box and the prediction box. This is because the prediction box will be shifted in
training, resulting in a worse model [22–24].

Figure 8: Structure of YOLOv5s-CBAM-BackboneFaster
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Figure 9: Structure of SPPF

In this study, Angle cost, Distance cost and Shape cost, respectively, are presented from Eqs. (8)
to (15), respectively.

�Angle−loss = 1 − 2 × sin
(

arcsin x − π

4

)2

(8)

x = ch

σ
= sinα (9)

σ =
√

(bgt
cx

− bcx)
2 + (bgt

cy
− bcy)

2 (10)

ch = max
(

bgt
cy

, bcy

)
− min

(
bgt

cy
, bcy

)
(11)

�Distance−loss = 	t=x, y

(
1 − e−γ ρt

)
(12)

ρx =
(

bgt
cx

− bcx

Cw

)2

, ρy =
(

bgt
cy

− bcy

Ch

)2

, γ = 2 − � (13)

�shape−loss =
∑

t=w, h
(1 − e−wt)θ (14)

ww = |w − wgt|
max(w − wgt)

, wh = |h − hgt|
max(h − hgt)

(15)

LSIoU = 1 − IOU + � + Ω

2
(16)

Lα−SIoU = 1 − IOUα (17)

Lα−SIoU = 1 − IOUα +
(

� + Ω

2

)α

(18)
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where bgt and b respectively represent the coordinates of the center point of the actual frame and
the prediction frame, σ represents the distance between the center point of the actual edge and the
prediction frame, ch represents the distance in the y direction of the center point of the actual edge and
the prediction frame, wgt, and hgt respectively represent the width and height of the actual edge, and w
and h respectively represent the width and height of the prediction frame.

The mathematical definition of the improved LSIoU is shown in Eq. (16). Where Δ stands for Dis-
tance cost and Ω stands for Shape cost, as shown in Fig. 10. The loss function Lα−IoU in Eq. (17), which
builds upon the existing IoU loss, incorporates a single parameter α. This approach is particularly
well-suited for precise prior box regression and object detection, offering enhanced robustness for
small datasets. Additionally, it adaptively adjusts the weights of the loss and gradient in accordance
with the accuracy improvements in region box regression [25–27]. The updated loss function Lα−SIoU is
presented in Eq. (18).

Figure 10: Angle factor in border regression

2.4 Evaluation Indicators

In this study, the authors employ Precision, Recall, Average Precision (AP), and mean Average
Precision (mAP) to assess the training accuracy of the model. Parameters, computation, and model
weights characterize the model’s complexity. Frames per second (FPS) serves as a metric for the real-
time detection performance of the model [28,29]. Here, Precision signifies the proportion of correctly
predicted true positive samples among predicted positive samples, and Recall represents the proportion
of correctly predicted true positive samples to all true positive examples, as depicted in Eqs. (19), (20),
respectively.

Precision = TP
TP + FP

(19)

Recall = TP
TP + FN

(20)
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The AP is defined as the area under the Precision-Recall (P-R) curve, while the mAP is calculated
as the mean value of AP across the dataset, as depicted in Eqs. (21), (22), respectively.

AP =
∫ 1

0

P (R) dR (21)

mAP = 1
N

∑N

i=1

∫ 1

0

P (R) dR (22)

In the equations, TP denotes the count of samples accurately predicted as positive, FP signifies the
count of instances incorrectly anticipated as positive, FN indicates the count of models inaccurately
anticipated as unfavorable, and N denotes the total number of classes.

3 Results and Discussions

In this study, the proposed model utilizes a Dell Precision 3660 workstation for simulation
training. The experiments are conducted using the PyTorch framework, with the detailed information
provided in Table 1. The parameters discussed in this study are documented in the PyTorch framework
directory located at data/hyp.finetune.yaml. The primary configuration of the network parameters is
illustrated in Table 2.

Table 1: Information on platform for model training

Item Description

CPU 13th Gen Intel Core i9-13900 K
Memory DDR5 5600 MHz 16 GB x 2
Hhard disk Intel SSDPEKNU512 GZ (SSD)
Graphics NVIDIA GeForce RTX 4070
Python 3.8 v
System Win 10 64-bit
Cuda 10.2 v
PyTorch 1.8 v

Table 2: Selections of the model’s parameters

Parameter Value Description

lr0 0.01 Initial learning rate
lrf 0.1 Final OneCycleLR learning rate
Momentum 0.937 SGD (Stochastic Gradient Descent) momentum
Weight_ decay 0.0005 Optimizer weight decay
Warmup_ epochs 3.0 Warmup epochs
Warmup moment 0.8 Warmup initial momentum
Warmup_ bias_ lr 0.1 Warmup initial bias

(Continued)
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Table 2 (continued)

Parameter Value Description

Box 0.05 Box loss gain
Iou_ t 0.2 IoU training threshold
Anchors 3 Anchors per output layer

3.1 Training the Proposed Model

Fig. 11 illustrates the outcomes of the enhanced YOLOv5s network model when applied to the
training and validation sets. In Fig. 11a, it is observed that the regression loss initially decreases
rapidly within the first 20 epochs, followed by a gradual slowdown in the rate of decline, resulting in a
relatively stable curve without significant fluctuations. Upon reaching 200 epochs, the regression loss
stabilizes, with minimal variance between the training and validation sets, indicating successful fitting
by the improved YOLOv5s lightweight model. Fig. 11b presents the recall and precision metrics of
the enhanced YOLOv5s lightweight model, demonstrating that both recall and precision, along with
average precision, exceed 90%. These results suggest that the model effectively predicts the presence of
fish. Fig. 12 demonstrates the utilization of the trained model to test 100 test sets.

Figure 11: Experimental curve of the improved model: (a) Accuracy value; (b) Loss value

3.2 Ablation Experiments

In order to assess the effectiveness of the improved YOLOv5s model, ablation experiments were
conducted on five models using the same dataset. Table 3 presents a comparison of the performance
between the original YOLOv5s (Model 1) and upgraded YOLOv5s models (Models 2–5). The second
model, which integrates an attention mechanism, demonstrates a 4.8% increase in precision, a 7.7%
rise in recall rate, and a 6.2% improvement in average precision compared to the first model. The third
lightweight model shows a significant reduction in parameter number and floating-point operations,
with a 51.7% decrease in parameters and a 66.9% decrease in floating-point calculations. The fourth
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model not only incorporates an attention mechanism but also implements lightweight processing.
Compared to the original model, the precision rate has increased by 5.5%, the recall rate by 10.1%,
and the average precision by 7.6%. Additionally, the number of parameters is reduced to 49.4% of
the original model, while the amount of floating point operations has decreased by 47.9%. The fifth
model optimized the frame loss function based on the improvements from the fourth group, resulting
in a 3.6% precision enhancement, a 2.1% increase in recall rate, and a 1.9% increase in average
precision. These enhancements improved detection average precision while maintaining a balance
in parameter and floating-point operation additions. The inclusion of the attention mechanism,
enhanced FasterNet module, and optimization of the border loss function have all positively impacted
the performance and efficiency of the YOLOv5s model.

Figure 12: Selections of test results
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Table 3: Comparison of ablation experiments of models

Model Parameter
number

Floating-point
arithmetic

Precision/% Recall/% Average
precision/%

1: YOLOv5s [30] 7,056,607 16.3 86.1 84.1 85.9
2: YOLOv5s-CBAM
[31]

7,057,910 16.8 90.2 90.6 91.2

3:
YOLOv5s-FasterNet
[32]

3,408,901 5.4 84.7 85.4 84.5

4: YOLOv5s-CBAM-
FasterNet

3,489,287 8.5 90.8 92.6 92.4

5: YOLOv5s-CBAM-
BackboneFaster

3,556,144 7.8 94.1 94.4 94.2

Table 4 presents the performances of the models on GPUs. The proposed model can infer an image
in just 1.6 ms, representing a 61% improvement over the original model’s 4.1 ms. The image processing
time is 3 ms, which accounts for only 43.5% of the original YOLOv5s model’s, significantly enhancing
detection speed. The enhanced YOLOv5s model has a generated weight file size of 6.8 MB, which is
63% smaller than the original model’s size, facilitating easier deployment due to its reduced weight file
size. In conclusion, the enhanced YOLOv5s model demonstrates faster inference speeds and smaller
model weight file sizes on GPUs, making it more suitable for deployment and integration into client
software.

Table 4: Performance comparison on the GPU

Model Pretreatment/ms Illation/ms NMS/ms Detection
time/ms

Model size/MB

YOVOv5s 1.2 4.1 1.6 6.9 18.4
YOLOv5s-CBAM-
BackboneFaster

0.2 1.6 1.2 3 6.8

3.3 Comparative Experiments

In order to further evaluate the model’s performance, the proposed algorithm is compared
with YOLOv3-tiny, YOLOv4, YOLOv5s, GhostNetYOLOV5, and YOLOv7-tiny algorithms using
the same dataset for testing. The results presented in Table 5 indicate that the YOLOv5s-CBAM-
BackboneFaster algorithm achieves the highest average precision of 94.2%, respectively increases by
11.3%, 9.9%, 9.7%, 2.5%, and 2.1% as compared with YOLOv3-tiny, YOLOv4, YOLOv5s, GhostNet-
YOLOV5, and YOLOv7-tiny, while also maintaining the lowest number of parameters at 3,556,144.
Furthermore, the improved model reduces memory size requirements by 59.0%, 67.0%, 63.0%, 44.7%,
and 55.6% when compared to the five models previously mentioned.
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Table 5: Comparison of the performance of different models

Model Number of
parameters

Model size/MB Average
precision/%

Frame rate/ms

YOLOv3-tiny [33] 7,145,631 16.6 84.6 26
YOLOv4 [34] 7,875,501 20.6 85.7 28
YOLOv5s 7,056,607 18.4 85.9 25
GhostNet-YOLOV5
[35]

3,586,623 12.3 91.9 17

YOLOv7-tiny [36] 5,090,080 15.3 92.3 15
YOLOv5s-CBAM-
BackboneFaster

3,556,144 6.8 94.2 18

Fig. 13 illustrates that the performances of several models during training, particularly regarding
Precision, Recall, and mAP, meet expectations. These satisfactory results can be attributed to the
integration of the lightweight module FasterNet into the backbone network, the implementation of
the CBAM attention mechanism, and the optimization of the loss function. The limitations of the
original model have been effectively addressed, and the effectiveness of the improved model has been
validated through comparative experiments.

Figure 13: (Continued)
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Figure 13: Performance of different YOLO improvement algorithms in the training process (a)
Precision; (b) Recall; (c) mAP@0.5

4 Conclusion

In this study, the authors propose an improved YOLOv5s-based lightweight model for unhealthy
fish detection. In this model, the FasterNet structure and CBAM attention mechanism are applied to
the original backbone network of YOLOv5, and meanwhile, an α-SIoU loss function is developed to
meet the regression accuracy of the prior box at different levels. Experimental results show that the
detection average precision of the improved model reaches 94.2%, and the size of running memory
occupied by the model is 6.8 MB. The detection accuracy, robustness, and demand for less hardware
are all improved as compared with the original YOLOv5. The improved model’s detection speed can
also meet the demand for real-time detection, and the whole system could be applied broadly due to
its convenience for mobile deployment.

This work examines the conditions of fish exhibiting rolling behavior or mortality. Future studies
will investigate the detection of additional abnormal states in fish, such as floating heads due to oxygen
deprivation and erratic swimming behavior in injured or sick individuals. Furthermore, the authors
aim to integrate models based on physical and mathematical principles, akin to those employed in
weather condition prediction, into future research on fish activity prediction to enhance the model’s
interpretability. The robustness of the proposed algorithm will also be a focus of future studies.
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