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ABSTRACT

Human pose estimation is a critical research area in the field of computer vision, playing a significant role
in applications such as human-computer interaction, behavior analysis, and action recognition. In this paper,
we propose a U-shaped keypoint detection network (DAUNet) based on an improved ResNet subsampling
structure and spatial grouping mechanism. This network addresses key challenges in traditional methods, such
as information loss, large network redundancy, and insufficient sensitivity to low-resolution features. DAUNet
is composed of three main components. First, we introduce an improved BottleNeck block that employs partial
convolution and strip pooling to reduce computational load and mitigate feature loss. Second, after upsampling,
the network eliminates redundant features, improving the overall efficiency. Finally, a lightweight spatial grouping
attention mechanism is applied to enhance low-resolution semantic features within the feature map, allowing for
better restoration of the original image size and higher accuracy. Experimental results demonstrate that DAUNet
achieves superior accuracy compared to most existing keypoint detection models, with a mean PCKh@0.5 score of
91.6% on the MPII dataset and an AP of 76.1% on the COCO dataset. Moreover, real-world experiments further
validate the robustness and generalizability of DAUNet for detecting human bodies in unknown environments,
highlighting its potential for broader applications.
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1 Introduction

The primary objective of two-dimensional human pose estimation is to detect anatomical key
points, such as elbows and wrists, or specific parts of the human body. This technique represents a vital
research area within computer vision, playing a significant role in comprehending human behavior.
It shows great application potential in many fields, such as human movement recognition, medical
assistance, virtual reality, and security monitoring. Therefore, the research and implementation of
human pose estimation technology have emerged as both a central focus and a significant challenge
in computer vision.
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Compared with the estimation of local human poses, the estimation of whole-body poses faces
more challenges. The most commonly used methods for pose estimation include two frameworks,
the top-down and bottom-up methods [1]. Heatmaps are the dominant method for top-down critical
point detection [2]. This study focuses on single-person pose estimation in top-down 2D images,
which is fundamental to other related challenges in computer vision. Fig. 1 shows the basic flow of
key point detection under the deep learning framework. In node detection, RGB images containing
people are first input into a deep convolutional neural network to generate key point heatmaps. Dense
heatmaps are generated with sliding window convolutions and multiresolution inputs. During training,
the joint coordinates are encoded by a two-dimensional Gaussian distribution. Subsampling reduces
the computational burden, restoring the resolution after heatmap prediction. Finally, the key point
location is determined via coordinate decoding. Pose recognition relies on feature extractors, which are
responsible for extracting useful features from the input images, and regressors, which are responsible
for predicting the specific coordinates of each key point. Feature extractors generally use pre-trained
deep convolutional neural network models such as U-Net [3] or ResNet [4] to obtain image feature
representations. The regressors utilize a combination of convolutional neural networks and fully
connected layers to effectively analyze and process image features, ultimately enabling the accurate
prediction of key point coordinates.

Figure 1: A flow chart of a human pose estimation network. The model needs to be run in a low-
resolution image space to reduce the calculation cost, and corresponding resolution restoration needs
to be carried out during testing to obtain the prediction of key point coordinates in the original image
space

Recent advancements in pose estimation are categorized into 3D pose estimation and 2D pose
estimation. In the realm of 3D pose estimation, Ha’s work [5] stands out with notable achievements.
This approach leverages internal spatiotemporal non-locality to capture meaningful semantic features
for effective pose recognition. Hourglass [6] is considered a relatively simple and classic algorithm in
2D pose recognition because it uses multiple stacked hourglass modules for attitude estimation. Each
module consists of downsampling and upsampling processes, the former by convolution and pooling
downsampling and the latter by upsampling and jump joins to integrate features. It can effectively
extract and integrate multiscale features. However, the downsampling process will lead to information
loss, resulting in a certain error in keypoint detection. The CPN (Cascaded Pyramid Network) [7]
includes GlobalNet [8] for the initial detection of key points and RefineNet for further refinement of
difficult key points by combining ResNet and FPN (Feature Pyramid Network) [9]. The accuracy of
the attitude estimation is improved. However, the processing is complicated, and the perception of low-
resolution features after downsampling is not sensitive. HRNet (High Resolution Network) [10] main-
tains high-resolution features throughout the entire process through parallel multiresolution branches
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and gradually adds low-resolution branches. The potential information loss of high-resolution features
is avoided. The resolution information positioning accuracy is improved. However, the network
structure is relatively complex, with high computational and storage costs. MSPN (Multi Stage Pose
Network) [11] improves the multistage structure by using cross-stage feature fusion and supervision
to reduce information loss. Using the GlobalNet module in each stage, multistage refinement and
cross-stage fusion improve the estimation accuracy, reduce information loss, and alleviate gradient
vanishing problems. However, there although feature information loss, network redundancy, and
insensitivity to low-resolution features may appear as separate issues, they are intrinsically interrelated
in the context of human pose estimation. Feature information loss and network redundancy directly
impact the model’s ability to effectively interpret low-resolution inputs. For instance, information
loss due to downsampling can lead to inaccuracies in keypoint detection, while network redundancy
can exacerbate computational inefficiencies. These interconnected challenges collectively affect the
performance and accuracy of pose estimation models. Addressing these issues together is crucial for
improving the model’s overall effectiveness and efficiency.

To address the aforementioned issues, this paper introduces a novel U-shaped network archi-
tecture inspired by the ResNet network, as shown in Fig. 2. Partial convolution and strip pooling
strategies are implemented in each network block through a series of high to low resolution subnets. In
contrast to traditional convolutions, partial convolutions concentrate on processing specific regions
of the feature map, thereby minimizing computational resource consumption while maximizing the
preservation of image feature information. Strip pooling is a novel pooling method that uses elongated
nuclei in one dimension to capture remote relationships and narrow nuclei in the other dimension to
focus on the local context, effectively preventing interference from irrelevant information. This design
enables the network to synthesize context information at the global and local levels, allowing for more
accurate analysis of the scene than with traditional square pooled windows.

Figure 2: Overall network structure of DAUNet

The feature mapping of deep convolutional neural networks contains redundancy in both the
spatial and channel dimensions. To tackle this issue, we sequentially merge the spatial rebuild unit
(SRU) and channel rebuild unit (CRU) and apply them to the feature map restoration network
architecture.

After the downsampling process, the loss of the original detailed information of the feature map is
inevitable, especially in an image where the background is dominant and the figure is small. To generate
precise semantic features at the correct spatial locations within the original image, we incorporated the
spatial group enhancement attention mechanism following upsampling in the deconvolution module
to improve the richness of the feature map. This attention mechanism is particularly effective for
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detecting small objects and can provide a more robust and evenly distributed feature representation in
space, thus showing significant advantages in the detection of small objects.

The primary contributions of this study can be summarized as follows:

1: We designed a human key point detection network and enhanced the feature extraction module
by integrating advanced partial convolution and strip pooling to maintain the integrity of the original
feature information.

2: To reduce redundancy in the channel and spatial dimensions during the upsampling process, we
systematically integrate the SRU and CRU in the feature mapping’s spatial and channel dimensions.

3: For small targets with low resolution, based on optimizing the network in the first two
modules, we employ a spatial group enhancement attention mechanism to significantly improve the
representational power of the feature maps after restoring the original features.

2 Related Work
2.1 Prediction of Key Human Points Based on Heatmap Regression

The objective of human pose estimation is to identify the spatial locations of human joints
within images captured in natural environments, thereby constructing the human skeletal framework.
Convolutional neural networks (CNNs) excel at this task [12]. At present, most attitude detection
methods are based on heatmap regression [2] to detect joint nodes. This approach produces a
probability distribution map for each joint, from which the position with the highest probability is
chosen as the predicted location of the joint. The heatmap takes into account not only the context
clues but also the uncertainty of the target location, reducing the risk of overfitting the model during
training by providing spatially supported features in the ground truth. However, a significant challenge
of using heatmap representation is that the computational cost doubles as the input image resolution
increases. This escalation in computational demand constrains the CNN model’s capacity to effectively
handle high resolution images. To reduce the computational burden, the human body boundary frame
is often downsampled, and the arbitrarily large resolution image is converted into a smaller feature map
for processing.

Once the heatmap prediction is completed, the predicted coordinates must be converted to the
coordinate space of the original image through a process of resolution recovery. Since heatmaps are
typically smaller than network inputs, direct use of the coordinates of the maximum points introduces
quantization errors. To mitigate this problem, the coordinate decoding process usually includes manual
offset operations. In practical reasoning, the coordinates of the maximum point are often post-
processed to reduce the quantization error. For example, in the Hourglass model, the second largest
value point of the predicted coordinates is shifted by 1/4 of a pixel; in HRNet, the actual offset is 1/4
of the gradient at the maximum point.

Heatmap representation has become an effective method for locating key points in human posture
recognition and has quickly become within the mainstream of coordinate representation. Current
research focuses on designing more efficient network architectures for regression heatmap supervision,
including improved designs such as pyramid residual learning, deconvolution upsampling, and high-
resolution representation retention. These methods are designed to enhance model performance while
maintaining sensitivity to the details and retention of high-resolution features.
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2.2 Two Paradigms for Human Pose Estimation: Top-Down and Bottom-Up

In the field of human posture recognition, the top-down approach is a common and classic
strategy. This approach begins by identifying the bounding boxes for each person within the image,
followed by performing individual pose estimation within those bounding boxes. Early CNN methods
directly predicted the key point location for single-person attitude estimations, but these methods
gradually surpassed the heat-map-based estimation methods. Previous studies, like Luvizon et al. [13],
used the softmax operation to read joint locations from heatmaps in single-person 2D pose estimation.
MaskR-CNN [14] extends FasterR-CNN [15] by adding an attitude estimation branch parallel to the
original boundary frame recognition branch. Modern top-down pose estimation networks include
CCAM-Person [16], FDAPose [17], YH-Pose [18], and others. Although these methods have been
successful in achieving high accuracy and precision, they often require additional computational costs
in detecting the human frame.

In contrast, the bottom-up approach adopts a markedly different strategy. It begins by detecting
all body joints across individuals in the image and then groups these joints to form complete human
figures. This method performs pose detection and grouping simultaneously, eliminating the need for
prior detection of human body bounding boxes. Typical bottom-up approaches include Openpose
[19], PersonLab [20], and PifPaf [21]. Openpose uses a two-branch multilevel network, one branch for
heatmap prediction and one branch for grouping. It uses the grouping method of the partial affinity
field to complete the grouping by calculating the line integral between two key points and grouping the
key points by the maximum integral. Other methods, such as PersonLab, group key points by directly
learning the two-dimensional offset domain of each pair of key points, or PifPaf, locate body parts by
using a part strength field and associate body parts with each other by using a part association field
to form a complete human posture. The bottom-up method has high robustness and can effectively
deal with complex scenes and occlusions, so it shows advantages in some specific scenes. However, this
method has the disadvantages of slow calculation and high cost for real-time monitoring.

2.3 Attention Mechanism

Attention models have revolutionized the field of computer vision by markedly improving
performance across various tasks such as image classification and object detection. By enabling models
to concentrate on the most critical parts of an image, these models not only enhance accuracy but also
bolster the overall robustness of the systems. This targeted focus helps in more precise identification
and analysis, leading to superior outcomes in visual recognition tasks. Self-attention methods provide
a way to calculate feature context by calculating the weighted sum of all the positions in an image.
This approach is especially effective in generative tasks and sequence modeling because it captures the
global context, not just the local information. In terms of the gesture detection attention mechanism,
feature grouping learning can be traced back to AlexNet, whose convolutional groups can better learn
feature representations and allocate models to more GPU resources [22]. SENet [23] represents a highly
optimized lightweight attention mechanism that specifically emphasizes the significance of each chan-
nel. This is accomplished by calculating the importance score for each channel and then calibrating
the feature map from these scores. This channel-level attention mechanism empowers the network
to concentrate on features rich in informative content while diminishing the impact of less relevant
features. GCNet [24] combines the advantages of nonlocal operations and SE modules to create a
more effective global context module. This has achieved convincing results in tasks such as object
detection that require global contextual information. SKNet [25] introduces a dynamic kernel selection
mechanism that uses multiscale group convolution to select suitable convolution kernels. This method
significantly improves classification performance with a small increase in computational complexity
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and parameters, making it particularly suitable for learning multiscale features. Beyond channel-
level attention, BAM [26] and CBAM [27] introduce spatial attention mechanisms. These advanced
modules incorporate attention strategies across both the channel and spatial dimensions, improving
the performance of the model by highlighting the key points in each dimension. Our network integrates
a minimal lightweight attention mechanism called SGE, which is a key aspect of its lightweight nature.
Traditional attention mechanisms often substantially increase computational overhead and parameter
count, but our lightweight attention mechanism significantly reduces additional computation and
memory consumption while preserving model performance. This design further optimizes network
efficiency, ensuring high effectiveness and practicality in real-world applications.

3 A Detail-Aware U-Shaped Network for 2D Human Pose

This paper investigates key point detection for human pose estimation using heatmaps. Human
posture detection aims to recognize the human body within a given image, locate the joint coordinates,
and construct a skeleton diagram of the human body. To do this, we construct a regression model that
maps the image to the coordinates, and we use the heatmap as a representation of the node coordinates
during training and testing. We use image datasets labeled with joint coordinates and convert these
coordinates into heatmaps that serve as learning targets for model training. We employ the same body
detection approach utilized in SimpleBaseline [28] to track postures across frames. In the prediction
stage, we parse the heatmap generated by the model back into the original coordinate space of the
image to obtain the position of the final node.

3.1 Network Architecture

Fig. 2 illustrates the comprehensive network architecture of DAUNet. It is a single-stage U-shaped
structure that includes an improved concatenated feature extraction module, SGE, several residual
blocks, and upsampling operators. This streamlined structure not only reduces the number of model
parameters but also lowers computational complexity, thereby enhancing processing efficiency. The
key point prediction network is suitable for any type of input mode, and the key point position of the
human posture is generated by the heatmap.

This paper utilizes the standard coordinate decoding method. Specifically, for a heatmap predicted
by the trained model, we first identify the coordinates corresponding to the maximum activation (m)
and the second highest activation (s). Subsequently, the node’s position is predicted as follows:

p = m + 0.25
s − m

‖ s − m ‖2

(1)

where ‖ · ‖2 represents the vector’s magnitude. The predicted position is moved one subpixel (0.25
pixels) from the coordinates of the largest activation point to the coordinates of the second largest
activation point, The ultimate coordinate estimation in the original image is calculated as follows:

p̂ = λp (2)

Initially, the image is scaled to match the input dimensions required by the target network, and
then feature extraction is carried out through the improved subsampling module based on partial
convolution and strip pooling. To easily recover and retain spatial features after the convolution
operation, we use a self-defined upper sampling layer to upsample the feature graph. Then, the feature
map is deconvolved (upsampled), and space rebuild and channel rebuild are carried out to reduce the
feature redundancy. In addition, to retain the local fine feature information, we capture the global
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space-dependent information through a lightweight attention mechanism after upsampling. Finally,
we recover the original image through a standard convolution layer so that we can obtain the key point
prediction graph with the same image size at the output end as the input end.

3.1.1 Improved Bottleneck Using Partial Convolution and Strip Pooling

The bottleneck module is one of the fundamental modules in ResNet and is used to construct deep
neural networks. In the task of designing fast key point estimation networks, many works currently
focus on the depth of stacked neural networks. However, we observed that as the depth increases,
the prediction performance does not necessarily improve to a certain extent but rather increases
the number of floating-point operands (FLOPS), increasing network latency. Moreover, repeated
downsampling in pose estimation can lead to a significant reduction in the preservation of original
feature details.

ResNet is similar to GoogLeNet [29], but the difference is that large convolution kernel down-
sampling (7×7Conv) is directly adopted for the first convolution layer, followed by MaxPooling for
further downsampling. The first block of each phase undertakes the functions of changing dimensions
and downsampling. It is worth noting that Stage 1 does not downsample because MaxPooling has
been completed and uses 1×1Conv (a BottleNeck structure). In the downsampled block, the second
1×1Conv increases the dimension, and then a 3×3Conv is downsampled. In a BottleNeck that is
not subsampled, the first 1×1Conv decreases its dimension, and the second 1×1Conv increases
its dimension. The other path is subsampled by the pooling layer and subsequently increased in
dimension, which is similar to DenseNet’s TransitionBlock structure [30].

However, in the downsampling process, both average pooling and maximum pooling have some
limitations. Average pooling averages the pixel values in each pooling window, which may lead to the
loss of some details. Especially when there are large feature variations or textures, average pooling
may not effectively retain the important features. The maximum pooling keeps only the maximum
value in the pooling window and erases some subtle feature information. In some cases, this can affect
the performance of the model, especially when detailed key point location information is needed.
Therefore, inspired by recent work [31,32], we propose a reconstructed subsampling module, IBN, in
which we use custom partial convolution and strip pooling to extract spatial features more efficiently
by reducing feature loss and simultaneously improving the model’s fitness.

Here, we describe how our rebuilt module works. As shown in Fig. 3, compared with traditional
convolution and grouping convolution, partial convolution is more focused on processing the local
region of the input image rather than the whole image, The subset of channels selected for convolution
is typically continuous.

Figure 3: Contrast diagram of local convolution with conventional and packet convolution. Local
convolution applies filters to a few input channels while remaining unchanged
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When implementing this method, we first determine the number of channels in the partial
convolutional layer and then define a partial convolutional layer using a 3 × 3 sized kernel. In the
forward propagation process, we use segmentation and concatenation methods. This means that we
divide the input tensor into two parts according to the specified number of channels, apply partial
convolution operations on one part, and finally concatenate the two processed tensors together.
In panel (c) of Fig. 3, we apply convolution to the first continuous subset of channels, while the
unprocessed channels are preserved and passed to subsequent layers. This approach allows later
convolutional layers to utilize the unprocessed channels, ensuring that information flows through all
channels and preventing the loss of important data. This method simplifies the memory access pattern,
reducing the number of floating-point operations (GFLOPs) and the memory access requirements
of the model. This approach helps preserve the spatial information of the input image because the
convolution kernel at each position operates only with pixels in a local region. This processing method
ensures that partial convolution only extracts spatial features from some input channels while keeping
other channels unchanged, thus ensuring that the channel count for both the input and output feature
maps remains constant without compromising generality. The detailed formula is given by:⎧⎨
⎩

I1, I2 = S (I , [D, U ], dim = 1)

O1 = P (I1)

O = C ((O1, I2), 1)

(3)

where I1 and I2 are the first and remaining parts of the input tensor, respectively; O1 is the first part of
the output tensor after a partial convolution operation; D represents the number of channels handled
by the partial convolution layer; U denotes the number of channels that remain constant; P is the
partial convolution operation; S and C are the tensor split and cat operations, respectively, in PyTorch.

Fig. 4 depicts the structure of our stripe pooling method, where x ∈ R
C×H×W is the input tensor

whose spatial dimension is H × W and the number of channels is C. We perform pooling operations
on a region with a spatial range of H × W in the average pooling layer. Send the input tensor x through
parallel horizontal and vertical strip pooling layers.

Figure 4: Structure diagram of ribbon pooling module
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The horizontal ribbon pooling can be expressed as:

yh
i = 1

W

∑
0≤j<W

xi,j (4)

Vertical ribbon pooling can be expressed as:

yw
j = 1

H

∑
0≤i<W

xi,j (5)

This gives us yh ∈ R
C×H and yw ∈ R

C×W . To obtain the output z ∈ R
C×H×W , we first combine yh and

yw to obtain y ∈ R
C×H×W :

yc,i,j = yh
c,j + yw

c,j (6)

Then, the output z is calculated as:

z = Ratio (x, μ (f (y))) (7)

where Ratio () denotes element-wise multiplication, μ represents the sigmoid function and f refers to
the smallest convolution.

In Fig. 4, we link the output tensor to every position indicated by the red and yellow boxes. In
contrast to average pooling, which operates on a global scale, strip pooling emphasizes handling local
regions. Additionally, unlike attention modules that demand substantial computational resources,
strip pooling offers a more efficient and lightweight alternative.

3.1.2 Space/Channel Rebuild Unit

Fig. 5 illustrates the design of the reduced space rebuild unit and the channel rebuild unit
introduced in this paper.

Figure 5: De-redundant structure combining spatial rebuild unit (SRU) and channel rebuild unit
(CRU)
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In a general U-shaped network, downsampling operations usually occur in the first half of the
network, while upsampling operations occur in the second half of the network. The downsampling
operation diminishes the spatial dimensions of the feature map through pooling or convolution, while
the upsampling operation increases the spatial resolution of the feature map by deconvolution or
interpolation. Typically, the network loses some details during downsampling and attempts to recover
the lost information during upsampling. Therefore, during the upsampling stage, there may be a certain
degree of redundancy in the feature map. This is because downsampling reduces the spatial extent of
the feature map while upsampling increases the spatial dimension of the feature map, which may cause
certain information in the feature map to be copied or duplicated.

To leverage spatial redundancy, we introduce a spatial rebuild unit (SRU) with separation and
rebuild operations, using the scale factor in group normalization to assess feature map information
[33]. We obtain normalized input features by subtracting the mean ρ and then dividing by the standard
deviation α, where λ is a small constant added to ensure numerical stability, ρ and α represent the mean
and standard deviation of X , and ϕ and μ are learnable affine transformations.

Xout = GN (X) = ϕ
X − ρ√
α2 + λ

+ μ (8)

We utilize the learnable parameter ϕ ∈ RC in the group normalization layer to assess the spatial
pixel variance across each batch and channel. A larger gamma value indicates a larger change between
pixels. The normalized correlation weight Wϕ ∈ RC which signifies the significance of various feature
maps, is computed as follows:

Wϕ = {wi} = ϕi∑C

j=1 ϕj

, i, j = 1, 2, · · · , C (9)

Then, the weights of the Wϕ-reweighted feature maps are scaled to the range (0, 1) using the
sigmoid function and regulated by a threshold. The complete procedure for deriving W is described
by the following formula:

W = Gate
(
Sigmoid

(
Wϕ (GN (X))

))
(10)

Finally, we get two weighted features, X w
1 with large information and X w

2 with small information.
Here, X w

2 is considered redundant.

To reduce space redundancy, we perform cross-reconstruction addition operations to save space
and generate richer feature representations. Then, the reconstructed features X w

1 and X w
2 are combined

to obtain the spatial fine feature mapping X w.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X w
1 = W1 ⊗ X ,

X w
2 = W2 ⊗ X ,

X w
11 ⊕ X w

22 = X w1,
X w

21 ⊕ X w
12 = X w2,

X w1 ∪ X w2 = X w,

(11)

where ⊗ is multiplied by an element, ⊕ is the sum of the elements, and ∪ is a concatenation. The SRU
separates information features from features with less information and reconstructs the intermediate
input feature X .

To utilize channel redundancy, we introduce a channel rebuild unit (CRU) and adopt a splitting
conversion fusion strategy. First, the input feature is divided into the σC channel and (1 − σ) C
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channel, where 0 ≤ σ ≤ 1 is the partition ratio. Then, using the 1 × 1 convolutional layer compression
channel, the cost is calculated by introducing the extrusion ratio r balance.

After segmentation and expansion, the detailed spatial feature Xw is partitioned into the top
portion Xup and the bottom portion Xlow. Finally, the information flow of the two parts is summarized
through convolution calculation to obtain a representative feature map Y1.

The process of up-transformation can be detailed as:

Y1 = MGXup + MP1Xup (12)

where MG and MP1 are the parameter matrices for the training of the GWC and PWC, respectively, and
Xup and Y1 are the input and output feature mappings of the upper layer, respectively. In the upper layer
transformation stage, the GWC and PWC are combined on Xup to extract feature Y1 and reduce the
calculation cost. Xlow generates shallow detailed features through 1 × 1 PWC operations to complement
Xup. Finally, the produced and reused features are merged to form the final output Y2.

Y2 = MP2Xlow ∪ Xlow (13)

where MP2 represents the trainable weight matrix of the PWC, ∪ is the concatenation operation, and
Xlow and Y2 are the feature mappings of the input and output, respectively.

To dynamically combine the output features Y1 and Y2, we utilize the simplified SKNet [25]
method. First, the global pooling method is adopted through channel statistics Sm, and the calculation
formula is as follows:

Sm = Pooling (Ym) = 1
H × W

H∑
i=1

W∑
j=1

Yc (i, j), m = 1, 2 (14)

Next, S1 and S2 are overlaid to produce the feature importance vectors β1 and β2, as follows:

β1 = eS1

eS1 + eS2
, β2 = eS2

eS1 + eS2
, β1 + β2 = 1 (15)

Finally, under the guidance of the feature importance vectors β1 and β2, The upper feature Y 1 and
the lower feature Y 2 are merged along the channel axis to derive the channel-thinned feature Y :

Y = β1Y1 + β2Y2 (16)

In summary, we achieve the goal of reducing feature redundancy by arranging the SRU and CRU
in order, merging them into one SCRU module, and adding them after each upsampling module.

3.1.3 Lightweight Spatial Grouping Attention

The attention mechanism in the field of node detection mainly covers spatial attention and channel
attention. In this paper, to boost the semantic capacity of the feature groups, the spatial attention
acquisition module, Spatial Groupwise Enhance (SGE), is integrated into the node detection network.
The network architecture is illustrated in Fig. 6.
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Figure 6: Structure diagram of lightweight SGE module

First, divide the feature map into G groups along the channel dimension, we focus on the vector
representation of a certain set of features, called χ = {x1 · · · m} , xi ∈ R

C
G , m = H ×W , which gradually

captures specific semantic information during the network learning process. In an ideal scenario,
the semantics of the group features exhibit significant responses in certain regions, while activation
in other regions is essentially zero. However, due to the influence of noise and pattern similarity,
convolutional neural networks (CNNs) [34] often struggle to obtain ideal feature distributions. Noise
leads to unstable feature responses, while similar patterns may lead to false activations. To improve
the acquisition of semantic features in critical areas, we adopted attention methods and used spatial
averaging functions to capture global statistical features in the entire population space, reducing the
impact of noise. This approach can identify and enhance the feature response of key areas in the
overall space. Therefore, we can approximate the semantic vectors represented by this group of learning
representations using global statistical features through the spatial average function Fgp:

g = Fgp (χ) = 1
m

m∑
i=1

xi (17)

For each position, we measure the similarity ci between the global semantic feature g and the local
feature xi, and we have:

ci = g · xi (18)

To avoid bias in coefficients across different samples, we perform spatial normalization of c.

ĉi = ci − μc

σc + ε
, μc = 1

m

m∑
j

cj, σ 2
c = 1

m

m∑
j

(
cj − μc

)2
(19)

where ε is a constant introduced to ensure numerical stability. Meanwhile, the parameters γ and β are
calculated for each coefficient.

ai = γ ĉi + β (20)

Finally, the original feature vector xi is spatially scaled using the sigmoid function gate σ (·) to
obtain x̂i.

x̂i = xi · σ (ai) (21)
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All the enhanced features make up the final feature set: χ̂ = {
x̂1 · · · m

}
, x̂i ∈ R

C
G , m = H × W .

3.2 Loss Function

The mean square error (MSE) serves as a prevalent measure for assessing the accuracy of
predictions in human pose estimation challenges and is often defined as Joints MSE Loss in key point
prediction. The calculation of the MSE loss forward equation begins by calculating the square error
(SE) between the model prediction (A) and the actual true value (Y ):

SE (A, Y) = (A − Y) 	 (A − Y) (22)

Next, we determine the sum of squared errors (SSE). Here, ιN and ιC represent column vectors of
sizes N and C, respectively, filled with 1:

SSE (A, Y) = ιT
N · SE (A, Y) · ιC (23)

This operation sums all the elements of the SE (A, Y ) matrix, which has dimensions N × C.
The errors between rows are aggregated by multiplying ιT

N, and then the errors between columns are
summed by multiplying ιC, yielding the total error of a single scalar. Then, the mean square error loss
is calculated for each component:

MSELoss (A, Y) = SSE (A, Y)

N · C
(24)

During backpropagation, the gradient of the MSE loss relative to the model output (A) needs to
be calculated to update the model parameters:

MSELoss.backward () = 2 · (A, Y)

N · C
(25)

Therefore, the MSE loss function is defined as:

MSELoss (A, Y) = 1
N · C

N∑
i=1

C∑
j=1

(
Aij − Yij

)2
(26)

where A is the model prediction value. Y is the true value. N is the number of samples in the batch. C
is the output dimension of each sample.

4 Experimental Validation
4.1 Model Parameter Settings

The experimental platform of this paper is Ubuntu 20.04. The programming environments used
were PyTorch 1.14.1 and Cuda 11.8, and the system comes with an NVIDIA Tesla A100 40G GPU. We
have verified the performance of DAUNet through a large number of experiments. All the experiments
are performed on open human pose datasets, and classical benchmark models such as Hourglass and
Openpose are selected for comparison. The performance of the proposed modules is studied, and the
effectiveness of key point detection in an actual environment is evaluated.
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4.2 Datasets and Experimental Setup

4.2.1 Dataset

We used the public human pose datasets MPII [35] and COCO [36] to train and validate our
approach. The MPII Human Posture Dataset is the most advanced benchmark for evaluating human
joint posture estimates. The images for this dataset were systematically collected using an established
taxonomy of daily human activity. The dataset contains 410 human activities and approximately 25k
images, including more than 40k human objects, all labeled with 16 points of information; these images
were extracted from YouTube videos. The data include verification and test sets for single-frame single-
person poses, single-frame multiperson poses, and video multiperson poses, and most methods use a
single-frame multiperson pose test set. The COCO Pose dataset is widely used in pose recognition
by Microsoft. It contains approximately 80 types of images and more than 250,000 labeled images,
covering a wide variety of complex gestures and movements. Each image shows the location of up to
17 key points on the whole body, such as the head, limbs, and hands. The dataset is suitable for training
and evaluating pose estimation, action recognition, pose generation, and other tasks.

4.2.2 Evaluation Indicators

In the MPII dataset, the Percentage of Correct Key Points (PCK) quantifies the proportion of
accurately identified key points by assessing normalized distances against a predefined threshold.
This metric employs the head diameter as a scaling factor for normalization. Additionally, the variant
known as PCKh evaluates key point accuracy after this normalization process, providing a refined
measure of precision in detecting key points relative to the head diameter.

PCKk
i =

∑
p δ

(
dpi

d
def
p

≤ Tk

)
∑

p 1
(27)

PCKk
mean =

∑
p

∑
i δ

(
dpi

d
def
p

≤ Tk

)
∑

i

∑
p 1

(28)

where i is the key point ID, k is the k-th threshold Tk, p is the detected p-th object, dpi represents the
predicted value of the key point with the p-th object ID i and the Euclidean distance of the ground
truth, ddef

p represents the scale factor of the p-th object, and PCKk
i denotes the index for the key point

ID in PCK, PCKk
mean represents the PCK index of the algorithm. In this article, mean is the value of

PCKh@0.5.

The evaluation indices of key point detection in the COCO dataset simulate the target detection
evaluation indices, and the average precision (AP) and average recall rate (AR) are used for evaluation.
Its objective is to define key similarity (Object Keypoint Similarity, OKS) to measure similarity
matching and real forecast stances, and more than 10 OKS threshold average precisions (APs) are
used as its main index.

OKSp =
∑

i exp
{−d2

pi/2S2
pσ

2
i

}
δ
(
vpi > 0

)
∑

i δ
(
vpi > 0

) (29)

where p indicates a specific test object in the ground truth, while pi signifies the key point for an
individual. dpi denotes the Euclidean distance between the key point ID of i in the current set of
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tested key points and the key point ID of i in the ground truth key point p for the human body.

dpi =
√(

x′
i − xpi

) (
y′

i − ypi

)
, where

(
x′

i, y′
i

)
are the current key point detection results and

(
xpi, ypi

)
are

the key points of human p whose ID is i in the ground truth. vpi represents the visibility of this key
point. Sp = √

WH, the ‘W , H’ here refers to the width and height mentioned earlier.

σi represents the normalization factor for key points of type i, which represents the variance
between the manually annotated values and the actual values for all reference key points in the sample
set. δ (∗) indicates that if the condition ∗ holds, then δ (∗) = 1; otherwise, δ (∗) = 0. The purpose here
is to calculate only the annotated key points in the ground truth.

The similarity measure OKS between the reference key points and the detected key points is
computed as a scalar value. An artificial threshold T is then applied, allowing the calculation of the
AP based on the OKS across all images:

AP =
∑

p δ
(
OKSp > T

)
∑

p 1
(30)

In COCO datasets, the key point detection and instance segmentation evaluation methods use AR
indicators, which denote the average proportion of detected predictions relative to the actual number.
AR ranks the prediction boxes in order of confidence from high to low, calculates the number of real
boxes covered by the prediction boxes at each position, multiplies the ratio between the score and the
number of real boxes by 1 or 0, and then averages the ratio between the score of all prediction boxes and
the number of real boxes to obtain the AR value. The formula for determining the recall is given by:

Recall = TP

TP + FN

(31)

where TP (true positive) indicates true cases. FN (false negative) stands for false counterexample. The
average recall rate AR is used to average the recall rate of all the categories, specifically, to take the
largest recall rate for different IoUs and then average them.

4.3 Experimental Results and Analysis

4.3.1 Pose Estimation on MPII

For the MPII dataset, we used a two-stage top-down detection method. That is, the detector is
first used to detect the human instance, and then the detection key point is predicated on the detected
object.

Our algorithm comprises the following steps: human body detection and propagation, human
body pose estimation, and pose association between adjacent frames. We adjust the height or width of
the human detection box to maintain a fixed aspect ratio (4:3 height to width), and subsequently crop
the box from the image to resize it to a fixed dimension of 256 × 256. We use the Adam optimizer.
The batch size is set to 128, and the learning process follows this setting. The basic learning rate is set
to 1e-3, and the momentum is 0.9. As shown in Fig. 7, and the loss decreases to 4.2e-4 and 3.9e-4 at
the 100th and 200th iterations, respectively. The accuracy (mean) increases to 90% at 130 iterations.
The accuracy of each joint is basically similar to the overall accuracy; the highest effect is achieved
approximately 130 times, and the training process is finished in 200 cycles.

By convention, a quarter shift in the direction from the highest heating value response to the
second highest response on the heatmap is the position of the predicted key point.
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Figure 7: Network training on MPII dataset

Because each key point reflects different areas in the image, it is difficult for the model to locate
each type of key point. We reimplemented the other methods by using ResNet-50 as the backbone with
an input size of 256 × 256 for comparison with our DAUNet. As shown in Table 1 and Fig. 8, for the
shoulder, elbow, wrist, knee, and ankle, which are relatively smaller than the other types of key areas,
DAUNet has greater accuracy than the other methods, reaching average accuracies of 96.9, 92.6, 87.9,
87.9 and 83.7, respectively. The proposed DAUNet achieves competitive performance with a relatively
small number of GFLOPs compared to other networks with similar parameter counts. The reduced
number of floating-point operations leads to enhanced model performance, enabling the extraction
of more useful features from low-resolution semantic attention through multiple interactions. This
results in increasingly focused attention, with more accurate predictions of key point locations in
small regions. Although the accuracy of the head, hip, and other parts was slightly different, the mean
(PCKh@0.5) of the verification set had the preferable score of 91.6.

Table 1: Comparison results on the MPII dataset

Method #Params GFLOPs Hea Sho Elb Wri Hip Kne Ank Mean

CPN [7] 48.2 M 6.2 96.3 94.8 90.1 85.6 88.8 86.7 84.5 90.0
MSPN [11] 76.5 M 14.7 97.2 95.1 90.8 87.2 90.3 87.8 82.1 90.5
Hourglass [6] 25.1 M 14.3 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
HRNet-W32 [10] 28.5 M 7.1 96.9 96.0 90.6 85.8 88.7 86.6 82.6 90.1
Openpose [19] 65.1 M – 92.9 81.6 76.9 69.4 76.2 67.6 62.2 79.7
SimpleBase-
Res50 [28]

34.0 M 8.9 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5

TokenPose-L [37] 20.8 M 9.1 97.1 95.9 91.0 85.8 89.5 86.1 82.7 90.2
GNet [38] – – 98.1 96.3 92.2 87.8 90.6 87.6 82.7 91.2
AlphaPose [39] – 6.1 91.3 90.5 84.0 76.4 80.3 79.9 72.4 82.1
Ours 38.6 M 10.8 97.8 96.9 92.6 87.9 90.5 87.9 83.7 91.6
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Figure 8: Visual result of network node verification on MPII valid set

4.3.2 COCO Pose Estimation

The testing process is almost identical to the testing process in MPII, where the human detection
box is resized to maintain a 4:3 aspect ratio; thereafter, the box is extracted from the image and
subsequently resized to 256 × 192 pixels. The data augmentation scheme and the coordinate decoding
strategy are consistent with MPII, Our method employs the Adam optimizer and the batch size is set
to 128. In the experiment, as shown in Fig. 9, the model was trained for 200 rounds, the initial learning
rate was set at 1e-3 and the momentum was 0.9, which attenuated to 3.8e-4 and 3.4e-4 in the 100th and
200th rounds, respectively. Our method also uses a top-down detection method (Openpose in the table
is a bottom-up paradigm). The PR curve indicates that as the recall increases, the precision significantly
decreases, especially noticeable when the recall approaches 0.7. This suggests that to capture more
positive samples, the model also includes more misclassified negative samples, resulting in reduced
precision. The model performs better at low recall, identifying some positive samples with higher
precision, but precision drops rapidly as recall increases. Tables 2 and 3 show how DAUNet compares
to other networks on COCO’s validation and test sets.

Figure 9: Network training on the COCO dataset
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Table 2: Comparison results on the COCO valid set

Method #Params GFLOPs AP AP50 AP75 APM APL AR

CPN [7] 48.2 M 6.2 72.1 91.4 80.0 68.7 77.2 78.5
MSPN [11] 76.5 M 14.7 74.5 90.9 80.8 69.5 82.9 80.5
Hourglass [6] 25.1 M 14.3 66.9 – – – – –
HRNet-W32 [10] 28.5 M 7.1 73.4 89.5 80.7 70.2 80.1 78.9
Openpose [19] 65.1 M – 65.3 85.2 71.3 54.4 65.1 –
SimpleBase-
Res50 [28]

34.0 M 8.9 70.4 88.6 78.3 67.1 77.2 76.3

TokenPose-L [37] 20.8 M 9.1 75.4 90.0 81.8 71.8 82.4 80.4
LOGO-CAP [40] – – 72.2 88.9 78.9 68.1 78.9 –
DecenterNet [41] 25.96 M 45.39 70.7 87.7 77.1 66.2 77.8 75.9
Ours 38.6 M 10.8 76.1 90.3 82.1 72.4 81.1 80.9

Table 3: Comparison results on the COCO test set

Method #Params GFLOPs AP AP50 AP75 APM APL AR

CPN [7] 48.2 M 6.2 72.1 90.5 78.9 67.9 78.1 78.1
MSPN [11] 76.5 M 14.7 74.5 91.9 81.2 70.1 80.4 79.3
Hourglass [6] 25.1 M 14.3 65.5 86.8 72.3 60.6 72.6 70.2
HRNet-W48 [10] 63.6 M 32.9 74.2 92.4 82.4 70.9 79.7 79.5
Openpose [19] 65.1 M – 61.8 84.9 67.5 57.1 68.2 66.5
SimpleBase-
Res50 [28]

34.0 M 8.9 70.4 88.6 78.3 67.1 77.2 76.3

TokenPose-L [37] 20.8 M 9.1 74.6 92.1 82.4 71.5 80.9 80.0
AlphaPose [39] – 6.1 71.8 91.9 80.3 72.8 72.4 77.3
LOGO-CAP [40] – – 70.8 89.7 77.8 66.7 77.0 –
DecenterNet [41] 25.96 M 45.39 69.8 89.0 76.6 65.2 76.5 75.1
DRHNet [42] 29.37 M 81.45 69.0 89.8 76.4 65.3 77.5 74.7
Ours 38.6 M 10.8 75.2 92.2 82.6 71.5 81.3 80.4

Table 2 and Fig. 10 present the results of this method alongside other leading techniques evaluated
on the COCO validation set. The DAUNet proposed in this paper is pre-trained in the convolutional
network part but not in the attention mechanism part.

From Table 2, it can be seen that DAUNet’s average accuracy (AP) and average recall (AR) have
increased by 0.7% and 0.5%, respectively, compared to the highest-scoring token pose. We believe that
the model complexity remains within an acceptable range. Despite a slight increase in the number
of parameters (#Params) and computations (GFLOPs), DAUNet still exhibits the best performance
on the COCO dataset overall. Since DAUNet reduces feature redundancy for low resolutions, it uses
partial convolution for the downsampling of high-resolution images to improve the recognition of
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low-resolution images and can eliminate the inaccuracy of upsampling fusion through an attention
mechanism after subsequent upsampling. This results in a 0.6% improvement in APM performance.
Compared with TokenPose, although TokenPose has a slightly higher score in APL, TokenPose uses a
self-attention interaction to capture and embed key point markers to complete the interactive fusion
of deep features, and the parameters and computation amount of the attention mechanism used are
greater than those of the lightweight spatial attention mechanism used in this paper.

Figure 10: Visual result of the network node verification on the COCO valid set

Table 3 and Fig. 11 show DAUNet’s performance on the COCO test set, where it outperforms
other methods, particularly those using Transformer architectures, with a 0.6% higher average
precision (AP) and 0.4% higher average recall (AR), despite increased parameters and computational
complexity. DAUNet excels by leveraging low-resolution global semantic information, and spatial
attention, enhancing the spatial distribution of semantic features. Its partial convolution and strip
pooling methods effectively retain image features, achieving superior results, especially in the APM

index. Nowadays, most pose estimation networks are leaning towards complex attention structures and
high computational loads. The increase in floating-point operations and parameter count for DAUNet
is acceptable given its impact on model complexity relative to the final results. Overall, DAUNet
demonstrates superior performance compared to other networks. It achieves better experimental
results by increasing only the quantity of parameters and the computational load and has a good
overall performance.

Figure 11: Visual result of network node verification on COCO test set
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4.4 Ablation Study

In this section, we consider taking a deeper look at the different modules in DAUNet from the
following three perspectives to understand their performance impact on the overall network. The MPII
and COCO datasets were compared, and the evaluation criteria were the mean and AP.

The three submodules in DAUNet are crucial for improving the performance of the network,
and the accuracy is enhanced to some degree. In the ablation experiment, DAUNet achieved the
greatest improvement in performance after the fusion of all the modules. In the experiments using
a single module, it is found that each additional module can partly improve the performance of the
model. Table 4 shows the improved IBN module achieves 0.5% accuracy on the MPII dataset and a
1.2% improvement in the AP on COCO. A decrease in the redundancy of features at the back of the
network resulted in a 0.4% accuracy improvement on the MPII dataset and a 0.4% AP improvement
on the COCO dataset. The addition of a lightweight attention mechanism alone resulted in the greatest
improvement, with a 0.9% increase in accuracy on the MPII dataset and a 1.5% increase in AP on the
COCO dataset.

Table 4: Results of ablation experiments on MPII and COCO datasets

IBN √ √ √ √
SCRU √ √ √ √
SGE √ √ √ √

Mean 87.0 87.5 87.4 87.9 87.9 88.7 89.7 91.3
AP 70.8 72.0 71.2 72.3 73.5 74.9 75.6 76.1

In terms of computational efficiency, achieving better prediction results with fewer floating-point
operations is a significant advantage of our network. As seen in Table 5, the network’s computational
load is significantly reduced with the inclusion of the IBN module. This is because the improved
IBN module uses partial convolution and strip pooling, which effectively matches or even exceeds the
performance of traditional convolution and average pooling while reducing computational costs. As
indicated in Fig. 12 incorporating the improved IBN module allows the network to generate heatmap
center points for the left-hand joints, indicating that reducing feature loss through partial convolution
and strip pooling enhances prediction performance. Adding the IBN and SCRU modules further
improves the clarity of left-hand detection and increases accuracy, demonstrating that spatial and
channel reconstruction units reduce redundancy and improve model precision. Finally, the addition
of the SGE attention module enables each feature set to independently enhance its learned semantic
representation, leading to more focused key point detection and higher accuracy for small joints in
low-resolution images. These modules help our model accurately locate the precise positions of every
detail key point in human posture.

Table 5: Results of GFLOPs with different modules added to the network

None SCRU SCRU+SGE SCRU+SGE+IBN

GFLOPs 9.9 11.1 11.7 10.9
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Figure 12: Comparison of ablation experiment heat maps in the COCO dataset, where None means
that no module is added, and the others are heatmap prediction renderings of key points of a module
added in turn

Based on the above ablation experiments, we can find that both the IBN module and SCRU
module can effectively improve the key point detection capability, laying the foundation for the SGE
module to play a role. After adding the SGE module, the accuracy of low-resolution detail key points
is further improved, and the detection precision has reached a satisfactory level.

4.5 Generalization and Detection in Real-World Scenarios

Inspired by Wang’s work [43], we utilized a subset of the NTU-60 pose dataset to evaluate the
generalization capability of our model. Specifically, we extracted 5000 video sequence frames from
various categories within the x-sub validation data, using the skeletal points as ground truth. Our
model achieved an accuracy of 90.9% on the x-sub validation set, demonstrating robust generalization
performance.

We used the Microsoft Azure Kinect DK RGB-D camera for the deployment experiment of
the model to obtain an image of the full field coverage of the test target human body. We use the
trained prediction model in a separate thread that communicates via a camera and computer; it
transmits images and makes predictions. The results of the experiment are illustrated in Fig. 13, which
reveals good and accurate predictions for clear pose images, motion-blurred pose images, and images
with partial pose occlusions. Our key point detection model can be easily applied to other hardware
platforms and other practical scenarios and has good robustness and generalizability.
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Figure 13: Prediction results of the model in a real scenario

5 Conclusions

This paper proposes a U-shaped key point detection network based on an improved ResNet
subsampling structure and spatial grouping mechanism, designs and implements residual blocks for
image subsampling processing and proposes a node detection model that removes spatial redundancy
and channel redundancy after deconvolution and adds a lightweight spatial grouping attention
mechanism. Experiments on two classical datasets show that the model can effectively predict the
correct key point image from a large number of images containing people, and the accuracy rate
is significantly improved, which improves the key point detection performance in human poses.
Although DAUNet performs well in some scenarios, we found that improved sample detection under
relaxed conditions leads to more false positives. This trade-off may be due to complex backgrounds,
pose variations, or inconsistent bounding box sizes. Key point detection under long-term occlusions
also needs improvement. Future work could enhance training data diversity with varied poses and
backgrounds, increase model complexity, and explore methods like multi-view images or temporal
information to better infer key points of occluded body parts.
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