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ABSTRACT

The importance of unmanned aerial vehicle (UAV) obstacle avoidance algorithms lies in their ability to ensure flight
safety and collision avoidance, thereby protecting people and property. We propose UAD-YOLOVS, a lightweight
YOLOV8-based obstacle detection algorithm optimized for UAV obstacle avoidance. The algorithm enhances the
detection capability for small and irregular obstacles by removing the P5 feature layer and introducing deformable
convolution v2 (DCNv2) to optimize the cross stage partial bottleneck with 2 convolutions and fusion (C2f) module.
Additionally, it reduces the model’s parameter count and computational load by constructing the unite ghost
and depth-wise separable convolution (UGDConv) series of lightweight convolutions and a lightweight detection
head. Based on this, we designed a visual obstacle avoidance algorithm that can improve the obstacle avoidance
performance of UAVs in different environments. In particular, we propose an adaptive distance detection algorithm
based on obstacle attributes to solve the ranging problem for multiple types and irregular obstacles to further
enhance the UAV’s obstacle avoidance capability. To verify the effectiveness of the algorithm, the UAV obstacle
detection (UAD) dataset was created. The experimental results show that UAD-YOLOvS8 improves mAP50 by 3.4%
and reduces GFLOPs by 34.5% compared to YOLOv8n while reducing the number of parameters by 77.4% and
the model size by 73%. These improvements significantly enhance the UAV’s obstacle avoidance performance in
complex environments, demonstrating its wide range of applications.
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1 Introduction

Obstacle avoidance algorithms can assist UAVs to navigate autonomously in complex environ-
ments and avoid collision and damage, which is particularly important in fields such as industrial
inspection, agricultural monitoring and disaster assessment. UAV obstacle avoidance algorithms
include vision-based and non-vision-based algorithms. Among them, vision-based obstacle avoidance
algorithms have become the focus of research because they can obtain rich environmental information
and are applicable to a variety of application scenarios. The common visual obstacle avoidance
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algorithms include Optical Flow-based obstacle avoidance [!], structured light [2] and deep learning-
based obstacle avoidance algorithms. Deep learning-based visual obstacle avoidance algorithms have
higher robustness in complex environments due to their powerful feature extraction and classification
capabilities.

Monocular cameras are widely used due to their low cost, small size, light weight, and inclusion
of rich RGB image information. For example, Capi et al. proposed an algorithm that trains collision
data through a convolutional neural network and returns the probabilities of the corresponding control
actions [3]. Dai et al. trained an unmanned and collision dataset with a convolutional neural network,
outputting steering angles and collision probabilities, which were mapped to UAV yaw angles and
linear velocities [4]. Akremi et al. realized UAV obstacle avoidance in indoor corridors by classifying
UAV obstacle avoidance actions as left, right, and forward through deep learning [5]. Because end-to-
end obstacle avoidance algorithms do not explicitly measure the distance to obstacles, they may result
in the drone either getting too close to obstacles or prematurely executing flight maneuvers during the
avoidance process. Additionally, shallow convolutional neural networks have limited adaptability in
handling complex environments.

Monocular cameras can estimate the relative distance between a UAV and obstacles through depth
estimation. Mancini et al. constructed a depth network that combines depth estimation and obstacle
detection [6]. Zhang et al. estimated depth from RGB images via a convolutional neural network
and passed it to an obstacle avoidance system [7]. Yang et al. proposed an online adaptive CNN to
enhance the performance of monocular depth estimation and transformed the depth map into Ego
Dynamic Space for obstacle avoidance planning [8]. While depth estimation aids in obstacle avoidance,
monocular depth estimation is prone to high error, noise, and challenges in balancing real-time
performance with accuracy. In contrast, RGB-D cameras provide direct depth information, enhancing
the reliability of obstacle avoidance. Deep reinforcement learning (DRL) algorithms have been widely
explored in the fields of self-directed UAV navigation and obstacle avoidance. Shen et al. utilized
point clouds for outdoor obstacle detection, obstacle avoidance, and pathfinding [9]. Xue et al. used
soft-actor-critic algorithm to train UAVs bypass obstacles within a continuous motion spatial [10].
Kalidas et al. investigated Deep Q-Networks and proximal policy optimization and soft-actor-critic,
which are DRL algorithms for UAV obstacle avoidance using only image data [11]. In virtual
environments, UAVs can navigate through simulations and interact with the environment repeatedly
to continuously optimize their strategies in a trial-and-error manner. However, RGB-D cameras are
expensive, and transferring deep reinforcement learning algorithms from simulation to real-world
applications presents additional challenges.

Target detection algorithms are widely used on UAVs. Levkovits-Scherer et al. used MobileNet-
SSD model to detect and avoid obstacles in outdoor environments without relying on GPS [12].
Lee et al. used Faster R-CNN for tree detection and avoidance with a set control strategy in order
to make the UAV fly safely in the woods, using tree detection frame image height to represent their
distance from the UAV and the image width between trees to find the widest obstacle-free zone [13].
YOLO series algorithm [14—18] can quickly obtain the most useful information from the rich RGB
images, and are suitable for target detection in UAV viewpoints in terms of real-time and accuracy.
Zhang proposed Drone-YOLO based on the YOLOVS algorithm to solve the problem of the difficulty
of detecting small targets in large scenes in UAVs [19]. Tahir et al. proposed PVswin-YOLOVS8s based
on YOLOVS8s by combining Swin Transformer module with convolutional block attention module
(CBAM) and Soft-NMS to solve the problem of difficult detection of small targets and occluded
objects in UAV detection [20]. Fu et al. proposed DLSW-YOLOVS8n algorithm combining deformable
large kernel network, SPD-Conv, and Wise-IOU to improve the detection accuracy of UAV sea rescue
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missions [21]. Target detection algorithms often face a trade-off between speed and accuracy. The
lightweight models of the YOLO family of algorithms strike a good balance between the two, providing
relatively high accuracy and relatively good real-time performance. However, these lightweight models
still face the challenges of large parameter counts and high computational effort.

To overcome the problems of large depth estimation error of monocular camera and high cost of
RGB-D camera, we use binocular camera for detection and depth information acquisition. To address
the problems of the YOLO algorithm’s large parameter count, large model, and poor detection of
small targets and occlusions, we make several improvements to YOLOv8n. By removing the PS5 feature
layer, adding a layer of C2f module after the first standard convolution, performing layer-specific
substitutions of the convolutions in the network by the constructed UGDConv series of convolutions,
as well as replacing C2f with C2f-DCNv2 and using a lightweight detection head, we constructed a
UAD-YOLOVS that is both performant and lightweight. Based on the model, we designed an obstacle
avoidance algorithm that can obtain the type and relative position of obstacles, within a set detection
range, so that the UAV can detect and avoid obstacles and adapt to a variety of complex environments.
The contributions of this thesis can be summarized as follows:

1) A lightweight UAD-YOLOVS obstacle detection network with a very small number of model
parameters and model size is proposed. It has no increase in computational effort with a significant
reduction in the number of parameters, and the number of detection head parameters is extremely
small.

2) UAD-YOLOVS still achieves improved accuracy on a lightweight basis and is suitable for UAVs
with limited computing resources.

3) The UAV visual obstacle avoidance algorithm was designed, and an adaptive distance detection
algorithm based on obstacle attributes and a specific obstacle avoidance strategy generation method
were proposed. The UAV common obstacle detection (UAD) dataset was produced.

The rest of the paper is organized as follows. Section 2 presents related work. Section 3 describes
the lightweight UAD-YOLOVS and visual obstacle avoidance algorithms as well as the adaptive
distance detection algorithm based on obstacle attributes. Section 4 discusses the experimental dataset
and experimental results. Finally, Section 5 gives conclusion and future work.

2 Related Work
2.1 YOLO Algorithm for UAV Obstacle Avoidance

The YOLO family of algorithms significantly improves the safety of UAV navigation through the
fast identification of obstacles. Zhang et al. combined YOLOvV3 with the traditional method of speckle
detection for UAV environment sensing [22]. She et al. used YOLOV3 to detect the area of obstacles and
determine the obstacles through the principle of vision expansion [23]. Wang et al. combined the depth
information obtained from an RGB-D depth camera with YOLOV3 to set up an obstacle avoidance
strategy for UAV obstacle avoidance planning with respect to common obstacles in farmland [24].
Canh et al. used an RGB-D camera to recognize obstacles through YOLOvVS and clustered the
point clouds corresponding to the obstacles and combined them with 2D metric maps to generate a
probability map for obstacle avoidance path planning [25]. Liu et al. used YOLOVS in the environment
sensing module of UAV in order to solve the effect of the variability between obstacles on path
planning. Based on the detection results, an environment-based adaptive optimal threat distance
calculation module was established and applied to the improved path planning algorithm [26].
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2.2 Lightweighting of YOLOvS

In order to improve the efficiency of UAV obstacle detection, existing target detection algorithms
are difficult to balance between accuracy and lightweight. The lightweight improvement study for
YOLOVS8 shows that through reasonable module design and optimization, the YOLOvVS variant can
achieve efficient detection while ensuring lightweight. For example, Ma et al. constructed a lightweight
model by improving the Backbone part through the ShuffleNetv2 basic module, using the Ghost
module instead of Conv, the C2f module in the Neck part replaced by C2f-Ghost, and adding the
SE module into the network structure at the same time [27]. Du et al. added Partial Convolution
(PConv) into the detection head part and used DCNv2 for C2f to achieve the purpose of recognizing
irregular defects in Printed Circuit Boards [28]. Huangfu et al. constructed LW-YOLOVS for detecting
small targets in UAV aerial photography by introducing SE module and using GSConv convolution
[29]. Yue et al. designed LHGNet backbone network based on depth-wise separable convolution
with channel scrubbing module in order to increase the detection accuracy while lightweighting, and
introduced LGS bottleneck and LGSCSP fusion module to construct the LE-YOLO [30].

In this paper, the proposed method differs from previous methods in the following ways:

1) Lightweight UAD-YOLOVS for obstacle detection by deleting the PS5 feature layer, the con-
structed UGDConv series of lightweight convolution only targeted replacement of the convolutional
layers in the network, the network structure does not rely on the addition of the attention mechanism.

2) The UAV only needs to be equipped with a simple, low-cost binocular camera combined with
a UAV visual obstacle avoidance algorithm based on the lightweight UAD-YOLOVS for obstacle
recognition and avoidance, without the need to generate any 3D maps.

3) The visual obstacle avoidance algorithm in this paper is not limited to obstacle detection, but
can also avoid obstacles based on the depth value of the set center area. In view of the concavity and
convexity of the obstacles and the possible outliers in the depth values, we filter and average the depth
values corresponding to the center point of the obstacle and its surrounding points as the distance
between the UAV and the obstacle.

3 Methodology

Autonomous obstacle avoidance algorithms are particularly important when UAVs perform tasks
such as autonomous inspections, where they often encounter unexpected or unintended obstacles.
Target detection algorithms are well suited for detecting obstacles in flight, and fast and lightweight
detection algorithms are of great interest. To meet these needs, we have improved the YOLOVS
algorithm and designed a UAYV visual obstacle avoidance algorithm based on it.

3.1 UAD-YOLOvS

YOLOV8n, the smallest version of the YOLOVS series, has gained much attention for its excellent
performance on mobile devices with limited computational resources. However, YOLOv8n still has
a high number of parameters and a large model size. Additionally, like most existing detection
algorithms, the YOLOvS family is prone to miss small-target obstacles in UAV obstacle detection
tasks and suffer from degraded detection accuracy in the face of dense obstacle occlusion. Therefore,
we propose a lightweight target detection algorithm UAD-YOLOvVS8 based on YOLOv8n for UAV
obstacle detection. As shown in Fig. 1, the proposed network is divided into three parts, backbone,
neck module and detection head.
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Figure 1: UAD-YOLOVS network structure diagram

First, we delete the P5 feature layer in the original network structure, which is mainly considered
that most of the images in the UAV view are small targets. To compensate for the effect of deleting
the PS5 feature layer, we add the C2f module after the first convolution. This adjustment enhances
the feature extraction capability with little change in computation. There will be irregular features in
obstacles, and the mutual occlusion of obstacles will lead to the incomplete shape and lead to the
irregularity of perception. At the same time, due to the instability of the UAV in the air, this can
lead to distortion in the detection image. Since standard convolution is weak to irregular features,
we use DCNvV2 [31] to replace the second standard convolutional layer in Bottleneck of C2f. The
structure of C2f-DCNV2 is shown in Fig. 2. This improves the extraction ability of irregular features
while enhancing the C2f module’s detection capability for small targets, which makes the feature
fusion performance of the C2f module more powerful, thus helping the UAV to better perceive the
surrounding environment. In addition, to achieve the ultimate lightweight of the model, we replace
the original detection head with Lw-Detect and replace the standard convolution of specific layers in
the network structure with UGDConv.
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Figure 2: C2f-DCNV2 structure diagram
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3.2 UGDConv Series of Lightweight Convolution and Lw-Detect Head

Ghost convolution [32] is widely used by everyone due to its great savings in the number of
parameters and Floating Point Operations (FLOPs). Suppose, the input data is X € R where
¢ is the number of input channels, / is the height, w is the width, and the output data is ¥ e R"*"*"
where n is the number of output channels, /' is the height, w’ is the width, and let /' € R be the
convolution filter of the layer, and k x k is the size of the convolution kernel. The number of parameters
in the convolution process can be calculated by Eq. (1), and FLOPs (Consider only floating-point
multiplication) can be calculated by Eq. (2). The number of Ghost convolution parameters and the
amount of computation are shown in Eqs. (3) and (4), d is similar to k, and s is the numroups of the
output channels.

Paramenters = nck?, (D
FLOPs = nh'w'ck?, 2
Paramentersg,,,, = gck2 + =1 gdﬂ (3)
FLOPs,,, = gckzh’w’ +(s— 1)§d2h'w’. @)

Depth-wise separable convolution consists of depth-wise convolution and point-wise convolution,
which is an efficient convolutional algorithm [33]. The parametric quantity of the depth-wise convolu-
tion can be denoted as k*, and the computational quantity can be denoted as ck*/w’. The parametric
quantity of point-wise convolution can be represented as c¢n and the computational quantity can
be represented as cn/'w'. Therefore, the parameters and computational load of depth-wise separable
convolutions are as shown in Egs. (5) and (6).

Paramenterspgc,,, = ck> + cn, (5)

FLOPs ¢ = ck*H'W + cnb'w'. (6)

We combine the advantages of Ghost convolution and depth-wise separable convolution to build
a highly efficient convolution module UGDConvl1. In contrast to the operation of joining two parts
in Ghost convolution, we directly connect the outputs of the two sub-parts in series to the depth-
wise separable convolution part, which is optimized to form the convolution module UGDConv2.
In UGDConv2, the second depth-wise separable convolution uses grouped convolution [34] due to
the different number of input channels and output channels. The UGDConv series of lightweight
convolution structures is shown in Fig. 3 below.

The parametric quantities and calculations (both ignored Batch Normalization and Relu) for
UGDConvl and UGDConv2 are shown in Eqs. (7)—(10).

Paramentersyepcpm = 0.25n(c +n + 18), (7
FLOPSUGDCom'l == 025n (C + n + 18) h/W/, (8)
Paramenters gpcom = 0.125n(c + 4n + 27), &)

FLOPSy6pcon: = 0.125n (¢ +4n+27) i'w'. (10)
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Figure 3: (a) UGDConvl (b) UGDConv2

We apply UGDConvl to the last convolutional layer of the Backbone part of UAD-YOLOVS,
which not only reduces the redundant feature maps in the feature extraction part but also maintains a
high feature expressiveness. We also use the UGDConv2 module to replace the standard convolution
in the 16th layer in the Neck, which further reduces the number of parameters. We use the UGDConv2
module for the detection head part by first deleting one of the two standard convolutions. Then, the
remaining standard convolution is replaced by UGDConv2 to form a kind of lightweight detection
head, Lw-Detect, which is structured as shown in Fig. 4 below.

{ UGDConv2 —» Conv2d —» Bbox.Loss
UGDConv2 —— Conv2d —» CboxlLoss
Figure 4: Lw-Detect head structure

We set the ratio of the number of parameters in the normal convolution to the number of param-
eters in the UGDConvl, UGDConv2, Ghost convolution, and depth-wise separable convolution to
Tots Fors Tz, Fea, and take s = 2 in the Ghost convolution.

In our structure, at the 7th convolutional layer, when & = 3, ¢ = 64, n = 128, the resulting values
are r, = 1097,r5 = 1.97,r, = 8.40. At the 16th convolutional layer, when k = 3,¢ = 32,n =
32, the resulting values are r, = 12.32,r;, = 1.94,r, = 7.02. UGDConvl and UGDConv2 can
achieve smaller parameter counts and lower computation compared to standard convolution, Ghost
convolution, and depth-wise separable convolution.
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3.3 Overview of UAV Obstacle Avoidance Algorithm
3.3.1 The Overall Framework

The overall framework of UAV obstacle avoidance is shown in Fig. 5. The UAV visual obstacle
avoidance algorithm based on UAD-YOLOVS is shown in Algorithm 1. Algorithm 1 flowchart is
shown in Fig. 6. The UAD-YOLOVS algorithm is used to detect common obstacles, obtain depth
information by binocular camera, and then fusion the detection information and depth information.
After the obstacle type and position information obtained by the UAD-YOLOvS8 algorithm, the
corresponding depth information is called up, and the distance between the UAV and the obstacle
is obtained by our proposed adaptive distance detection algorithm, and the relative positional
relationship between the obstacle and the UAV is further obtained, so as to perform obstacle avoidance.

Left RGB Image UAD-YOLOv8
—[ ]—- hfom?ahon — Obstacle avoidance
fusion
Right RGB Image Depth information

Figure 5: Overall framework of UAV visual obstacle avoidance based on UAD-YOLOv8

Algorithm 1: Visual obstacles avoidance algorithm
Input: Presence of obstacle O;(x;, x;, ¥, Vi), overlap area ratio S, distance d, depth of the central area
D.
Output: Action
If O;(xi,Xpn, Y, yn) then
If S> 10% then
If d < 10m then
If 6m <d < 10m then
Slow flight;
If 3m < d < 6m then
Safe zone selection;

Else
Hover and rotate 360° to find a safe area;
Else
Continue flight;
Else
Continue flight;
Else
If D <10m then
If 3m < D < 10m then
Slow flight;
If Om < D < 3m then
Hover and rotate 360° to find a safe area;
Else
Continue flight;
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Figure 6: The flow chart of Algorithm 1

3.3.2 UAV Obstacle Distance Detection

We use the Semi-Global Block Matching algorithm (SGBM) [35] with a binocular camera for
UAV-to-obstacle distance detection. However, the SGBM algorithm may have too large or too small
distance measurements in practical applications and is affected by lighting and camera jitter. To tackle
these problems, we propose an adaptive distance detection algorithm based on obstacle attributes (see
Algorithm 2). The algorithm takes the center point of the obstacle detection box as the center of the
circle and selects a specific pixel circle radius based on the attributes of the obstacle. Subsequently, the
radius of the circle is scaled based on the size of the detection box. After selecting the depth values
corresponding to the pixel points on the circle and at the center of the circle, the algorithm performs
outlier removal and averaging as shown in Algorithm 2. Fig. 7 shows the flowchart of Algorithm 2.

Algorithm 2: Adaptive distance detection algorithm based on obstacle attributes

Input: Presence of obstacle O;(x;1, X», Vi1, Vi, kind), the corresponding depth value of the pixel d,,.
Output: d,
If O,(xi, xn, Y, y) then
Center, < (xi + x)/2;
Center,, < (yu +y2)/2;
Width;, < | x5, — x4];
Length,, < |yo — yal;
If kind is tree then
If 100 < min(Width,,, Length,,) then
distances < [];
radii < [4,8,16,20];
For radius in radii do
points < ]
For g <0to15do

(Continued)
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Algorithm 2 (continued)

angle < g x (2m)/16;
u < | Center, + radius - cos(angle) |;
v < | Center;, + radius - sin(angle) |;
points.append((Center,,, Center,,, d..));
points.append((u, v, d,,));

valid_dis < filter_outliers([p [2] for p in points]);

If valid_dis then
ave_dis < mean(valid_dis);
distances.append(ave_dis);

d; < mean(distances);

Else
i < [min(Width,,, Length,,) x radii,]/100;
distances < [];
For r in [|p,]] do
-+ - (Repeat the above steps)
Obstacle detection Theexistence SalEgory i Center coordinate

of obstacles judgment

Uav obstacle Outliers are removed and the The pixels correspond Pixel circle radius
distance value mean value is processed to the depth selection

Figure 7: The flow chart of Algorithm 2

3.3.3 Selection of Safe Areas for Drones

After obstacle detection, it is also necessary to select the next safe region for the drone. We set a

central region in the left camera field of view of the drone, which projects a region with a side length
of 1 meter 3 meters in front of the drone to the center of the field of view and performs an expansion
of the drone volume. The drone searches for the largest area free of obstacles and uses the center of
this area as the next navigation point for the drone to return to the preset path. The UAV viewpoint
diagram is shown in Fig. 8. The division of obstacle avoidance ranges for UAVs is shown in Fig. 9a.

During UAV flight, special situations may be encountered, such as the viewpoint being completely
occupied by a wall, which invalidates obstacle detection. When no obstacle is detected in the UAV
viewpoint, we determine the depth value D of the center region to ensure the safe flight of the UAV.
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Figure 8: UAV viewpoint diagram. The red line area is the center area of the setup, the green line area
is the safe flight area, the green pentagram indicates the safe flight center

(b)

Figure 9: (a) Dividing the obstacle avoidance range for the UAV. We set 10 m as the safety threshold
and divide 10 m into 3 parts, the first part is 10-6 m is the deceleration range, the second part is 6-3 m
is the range to find the safe flight area, and the third part is 3-0 m is the danger range. (b) Horizontal
field of view and vertical field of view of the camera
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3.3.4 UAV Obstacle Avoidance Action Command

Based on the difference between the pixel value of the center point of the largest area without
obstacles and the center point of the imaging, and the horizontal field of view (HFOV), the value of
the change in yaw angle is obtained in the next step, and the field of view is shown in Fig. 9b. The UAV
field of view is shown in Eqs. (11) and (12).

HFOV = FOV,,..oma = 2 arctan (%) ,
VFOV = FOV,,,.. = 2arctan (C—J) .

y

(11

(12)
The c,, ¢, represent half of the width and half of the height of the imaging area, respectively, in

pixels. / indicates the focal length of the camera. f, and f, indicate the focal length in the x and y axes,
respectively, and are expressed in pixels. The UAV obstacle avoidance schematic is shown in Fig. 10
below.

Default navigation point

* Obstacle 3
Obstacle 1 .
. Obstacle 2 I
stacle I
F———- | \ |
\ / | \ I
| :

Uav current position

Figure 10: Schematic diagram of UAV obstacle avoidance based on action commands, shown in top

view. a, b, ¢ are the widths of the area where no obstacle is detected, ¢ is the width corresponding to
the area with the largest area, d is the distance from the UAV to the obstacle

Based on the obstacle distance as well as the focal length get the value of whether to go up or
down next.

AB = arctan (dx _ u)
_f;( 5

(13)
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Ah = dcos(Aa) (dlf_ V) , (14)
_dcos(Aa) | (15)
T cos(AB)

Ap presents the value of the change in yaw angle, as shown in Eq. (13). A > 0 represents the
drone turning to the right, and AB8 < 0 represents the drone turning to the left. A% represents the
change value of the height of the UAV up and down, as shown in Eq. (14). A/ < 0 represents the rise
of the UAV. d, and d, represent the coordinate value of the center of the safe area in the image, and u
and v represent the coordinate value of the center of the camera’s imaging in pixels. Aa denotes the
angle between the line from the UAV to the obstacle and the center line of the UAV’s field of view.
e denotes the horizontal flight distance from the UAV to the center of the safety zone, as shown in
Eq. (15).

4 Experimental Results and Discussion

In this section, we evaluate UAD-YOLOVS on the proposed UAD dataset and conduct com-
parisons with Gold-YOLO [14], YOLOVvS, YOIOv6 [15], YOLOv7 [16], YOLOvS8, YOLOV9 [17],and
YOLOV10 [18]. Comprehensive ablation experiments are also conducted on the improvements of
UAD-YOLOVS relative to YOLOvV8n, demonstrating the effectiveness of the improvements at each
step. We also outline the specifics of the constructed UAD dataset and the details of the training
process, and utilize the improved ranging method for obstacles at different distances as well as for
obtaining obstacle avoidance commands through the visual obstacle avoidance algorithm.

4.1 Data Sets

Since there is no publicly available UAV obstacle dataset, in order to train and evaluate our
designed network, we built a new high-quality UAV obstacle dataset. Specifically, our dataset consists
of 3636 obstacle images taken in different seasons and environments. These images were taken by us or
collected from the Internet. Considering the importance of accurate labeling for the target detection
task, we manually labeled the UAD dataset in YOLO format using the Labellmg tool. We ensured
high-quality and careful labeling despite the heavy occlusion of common obstacles and the small size
of the targets. After labeling these 3636 images, we obtained 19,112 true bounding boxes.

To train UAD-YOLOvVS8, we divide the UAD dataset into training, validation and test sets
according to 7:2:1, as illustrated in Table 1. In the dataset, there are different kinds of trees, different
categories of poles, different colors and sizes of cars, and different postures of people. Since we are
concerned with the task of detecting obstacles, they are subcategorized into one category. The UAD
was used to train UAD-YOLOVS in a variety of scenarios. In addition, in order to demonstrate our
dataset more intuitively and clearly, example images of UAV obstacles in different scenarios are shown
in Fig. 11.
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Table 1: Detailed information about the UAD dataset

Groups Training Validation Test
Number of images 2545 727 364
Number of poles 3736 1043 516
Number of tress 3683 977 520
Number of cars 1959 582 271
Number of persons 4146 1148 531

Figure 11: Examples of different scenarios with the UAD dataset, where the blue box indicates the
obstacle true labeling box

4.2 Experimental Environment

4.2.1 Training Setup

Experiments were conducted to refine the YOLOv8n model with the help of the PyTorch 1.10
deep learning framework. All experiments were conducted on a server equipped with multiple Nvidia
A40 graphics cards running Ubuntu 22.04.4 LTS. To optimize the model, the SGD optimizer was
applied with an original learning rate of 0.01, a batch size of 8, and a total of 300 training epochs. The
momentum parameter was set to 0.937, while the weight decay parameter was set to 0.0005.
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4.2.2 Evaluation Setup

To conduct a quantitative analysis of the performance of UAD-YOLOVS, we used mAP50 as
the primary accuracy evaluation metric, and Parameters along with Giga Floating Point Operations
(GFLOPs) as key metrics for lightweighting. To better demonstrate the performance improvements of
UAD-YOLOV8 compared to baseline YOLOvV8n and other YOLO versions, we also compared metrics
such as Precision (P), Recall (R), F1-Score, mAP50-95, model size, and Frames Per Second (FPS).

Precision is defined by Eq. (16), and Recall is defined by Eq. (17). Precision and Recall have a
tradeoff, which is balanced using the F1-Score, as shown in Eq. (18). Model size is critical for resource-
limited device deployments, and FPS is used to measure model inference speed.

Precision = TP/(TP + FP), (16)

Recall = TP/(TP + FN), 17

F1 — Score = 2(Precision - Recall) /(Precision + Recall), (18)
1

mAP = > 4P, (19)

where TP represents true positive instances, /P represents false positive instances and FN represents
false negative instances. N represents the number of species, 4P represents Average Precision, and
mAP represents mean Average Precision. The formula for mAP is provided in Eq. (19).

4.3 Experimental Results

We tested UAD-YOLO on the UAD test set, Gold-YOLO [14], YOLOvVS, YOLOv6 [15], YOLOV7
[16], YOLOVS, YOLOV9 [17]and YOLOvV10 [18] were tested and published metrics for P, R, F1-Score,
mAP50, mAP50-95, Parameters, Model Size, GFLOPs, and FPS. To ensure a fair comparison, all
methods were trained on the UAD dataset under identical experimental conditions.

The results in Table 2 indicate that UAD-YOLOVS has a smaller model size and fewer parameters
compared to the other methods. The p-value of UAD-YOLOWVS is slightly lower than that of YOLOv5n,
which is due to the deletion of the large-target feature extraction layer P5 in UAD-YOLOVS, but its
mAP50 and mAP50-95 are higher than that of YOLOv5n. The mAP50-95 of our model is slightly
lower than YOLOV9t, which is due to the reduced in computation. By introducing DCNv2 in C2f,
DCNv2 adds computational and memory access overhead due to irregular sampling caused by offset,
which reduces computing efficiency and thus inference speed, UAD-YOLOWVS still maintains real-time
performance. UAD-YOLOVS balances both precision and recall with an F1-Score of 0.771. UAD-
YOLOVS achieves a good parameter performance tradeoff, reaching 80.3 mAP50, with a parameter
count of only 0.68 M.

Table 2: Comparison of UAD-YOLOvVS8 and comparison target detection algorithms on the UAD
test set

Model P (%) R (%) F1-Score mAP50 mAP50-95 Parameters Model GFLOPs FPS
(%) (%) size
(MB)
Gold-YOLOn 81.8 69.7 0.753 75.7 48.8 561 M 12.0 12.1 13
YOLOv5n 829 69.1 0.754 76.7 47.2 1.76 M 3.4 4.1 102

(Continued)
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Table 2 (continued)

Model P (%) R (%) FI1-Score mAP50 mAP50-95 Parameters Model GFLOPs FPS
(%) (%) size
(MB)
YOLOv6n 78.1 71.2 0.745 75.4 48.4 4.63 M 10.0 113 13
YOLOv7-tiny 73.5 65.0 0.690 70.2 41.0 6.01 M 12.3 13.1 52
YOLOv8n 804 719 0.759 76.9 51.0 3.0l M 6.3 8.1 105
YOLOvVOt 80.5 733 0.767 79.2 53.1 1.88 M 4.4 7.1 48
YOLOvV10n 75.8 70.7 0.732 75.6 49.5 2.70 M 5.8 8.2 72
UAD-YOLOv8 80.7 73.8 0.771 80.3 52.6 0.68 M 1.7 5.3 90

4.4 Ablation Experiments

To further validate the effectiveness of the proposed UAD-YOLOVS, we performed a compre-
hensive ablation study to analyze the different improved operations. We begin by building the base
model, using the original YOLOvV8n as the baseline for the detection network. The Backbone portion
of the original YOLOv8n contains smaller resolution P5 feature layers, and the network employs a C2f
module for feature fusion and larger detection head parameters. The improvement steps are shown
below:

1) Base model + delete PS5 feature layer + add C2f module after P1 feature layer — V1
2) All C2f modules in Base model are replaced with C2f-DCNv2 — V2
3) All C2f modules in V1 are replaced with C2f-DCNv2 — V3

4) The detection head in V3 is replaced with Lw-Detect, Layer 7 Conv is replaced with UGD-
Convl, and Layer 16 Conv is replaced with UGDConv2 — V4 (the complete model).

All of the models were retrained in the same manner and then tested on the UAD test set. As
shown in Table 3, each improvement step in UAD-YOLOVS contributes to target detection. A 1.1%
mAPS50 improvement relative to the base model is obtained by tweaking the network structure, and
the number of parameters is reduced by about 2/3. In V2, replacing the C2f module in the network
structure by C2f-DCNv2 improves the mAP50 by 1.0% compared to the base model. A 2% mAP50
improvement relative to V1 is obtained by introducing the C2f-DCNv2 module with a slight increase
in the number of parameters and GFLOPs, which further improves the model’s performance in
the detection of obstacles with small targets. By replacing the standard convolutional Conv of the
specified layers with the improved UGDConvl and UGDConv2 modules and using the improved
lightweight detection head Lw-Detect, the model size is further reduced substantially, with its number
of parameters and GFLOPs reduced by 37.0% and 51.8%, respectively, relative to V3, which further
improves the performance of the model, and makes the model more lightweight. Our full model V4
gains a 3.4% mAP50 improvement over the base model as well as a 77.4% reduction in the number of
model parameters and a 34.5% reduction in GFLOPs.

Finally, it can be found that the network structure consisting of the improvements of all three
operations has the best detection power, suggesting that the improvements of the three operations are
complementary.
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Table 3: Ablation experiments with UAD-YOLOVS. As observed, the performance of our full model
(V4) is optimal

Operation Base \4! V2 V3 V4
Remove & Add w/o v w/o v v
C2f-DCNv2 w/o w/o v v v
Lw-Detect & UGDConv w/o w/o w/o w/o v
mAP50 76.9 78 77.9 80 80.3
Paramters 301 M 1.00 M 3.16 M 1.08 M 0.68 M
GFLOPs 8.1 10.8 7.7 11.0 5.3

4.5 UAV Obstacle Detection and Obstacle Avoidance Command Acquisition

The effectiveness of the proposed adaptive distance detection algorithm based on obstacle
attributes is further verified by performing distance calculations at different distances from the
obstacles. The specific experimental data for distance measurement is presented in Table 4.

Table 4: Detailed data for distance measurement

Kinds/Distance (m) 1 2 3 4 5 6 7 8 9 10

Pole 095 196 293 372 496 591 692 790 886 9.80
Tree 092 1.89 296 376 494 589 694 786 883 9.75
Car 096 1.86 285 382 48 586 687 7.82 886 9.79
Person 095 192 291 393 491 593 690 7.89 887 9.83

The data in Table 4 shows that the adaptive distance detection algorithm based on obstacle
attributes can be used for distance detection in the UAV obstacle avoidance process. Through real-
world testing, the drone can detect the distance to obstacles and output obstacle avoidance commands
to avoid obstacles in the preset route.

In Fig. 12, (a) the center region overlapping with the obstacle exceeds the threshold value, but the
distance from the drone to the obstacle is equal to or greater than the set value, and the flight continues.
(b) The overlapping area exceeds the threshold value and the distance is within the set range of 6-10 m,
fly slowly. (c¢) The overlapping area exceeds the threshold value, and the distance is less than 6 m, the
UAV sets the area of the largest undetected obstacle as the area that can be safely flown, and gives the
value of the yaw angle change, the upward value, and the value of advancement for the next step. (d) In
cases corresponding to scenarios (c), a special case is encountered, the region of undetected obstacles
is a wall, when the distance from the drone to the wall is close to 3 m, the command to hover and rotate
360° is given to avoid getting into trouble.
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Figure 12: Real environment obstacle avoidance command acquisition. (a) Continuous flight com-
mand. (b) Slow flight command. (c) Next yaw angle and rise and forward command. (d) Hover
and rotate commands. The blue points are the pixel points taken in the adaptive distance detection
algorithm based on obstacle attributes. The red box area is the center area of the setup, and the green
area is the maximum undetected obstacle area

5 Conclusion and Future Work

In this work, we build a high-quality UAV obstacle dataset for UAV obstacle recognition.
We propose a lightweight obstacle detection network, UAD-YOLOVS, for automatic detection of
obstacles that may be encountered in UAVs flying at low altitude.

To address the issue of detecting small target obstacles and irregular obstacles in jittery images
from the UAV viewpoint, we replace C2f with the C2f-DCNv2 module. Additionally, in order to
minimize the quantity of network parameters as well as the model size, the network structure is
adjusted, the UGDConv series of modules are constructed and used in the network structure, and
a lightweight detection head is employed to substitute the original one. In addition, we designed a
lightweight UAV visual obstacle avoidance algorithm based on the proposed UAD-YOLOVS. In visual
obstacle distance detection, we propose an adaptive distance detection algorithm based on obstacle
attributes, and we design specific obstacle avoidance strategies for situations encountered by UAVs
flying at low altitude. Finally, extensive evaluations show that our UAD-YOLOvV8 performs well and
the visual obstacle avoidance algorithm can accurately obtain the next flight instructions.
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In future work, we plan to explore more effective obstacle detection and UAV obstacle avoidance
algorithms by fusing vision sensors with other sensors. Also we will further increase the variety of
obstacles in the dataset to reduce the limitations of the algorithms. Since vision-based UAV obstacle
avoidance algorithms are affected in both bright and low light situations, combining the advantages
of multiple sensors can realize complementary data, for example, combining vision sensors with
lightweight LIDAR to reduce the impact of light changes, further enhancing the UAV’s ability to
perceive the external environment and thus realizing UAV obstacle avoidance in a variety of complex
situations. UAV obstacle avoidance algorithms can improve the safety and reliability of low-altitude
inspection and logistics distribution tasks in the real world. Our UAV visual obstacle avoidance
algorithms still have limitations in real-world applications. Multi-sensor data fusion can enable UAVs
to operate under different lighting conditions and detect obstacles with high accuracy in emergency
response situations such as search and aid missions, which is critical for timely and safe mission
execution.
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