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ABSTRACT

In the evolving landscape of the smart grid (SG), the integration of non-organic multiple access (NOMA)
technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management. However,
the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical
control messages, especially when broadcasted from a neighborhood gateway (NG) to smart meters (SMs). This
paper introduces a novel approach based on reinforcement learning (RL) to fortify the performance of secrecy.
Motivated by the need for efficient and effective training of the fully connected layers in the RL network, we
employ an improved chimp optimization algorithm (IChOA) to update the parameters of the RL. By integrating
the IChOA into the training process, the RL agent is expected to learn more robust policies faster and with better
convergence properties compared to standard optimization algorithms. This can lead to improved performance
in complex SG environments, where the agent must make decisions that enhance the security and efficiency of
the network. We compared the performance of our proposed method (IChOA-RL) with several state-of-the-art
machine learning (ML) algorithms, including recurrent neural network (RNN), long short-term memory (LSTM),
K-nearest neighbors (KNN), support vector machine (SVM), improved crow search algorithm (I-CSA), and grey
wolf optimizer (GWO). Extensive simulations demonstrate the efficacy of our approach compared to the related
works, showcasing significant improvements in secrecy capacity rates under various network conditions. The
proposed IChOA-RL exhibits superior performance compared to other algorithms in various aspects, including
the scalability of the NOMA communication system, accuracy, coefficient of determination (R2), root mean
square error (RMSE), and convergence trend. For our dataset, the IChOA-RL architecture achieved coefficient of
determination of 95.77% and accuracy of 97.41% in validation dataset. This was accompanied by the lowest RMSE
(0.95), indicating very precise predictions with minimal error.
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Abbreviations

AWGN Additive White Gaussian Noise
ABC Advanced Solana Blockchain
CSI Channel State Information
R2 Coefficient of Determination
DL Deep Learning
DNN Deep Neural Network
DQN Deep Q Network
DERs Distributed Energy Resources
DEAP Distributed Evolutionary Algorithms in Python
GWO Grey Wolf Optimizer
IChOA Improved Chimp Optimization Algorithm
I-CSA Improved Crow Search Algorithm
IoT Internet of Things
KNN K-Nearest Neighbors
LSTM Long Short-Term Memory
ML Machine Learning
MDP Markov Decision Process
MIMO Multiple-Input Multiple-Output
NG Neighborhood Gateway
NAN Neighborhood Area Networks
NOMA Non-Organic Multiple Access
PLS Physical Layer Security
PLC Power Line Communication
RIS Reconfigurable Intelligent Surfaces
RNN Recurrent Neural Network
RL Reinforcement Learning
RMSE Root Mean Square Error
SOP Secrecy Outage Probability
SNR Signal-to-Noise Ratio
SMs Smart Meters
SG Smart Grid
BCWSN Solana Blockchain-based Industrial Wireless Sensor Network
SIC Successive Interference Cancellation
SVM Support Vector Machine
WAN Wide Area Network

1 Introduction

The smart grid (SG) represents a transformative leap in energy management, integrating advanced
digital technology into the traditional power grid to enhance efficiency [1–3], reliability, and sustain-
ability [4]. As an integral component of this modernization, communication technologies play a pivotal
role, facilitating real-time data exchange and control across various grid components [5]. Within this
context, non-orthogonal multiple access (NOMA) has emerged as a significant advancement, offering
a paradigm shift in SG communications [6]. NOMA stands out by enabling multiple users to share
the same frequency resources, thereby drastically increasing spectral efficiency and network capacity
[7]. This is particularly crucial in SG environments, where the need to simultaneously connect a
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multitude of devices, such as smart meters (SMs) and renewable energy sources, is ever-growing. By
efficiently managing these dense and diverse communication demands, NOMA not only addresses the
scalability challenges of the SG but also contributes to the overall optimization of energy distribution
and consumption, heralding a new era of intelligent energy management [8].

Security concerns in SG are paramount, given the critical nature of energy infrastructure and the
sensitive data involved in its operation [9]. As SGs become increasingly interconnected and reliant
on wireless communications, they become vulnerable to various cyber threats [10–12]. One notable
security threat in the SG neighborhood area networks (NAN) is the risk of eavesdropping and
impersonation attacks. For instance, an attacker might position themselves as an eavesdropper within
the communication range of a neighborhood gateway (NG) and the SMs it controls. By intercepting
the communication, the attacker could gain unauthorized access to confidential information, such as
consumption data or control commands. More alarmingly, they could impersonate the NG, sending
fraudulent signals or commands to the SMs. Such an attack could lead to severe consequences,
including the disruption of power distribution, manipulation of billing data, or even causing physical
damage to the grid infrastructure. This scenario underscores the critical need for robust security
mechanisms in SG communications, to prevent unauthorized access and ensure the integrity and
reliability of the energy supply chain [13].

The importance of secrecy performance analysis in designing security schemes for SG com-
munications cannot be overstated [14–16], particularly in the context of emerging technologies like
NOMA. Secrecy performance analysis is crucial for evaluating how well a communication system
can protect against unauthorized interception and ensure the confidentiality of transmitted data
[16–18]. A key metric in this analysis is the secrecy capacity, which is defined as the maximum
rate at which information can be reliably transmitted to the intended receiver while ensuring that
an eavesdropper gains negligible information [19–21]. In NOMA SG communication, optimizing
secrecy capacity poses a unique challenge. NOMA systems are inherently designed to allow multiple
users to share the same frequency resources, which increases the complexity of maintaining secure
communications [22,23]. The shared spectrum means that the signals intended for legitimate users
can be more susceptible to interception by eavesdroppers. Optimizing secrecy capacity in this context
involves not only enhancing the signal strength at the intended receivers but also minimizing the
information leakage to potential eavesdroppers [24,25]. This requires sophisticated strategies that can
dynamically adapt to the varying channel conditions and user positions typical in SG environments,
ensuring robust and secure communication against the backdrop of NOMA’s spectral efficiency
benefits [26–28].

There is limited research on applying deep learning (DL) and reinforcement learning (RL)
models to improve secrecy in NOMA communication systems. Ali et al. [14] developed advanced
resource allocation strategies for future communication systems, focusing on maximizing the total
transmission rate within a restricted power budget and ensuring a necessary power differential among
users for effective NOMA deployment. They introduced a deep neural network (DNN) framework
to determine a combined power allocation strategy for both source and relay nodes. To support the
training and validation of the DNN, they also obtained an optimal solution using convex optimization
methods, which served as a benchmark to evaluate the DNN solution’s effectiveness. It was found
that the DNN solution delivers promising outcomes in terms of both sum rate and computational
efficiency.
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Given the notable gap in SG literature regarding the lack of a robust secrecy performance
optimization scheme in NOMA communications, this paper introduces a pioneering approach based
on RL to fortify this critical aspect. Recognizing the complexity and dynamism inherent in SG
communication systems, especially under the NOMA paradigm, our research proposes leveraging the
adaptive and predictive capabilities of RL. RL is selected over other machine learning (ML) methods
for secrecy optimization in SG communications due to its distinct capabilities in handling dynamic
and complex environments. Unlike static ML models like K-nearest neighbors (KNN), support vector
machine (SVM), RL excels in adapting to evolving network conditions by continuously learning
optimal policies through interactions with the environment, making it particularly suited for the
unpredictable nature of SGs. Additionally, RL’s proficiency in sequential decision making allows it
to optimize long-term secrecy performance by considering the future implications of current actions,
which is crucial for maintaining secure communication over time. This novel approach is specifically
designed to enhance the secrecy capacity rate, a vital metric of secrecy performance, in NOMA
communications within SG environments. By employing RL algorithms, our method aims to adjust
communication strategies intelligently and dynamically in response to varying network conditions and
potential security threats. This allows for the optimization of secrecy capacity rates, ensuring that
sensitive data transmitted across the SG remains secure from eavesdroppers and malicious actors. Our
research, therefore, stands at the forefront of addressing a critical, yet previously unexplored, aspect
of SG communications, offering a significant contribution to the advancement of secure and resilient
SG networks.

The training process of a fully connected neural network, commonly used in RL, is a critical
phase where the network learns to approximate the optimal policy for decision-making. In RL, a
fully connected neural network, also known as a deep Q network (DQN) when used in Q-learning, is
often responsible for mapping states to action values. The quality of this mapping directly influences
the agent’s ability to make intelligent decisions that maximize the cumulative reward over time. The
importance of the training process lies in its ability to capture the complex relationships between the
actions, the state of the environment, and the received rewards. Proper training ensures that the neural
network generalizes well to unseen states, enabling the RL agent to perform well across the entire
state space of the problem. Motivated by the need for efficient and effective training of the fully
connected layers in the RL network, we employ an improved chimp optimization algorithm (IChOA)
to update the parameters of the neural network, which is inspired by the intelligent hunting behavior
of chimpanzees in nature.

The choice of combining RL with IChOA to enhance secrecy performance in SGs is driven by the
need to address the complex and dynamic nature of SG communication environments, particularly
under the NOMA paradigm. SGs are characterized by their high connectivity and reliance on
wireless communication, which inherently increases the risk of eavesdropping and other security
threats. RL offers a robust framework for optimizing secrecy capacity by dynamically adapting
communication strategies to counteract these threats, ensuring that sensitive data remains secure.
However, the effectiveness of RL heavily depends on the efficiency of its training process, where the
optimization of neural network parameters plays a crucial role in determining the agent’s ability to
make intelligent decisions under varying network conditions. The integration of IChOA into the RL
framework is justified by its ability to enhance the training process, specifically by improving the
convergence speed and robustness of the learned policies. This combination allows the RL agent to
learn more effective policies faster and with greater accuracy, thereby improving the overall secrecy
performance. By comparing the proposed IChOA-RL method against other state-of-the-art DL and
ML algorithms, the paper demonstrates that this approach not only surpasses traditional methods
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in terms of scalability, accuracy, and convergence but also provides a more effective solution for the
specific challenges of optimizing secrecy in SG communications.

1.1 Related Works

Several research efforts have focused on investigating the physical layer security (PLS) perfor-
mance of SG communications in recent years. Campongara et al. [29] explored the benefits of hybrid
power line communication (PLC)/wireless channels for improving PLS in low-bit-rate applications.
They derived mathematical formulations for the average secrecy capacity (ASC) and secrecy outage
probability (SOP), revealing the advantages of hybrid PLC/wireless models in enhancing PLS when
eavesdroppers utilize a single data communication interface. Salem et al. [30] delved into the PLS of
cooperative relaying PLC systems with artificial noise. They derived expressions for ASC, highlighting
the potential of cooperative relaying to significantly enhance the security of PLC systems. Building on
this, Salem et al. [31] extended their study to consider PLS in correlated log-normal cooperative PLC
networks. Their work analyzed the impact of background and impulsive noise components, providing
mathematical insights into ASC and SOP under various network scenarios.

Odeyemi et al. [32] introduced a dynamic wide area network (WAN) for SGs featuring a friendly
jammer to enhance network secrecy. They derived closed-form expressions for connection SOP and
ASC, showcasing the network’s enhanced security performance. Atallah et al. [33] investigated PLS
performance in wireless sensor networks within SG environments. They considered the impact of
destination-assisted jamming on secrecy performance metrics and derived analytical expressions for
SOP, revealing the potential for significant improvement in security using jamming techniques. El-
Shafie et al. [34] studied the influence of wireless network’s PLS and reliability on demand-side
management in SGs. Their work explored the tradeoff between security and reliability, proposing
artificial-noise-aided schemes and encoding strategies to enhance security and reliability in SG.
Mohan et al. [35] examined PLS in low-frequency PLC systems, focusing on ASC and SOP. They
considered both the independent and correlated log-normal channel distributions, incorporating the
impact of impulsive noise and various network parameters.

Kaveh et al. [18] delved into the application of reconfigurable intelligent surfaces (RIS) to enhance
the PLS in SG communications. The research addresses the vulnerabilities of SG communication
links to eavesdropping and unauthorized access, proposing RIS as a solution to improve secrecy
performance. By integrating RIS with reflecting elements in the SG environment, alongside SMs,
neighborhood gateways, and potential eavesdroppers, the authors derive closed-form expressions for
SOP and ASC. They analyze the signal-to-noise ratio (SNR) distributions at both the gateway and
the eavesdropper, providing a comprehensive evaluation of the impact of various system parameters.
Their asymptotic analysis under high-SNR conditions, supported by Monte Carlo simulations,
validates that RIS can significantly enhance the secrecy performance of SG communications, out-
performing conventional scenarios without RIS. Faheem et al. [36] introduced a framework utilizing
smart contracts within a Solana blockchain-based industrial wireless sensor network (BCWSN),
referred to as the advanced Solana blockchain (ABC), specifically designed for distributed energy
resources (DERs) in SGs. This ABC framework facilitates robust and secure real-time control and
monitoring of DERs within the SGs. Performance evaluations and security analyses demonstrated
that the ABC scheme is secure, dependable, and efficient for lightweight data sharing between
DERs in SGs.
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However, while some studies have focused on analyzing the secrecy performance in SG commu-
nications under various system and channel conditions, there has been limited research on developing
optimization approaches specifically aimed at optimizing the secrecy rate in SG. Mensi et al. [37]
investigated the security challenges posed by the Internet of Things (IoT) and bidirectional com-
munications in SG environments. Given the increasing data transmission demands due to the pro-
liferation of IoT devices, the study emphasizes the need for high data rate technologies like Sub-6
GHz, millimeter-wave (mmWave), and massive multiple-input multiple-output (MIMO). The authors
address the vulnerabilities of IoT-enabled SGs to eavesdropping and jamming attacks, proposing a
hybrid beamforming design to enhance secrecy capacity. Unlike previous methods that increase secrecy
capacity through random power augmentation or system combiner settings, this research utilizes
the Gradient Ascent algorithm to optimize the beamforming strategy, considering both fixed and
variable transmit power scenarios. The study’s numerical results validate the efficacy of their approach,
highlighting its potential for improving security in SG communications. Although the work by Mensi
has proposed a method to optimize secrecy performance in SG, there remains a need for developing a
more robust optimization approach to enhance the secrecy rate in SG. The Gradient Ascent Algorithm,
as used by Mensi, can get stuck in local minima. Therefore, a novel approach with a stronger capability
for exploration and exploitation in such problem environments would likely yield a more optimal
secrecy rate.

1.2 Paper Contributions

• This study introduces a new IChOA-RL model aimed at optimizing secrecy performance for
secure NOMA communication within an SG. The IChOA is used to optimize the parameters
(weights and biases) of the RL.

• In the proposed IChOA, a new V-shaped transfer function is introduced to enhance the ChOA.
The primary benefit of IChOA is its proficiency in balancing exploration and exploitation.

• The effectiveness of the proposed IChOA-RL model is evaluated by comparing it with various
advanced ML algorithms, such as recurrent neural network (RNN), long short-term memory
(LSTM), KNN, SVM, improved crow search algorithm (I-CSA), and grey wolf optimizer
(GWO).

• The evaluation of the results utilizes multiple criteria such as the scalability of the NOMA
communication system, accuracy, coefficient of determination (R2), root mean square error
(RMSE), and convergence curves. Simulation results indicate that the IChOA-RL model
surpasses other models in performance. The use of IChOA in the training process of neural
networks shows that it can significantly speed up learning and convergence to optimal policies,
ensuring efficient power resource utilization while maintaining high security levels.

1.3 Main Objectives of the Study

• Enhance secrecy performance in SG Communications: This study aims to develop a novel RL
framework, integrated with an IChOA, to optimize the secrecy capacity rate in SG NAN. By
leveraging advanced RL algorithms, the framework seeks to intelligently adapt to dynamic
communication environments, ensuring secure NOMA SG communication.

• Improve training efficiency and convergence: Another key objective is to improve the training
efficiency and convergence properties of the RL network through the integration of the IChOA.
This integration is expected to enable the RL agent to learn more robust policies faster
compared to standard algorithms, thereby enhancing the overall performance in complex SG
environments.
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• Compare and validate performance: The study also aims to extensively compare and val-
idate the performance of the proposed IChOA-RL method against several state-of-the-art
ML algorithms, including RNN, LSTM, KNN, SVM, I-CSA, and GWO. The objective is
to demonstrate significant improvements in secrecy capacity rates, scalability, accuracy, R2,
RMSE, and convergence trends under various network conditions.

1.4 Paper Organization

The organization of our paper is as follows. In Section 2, we present the detailed architecture
of the studied system model and formulate the specific problem of optimizing the secrecy capacity
rate. This section also introduces our novel RL-based approach, explaining how it addresses the
challenges identified in the problem formulation. Section 3 demonstrates the effectiveness of our
proposed solution through rigorous simulation scenarios and provides a comparative analysis with
existing methods. Finally, Section 4 summarizes our key findings and discusses their implications for
the future of secure SG communications.

2 Research Method and Modeling

This section delineates the proposed RL technique aimed at optimizing the secrecy rate within the
established SG NOMA communication system. In the context of RL, the IChOA is utilized to optimize
the weights and biases of the fully connected neural network. It updates the network parameters in a
way that the resultant policy maximizes the expected rewards.

2.1 System Model and Problem Formulation

The system under consideration is an SG NOMA communication model designed for secure
message broadcasting from an NG to a set of K SMs under its control in an NAN, indexed by SM1,
SM2, . . . , SMk. The NG serves as a central hub that uses NOMA to transmit critical control messages
to the SMs, which are the end-users of the grid. The system is under the threat of an eavesdropper
(Eve) attempting to intercept the communications. The NOMA protocol employed allows multiple
SMs to be served simultaneously over the same frequency band by exploiting the power domain. Each
SM is assigned a different power level based on the channel state information (CSI), which is assumed
to be perfectly known at the NG. The signals are superimposed when transmitted by the NG and are
separated at the receiver side using successive interference cancellation (SIC), which requires the SMs
to decode and subtract signals not intended for them before decoding their own.

The channel between the NG and each SM (hm), as well as between the NG and Eve (he), is subject
to Rayleigh fading, characterized by a probability density function of the signal’s amplitude. This
fading model is appropriate for environments where multiple scattered paths exist without a line of
sight. The channel coefficients are modeled as complex Gaussian random variables with zero mean
and unit variance, representing the rapid changes in the amplitude and phase of the signals due to
multipath propagation. The SG environment is dynamic, with the channel conditions varying due to
factors such as physical obstructions, weather changes, and varying electrical load. We assume NG is
a multi-antenna user while SMs and Eve are single-antenna users. Fig. 1 depicts the studied system
model in this paper.
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Figure 1: The studied SG NOMA communication system model

Assuming, without loss of generality, that the users are ordered by their channel gain magnitudes,
we have an ordered sequence from the weakest to the strongest channel gain relative to the eaves-
dropper’s channel. In this NOMA setup, the NG broadcasts signals using a superposition coding
strategy that combines the power-scaled messages of all SMs, where γi represents the power allocation
coefficient for the i-th SM, and p denotes the total transmission power available at the NG. Each SM’s
message, Si, is normalized such that the expected value of the message’s power is unity. Following the
NOMA protocol, we order the power allocation coefficients such that γ1 ≥ γ2 ≥ . . . ≥ γk, with the
sum of these coefficients equaling unity. The received signal at the i-th SM, yi, and at the eavesdropper,
ye, are expressed as Eqs. (1) and (2).

yi = hmi

(
K∑

k=1

√
γkPSk

)
+ ni (1)

ye = he

(
K∑

k=1

√
γkPSk

)
+ ne (2)

where ni and ne are the zero-mean additive white Gaussian noise (AWGN) components affecting the
i-th SM and the eavesdropper respectively, both modeled as N

(
0, σ 2

)
. Following the principles of

NOMA, each SM in the system, specifically the i-th SM, employs the SIC method to accurately
detect their dedicated messages. This is executed by sequentially decoding messages intended for
SMs with inferior channel gains-namely, any k-th SM where

∣∣hmi

∣∣2
<

∣∣hmk

∣∣2
-and then removing these

decoded messages from the overall SNR of the received signals. Conversely, signals meant for users
with superior channel gains compared to the i-th SM are treated as noise. To guarantee the effective
application of SIC at the i-th SM’s receiver, it is a prerequisite that the data rate at which the i-th SM
decodes the k-th SM’s message (Rk−→i) must not fall below the target data rate (R̃k) set for the k-th SM.
When the i-th SM successfully decodes its own message, the achievable data rate for this user, denoted
as Ri and expressed in bits per second per Hertz (b/s/Hz), is calculated using Eq. (3).

log2

(
1 + ρ |hi|2

γi

1 + ρ |hi|2 ∑K

k=i+1 γk

)
(3)
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where ρ represents the signal power to noise power ratio at the receiver, and γi is the power allocation
coefficient for i-th SM.

In addressing the eavesdropper’s capabilities, the approach taken is to apply the SIC method to
discern the messages intended i-th authorized SM. This user can decode at a rate represented by R(i)

e . It
is acknowledged that the eavesdropper might be among the NOMA user group or an external entity;
hence, the formula for R(i)

e will vary accordingly and will be elaborated upon in subsequent sections.
The secrecy rate i-th NOMA SM is defined as achievable when there exists an encoding strategy
that can provide both reliable communication to the intended user and complete secrecy from the
eavesdropper. The secrecy rate i-th authorized SM, denoted as Ri

S, is the excess rate at which i-th SM
can communicate over the eavesdropper’s decoding rate and is mathematically represented as Eq. (4).

Ri
S = [

Ri − R(i)
e

]+
(4)

where Ri is the SM’s achievable rate as previously defined, and the operation [x]+ signifies the positive
part of x, calculated as max (0, x). This definition is fundamental to ensure that a non-negative secrecy
rate is maintained, providing a metric for secure communication.

We proceed under the assumption that complete CSI for all bona fide SMs is accessible to NG,
and likewise, the CSI of the eavesdropper is also known. It is important to note that, through the use
of SIC, the SM with the superior channel gain is capable of decoding the transmissions intended for
other NOMA SMs that possess weaker channel gains. Therefore, in a scenario where there exists an
internal adversary, the only SM that can achieve a secrecy rate greater than zero is the SM with the
highest channel gain, identified as i-th SM. In the most adverse situation, where the penultimate user,
or (i−1)-th SM, is the eavesdropper aiming to intercept i-th SM’s messages, the secrecy rate for every
legitimate SM can be represented as Eq. (5).

Ri
S =

{
log2

(
1 + ρ |hK |2

γK

) − log2

(
1 + ρ |hK−1|2

γK

)
i = K

0, Otherwise
(5)

According to [28], in the worst-case scenario, the analytical expression for the i-th SM’s secrecy
rate under the condition of asymptotically high SNR, that is, as ρ approaches infinity, can be delineated
as Eq. (6).

Ri
S = 1

βi

log2

(
i (i − 1) Γ (1 − βi) ×

i−2∑
s=0

(
i − 2

s

)
(−1)

s
2F1

[
1 − βi, 2
2 − βi

; −1 − s
])

(6)

where Γ (.) and 2F1

[
., .
. ; .

]
show the Gamma function and the generalized hyper-geometric function,

respectively. The main objective of this paper is to maximize the secrecy rate in Eq. (6) by using a novel
RL technique.

2.2 Basic ChOA

The ChOA is a meta-heuristic technique that draws inspiration from the way chimpanzees forage
for food and resources. Introduced in 2020 by Khishe and Mosavi, this algorithm emulates the foraging
patterns of chimpanzees, including their social interactions and learning processes. ChOA models the
collaborative hunting strategy of chimpanzees, where they exhibit roles such as the driver, chaser,
blocker, and attacker. In a coordinated hunting strategy, different roles are played by chimpanzees
[38–40]. Driver chimps focus on tracking prey without directly approaching it, primarily to monitor
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its movements and pinpoint its location. Barrier chimps, often positioned in trees, strategically place
themselves to create impediments that hinder the prey’s progress, effectively steering it away from
certain escape routes. Chaser chimps leverage their speed and agility to quickly close in on the prey,
enhancing the prospects of a successful catch. Lastly, attacker chimps evaluate the prey’s behavior to
anticipate possible escape paths, positioning themselves to reroute the prey towards the chasers, thus
boosting the chances of capture. These roles are translated into explorative and exploitative steps in
the algorithm to find the best solutions. Fig. 2 shows two primary stages of the hunting procedure.
ChOA is known for its balance between exploration, to find new potential areas in the search space,
and exploitation, to refine the solutions in promising areas. Eqs. (7)–(11) outline the formulas used for
driving and chasing the prey.

(a) Exploration phase (b) Exploitation phase

Figure 2: Hunting process in basic ChOA

d = ∣∣cXprey (t) − mXchimp (t)
∣∣ (7)

Xchimp (t + 1) = Xprey (t) − ad (8)

a = 2fr1 − f (9)

c = 2r2 (10)

m = Chaotic_value (11)

where Xprey (t) is the prey’s position vector; Xchimp(t) denotes the chimp’s position vector; r1 and r2 are
the random vectors ∈ [0, 1]; a, c, and m are the coefficient vectors; m indicates a chaotic vector; and f
is the dynamic vector ∈ [0, 2.5].

During the hunting phase, chimpanzees initially locate their prey with the help of blockers, drivers,
and chaser chimps. The prey’s position is subsequently determined by barrier, attacker, chaser, and
driver chimps, while other chimpanzees adjust their positions in response to the prey. These stages are
expressed in Eqs. (12)–(14).⎧⎪⎪⎪⎨⎪⎪⎪⎩

dAttacher = |c1XAttacher − m1X |
dBarrier = |c2XBarrier − m2X |
dChaser = |c3XChaser − m3X |
dDriver = |c4XDriver − m4X |

(12)
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
X1 = XAttacher − a1(dAttacher)

X2 = XBarrier − a2(dBarrier)

X3 = XChaser − a3(dChaser)

X4 = XDriver − a4(dDriver)

(13)

X(t + 1) = X1 + X2 + X3 + X4

4
(14)

where XAttacher presents the best search agent, XBarrier is the second-best search agent, XChaser denotes the
third-best search agent, XDriver is the fourth-best search agent, and X(t + 1) is the updated position
of each chimp. Fig. 3 illustrates the position updating mechanism in the basic ChOA. This figure
demonstrates how different roles assigned to chimpanzees influence the movement towards the prey
during the optimization process.

Figure 3: Position updating in basic ChOA

Ultimately, once the hunt is over, all chimpanzees converge to attack the prey, driven by sexual
motivation, irrespective of their roles. These sexual motivations are represented using chaotic maps, as
shown in Eq. (15).

Xchimp(t + 1) =
{

Xprey (t) − ad if μ < 0.5
Chaotic_value if μ ≥ 0.5 (15)

where μ is the random number ∈ [0, 1].

2.3 Improved ChOA

The creation of a new binary version of the ChOA is motivated by the growing need for more
robust and adaptable optimization algorithms in various fields such as science, engineering, and
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industry. Originally inspired by chimpanzees’ social hunting tactics, the standard ChOA has been
effective in solving continuous optimization problems. However, its effectiveness in dealing with
discrete variables is limited. This limitation underscores the necessity to improve the ChOA framework
to adequately address discrete optimization challenges through a binary adaptation. As a result,
there is an ongoing effort among researchers and industry professionals to enhance or develop new
techniques that increase the efficiency and effectiveness of optimization processes.

Binary encoding streamlines the representation of variables, especially in optimization scenarios
where variables are discrete. By using a binary format, ChOA avoids the necessity for continuous
parameter adjustments, facilitating its application across different problem areas. The binary encoding
of ChOA typically results in lower computational complexity compared to its continuous variable
counterpart. This decrease in complexity can lead to quicker convergence and reduced computational
demands, making ChOA more practical for addressing optimization challenges, particularly in
scenarios with extensive solution spaces.

In binary algorithms, the transfer function plays a pivotal role in transitioning from a continuous
to a discrete search space, where it handles binary decision variables. This function is vital because it
enables the algorithm to switch between binary states, accommodating scenarios where traditional
algorithms primarily handle continuous variables. The design of this function is critical to the
algorithm’s approach in navigating the search space, balancing the discovery of new opportunities
(exploration) and focusing on promising solutions (exploitation). The ongoing development and
enhancement of this transfer function are crucial for developing a successful binary meta-heuristic
algorithm, as they significantly influence its search efficiency and convergence capabilities. Accord-
ingly, our paper introduces a novel V-shaped transfer function to adapt the ChOA algorithm. In the
suggested IChOA, the position update equation is defined as Eq. (16). To achieve this, a novel V-shaped
transfer function is utilized as shown in Eq. (17).

X t+1
d =

⎧⎨⎩(X t
d)

−1 if R < T
(

X1 + X2 + X3 + X4

4

)
X t

d otherwise
(16)

T (x) =
∣∣∣∣ 3
2π

arc tan
(

3π

5
x + ϕ

)∣∣∣∣ (17)

where, X t+1
d presents the updated binary position at t + 1 iteration; X t

d denotes the binary position
at t iteration; (X t

d)
−1 is the complement of X t

d; R is a random number ∈ [0, 1]; T (x) is the V-shaped

transfer function; and ϕ is a threshold number ∈
[ π

10
,
π

5

]
. This modification contributes to reduced

computational complexity and faster convergence rates, particularly when dealing with large solution
spaces or problems with binary constraints.

2.4 The Proposed RL Technique

The primary goal of the RL algorithm is to dynamically adjust the power allocation coefficients
γi for each SM in a way that maximizes the secrecy rate against a sophisticated eavesdropper. The RL
framework is modeled as a Markov decision process (MDP), where at each decision epoch, the system
state includes the current CSI of all SMs and the eavesdropper, represented by their respective channel
gains

∣∣hmi

∣∣2
and |he|2. The action space consists of possible power allocation vectors γ = [γ1, γ2, . . . , γk]

within the power budget set by the NG’s total transmission power P.
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MDP provides a structured way to model an environment in which an agent interacts and makes
decisions over time. The core components of an MDP are states, actions, transition functions, reward
functions, and policies. In the MDP framework, a state represents a specific situation or configuration
of the environment. For SG communications, a state could encompass various factors such as the
current security level, network traffic, and channel conditions. Actions are the decisions or moves
that the agent can make in each state, such as adjusting transmission power or changing encryption
parameters to enhance security. These actions lead to transitions between states, which are governed by
the transition function. This function provides the probabilities of moving from one state to another,
given a particular action, effectively modeling the dynamics of the environment.

The reward function is another critical component of the MDP framework. It assigns a numerical
value to each state-action pair, representing the immediate feedback or benefit of taking a specific
action in a given state. In the context of secrecy optimization in SGs, rewards could reflect improve-
ments in the secrecy capacity rate, better energy efficiency, or other performance metrics. The MDP
framework is particularly well-suited to problems like secrecy optimization in SGs because it explicitly
accounts for the sequential nature of decision-making and the stochastic nature of the environment.
By modeling the problem as an MDP, the RL agent can systematically explore different strategies
and learn to make decisions that enhance security and efficiency over time. This approach contrasts
with traditional machine learning methods, which may not fully capture the temporal and probabilistic
aspects of the problem, making RL a powerful tool for optimizing secrecy rates in SG communications.

The RL agent’s objective is to learn a policy π that selects actions to maximize the cumulative
discounted secrecy rate over time, defined as Eq. (18) [41].

Rπ

S = E

[ ∞∑
t=0

δtRi
S (t)

]
(18)

where E[.] is the expectation operator, Ri
S (t) is the instantaneous secrecy rate at time t, and δ is a

discount factor that prioritizes immediate rewards. We propose to utilize a DQN due to its ability to
handle high-dimensional state spaces. The DQN comprises a neural network that approximates the
optimal action-value function Q∗(s, a). The network is trained iteratively using experience replay and

target networks to stabilize learning. The experiences (s, a, r, s

‘

) are stored in a replay buffer, where s

‘

is the new state after taking action a in state s and receiving reward r.

The reward at each time step is designed to reflect the improvement in secrecy rate. Therefore, if
the action taken at time t leads to an increase in the secrecy rate from Ri

S (t − 1) to Ri
S (t), the reward

r(t) is given by the difference Ri
S (t) − Ri

S (t − 1). This incentivizes the agent to pursue actions that
enhance security. The DQN agent is trained over a series of episodes. In each episode, the environment
is initialized with a random state, and the agent iteratively selects actions based on ε-greedy policy to
explore the action space and exploit the current best-known policy. The performance of the trained
agent is evaluated by its ability to maintain a high secrecy rate over a separate validation set of channel
realizations. The RL agent’s learned policy is expected to adeptly allocate power among the SMs,
accounting for the dynamic nature of the SG environment and the potential internal threat posed
by an eavesdropper. By doing so, the algorithm ensures that k-th SM, which has the highest risk of
information leakage, maintains a secure channel. The proposed RL, with its adaptive power allocation
strategy, promises a significant enhancement in the security of SG communications. By optimizing
the power distribution in real-time, the network’s overall secrecy performance is bolstered, ensuring
the integrity and confidentiality of critical control messages within the SG NAN. By integrating
the IChOA into the training process, the RL agent is expected to learn more robust policies faster
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and with better convergence properties compared to standard algorithms. This can lead to improved
performance in complex SG environments, where the agent must make decisions that enhance the
security and efficiency of the network.

In the proposed IChOA-RL, the IChOA enhances the RL framework by optimizing key hyper-
parameters such as weights, biases, learning rate, ε-greedy parameters, and batch size. By leveraging
advanced search mechanisms inspired by chimpanzee behavior, IChOA effectively balances explo-
ration and exploitation within the hyper-parameter space. This process allows for the fine-tuning
of weights and biases, leading to more accurate neural network mappings and improved decision-
making in complex environments like SGs. Additionally, IChOA dynamically adjusts the learning rate
to ensure efficient convergence, optimizes the ε-greedy parameter to maintain a balanced exploration-
exploitation trade-off, and selects an optimal batch size that balances computational efficiency with
learning stability. The integration of IChOA into the RL framework results in a synergistic opti-
mization of these parameters, considering their interdependencies to maximize overall performance.
This holistic approach not only accelerates the convergence of the RL agent but also enhances the
robustness of the learned policies, making the agent better equipped to handle the complexities and
dynamism of SG communications. Ultimately, IChOA’s optimization process significantly improves
the efficiency and effectiveness of RL training, leading to more reliable and secure SG operations.

3 Simulation Results and Analysis

The simulation environment is configured to evaluate the secrecy rate performance of an SG
NOMA communication system under various ML and RL algorithms. The setup includes an NG
transmitting to several SMs in the presence of an eavesdropper. The number of SMs K = 3 unless
otherwise mentioned. The performance metrics are assessed against the power allocation coefficient
(γk in dB) and the total transmission power (P in mW). The algorithms compared with our proposed
IChOA-RL in the simulation include traditional ML approaches like standard ChOA, GWO, LSTM,
RNN, KNN, SVM, and standard RL model. The selection of comparison algorithms in this study was
carefully made to ensure a comprehensive evaluation of the proposed IChOA-RL approach. These
algorithms were chosen for their relevance to SG communications, their diversity in representing both
traditional ML and advanced optimization techniques, and their proven track records in tasks such as
classification, prediction, and optimization. The scope of potential values for each parameter during
the simulation process has been extensive; however, due to pragmatic constraints, it is necessary to
choose and exhibit a limited set of diverse parameter instances. Table 1 provides a snapshot of this
selection, shedding light on the experimental process by emphasizing the specific parameter values
that, in certain instances, either enhanced or diminished the performance of the algorithm.

Table 1: Parameter setting of proposed methods

Method Parameter Value

IChOA a [−1, 1]
f Linearly from 2 to 0
Population size 100
Iteration 300

GWO C 0.7

(Continued)
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Table 1 (continued)

Method Parameter Value

A 0.3
α [0, 2]
Population size 100
Iteration 300

I-CSA Flight length (FL) 2
Awareness probability (AP) 0.1
Population size 100
Iteration 300

KNN Number of neighbors (k) 6
Distance metric Euclidean distance
Weights Uniform
Algorithm Kd-tree
Leaf size 30

SVM Kernel type Linear and RBF
Gamma 0.003
Number of estimators 100

RNN Number of hidden layers 8
Number of neurons in hidden layers 30
Learning rate 0.09
Dropout rate 0.2
Activation Tanh and sigmoid
Optimizer SGD

LSTM Number of hidden layers 10
Number of neurons in hidden layers 35
Learning rate 0.10
Recurrent dropout Rate 0.3
Activation ReLU and Tanh
Optimizer Adam

RL Memory size 8000
Learning rate 0.0005
ε-greedy 0.4–0.9
Batch size 256
Optimizer Adam

Calibrating parameters for ML algorithms is critical for achieving peak performance and
demands careful consideration. It entails identifying the best combinations of parameter values for
the algorithms to function efficiently. Establishing these optimal settings is crucial before proceeding
with the performance evaluation of the algorithm. In this research, we adopt a systematic trial-
and-error approach for parameter tuning, methodically adjusting each parameter separately and
monitoring its impact while maintaining all other variables constant. For instance, in an algorithm
with multiple parameters such as the number of hidden layers, or iteration, we analyze each parameter
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independently to assess its effect on the algorithm’s performance. Although there are numerous
possible variations for each parameter, practical constraints require us to select and demonstrate
a limited range of different parameter scenarios. For our simulations, we utilized OpenAI Gym as the
primary simulation environment for training the RL agents. Additionally, we integrated TensorFlow
to implement the neural network components of the RL algorithm. To incorporate and evaluate the
proposed evolutionary algorithm for updating the fully connected layers in this paper, we employed
the distributed evolutionary algorithms in python (DEAP) library.

Fig. 4 presents a detailed analysis of the secrecy rate’s dependency on the power allocation
coefficient γk, as represented in decibels (dB), across various algorithmic strategies. In this figure, the
proposed IChOA-RL approach consistently outperforms the other methods, showcasing a superior
secrecy rate across the entire γk range. This suggests that the IChOA-RL’s optimization process is
effectively enhancing the RL agent’s ability to allocate power in a way that maximizes the secrecy rate,
regardless of the power coefficient’s magnitude. The RL method alone shows notable improvement
over the traditional ML techniques of RNN, LSTM, KNN, and SVM, which indicates the inherent
advantage of adaptive learning in dynamic environments. However, KNN and SVM, despite being
less dynamic, provide a baseline performance that, while not scaling as well with increased γk, still
contributes to our understanding of the impact of power allocation on secrecy. The graph also indicates
a diminishing return on the secrecy rate as the power allocation coefficient increases, particularly for
KNN and SVM, suggesting a threshold beyond which increasing power does not yield proportional
secrecy gains. Overall, the performance trends in Fig. 4 highlight the effectiveness of integrating
advanced optimization techniques like IChOA with RL in enhancing secure communications in SG
NOMA communication.

Figure 4: Secrecy rate vs. the power allocation coefficient across various algorithms

Fig. 5 provides an insightful illustration of how the secrecy rate varies under the proposed
IChOA-RL approach with the power allocation coefficient γk for different quantities of NOMA SMs,
designated as K. The curves represent four distinct scenarios, with K taking on values of 6, 10, 14, and
18, respectively. As can be seen in this figure, when γk increases, a corresponding incremental rise in
the secrecy rate is observed for each scenario, which aligns with the theoretical understanding that a
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higher power allocation coefficient enhances the signal’s robustness against potential eavesdropping,
thus improving secrecy.

Figure 5: Secrecy rate under the proposed IChOA-RL approach vs. the power allocation coefficient
for different numbers of NOM SMs

Notably, the rate at which the secrecy rate increases with γk is more pronounced as the number of
SMs, K, grows. This indicates a multiplicative effect of NOMA’s power domain exploitation when
more SMs are present; essentially, the system can better differentiate between the intended signal
and potential eavesdropping attempts. The scenario with K = 18 SMs achieves the lowest secrecy
rate, suggesting that a larger network of SMs can utilize the intrinsic properties of NOMA more
effectively, translating into superior secure communication capabilities. This could be due to the lesser
complexity and reduced efficacy in channel use when fewer SMs are involved. These trends collectively
highlight the effectiveness of NOMA in enhancing secure communications, particularly as the number
of participating SMs in the network increases.

Fig. 6 delves into the relationship between the total transmission power, denoted by P and
measured in milliwatts (mW), and the resulting secrecy rate, offering a comparative analysis across
different algorithmic approaches. As the transmission power increases, all techniques exhibit an
upward trend in secrecy rate, indicative of the direct correlation between transmission power and
the ability to maintain secure communications. The IChOA-RL technique demonstrates a clear
superiority, achieving higher secrecy rates at any given power level. This suggests that the IChOA’s
sophisticated optimization algorithm significantly refines the RL agent’s power allocation decisions,
leading to more effective secrecy enhancements.

Notably, the slope of the IChOA-RL curve is steeper than that of the other methods, especially
in the mid-range of the power spectrum, indicating a more efficient conversion of increased power
into higher secrecy rates. This efficiency is a critical advantage in real-world applications where power
resources are limited and must be used judiciously. The RNN, LSTM, KNN, and SVM methods,
while showing improvements with increased power, plateau sooner than the RL-based approaches,
revealing the limitations of static models in leveraging additional power for secrecy. The GWO-RL, I-
CSA-RL, ChOA-RL, and RL curves, while outperforming the traditional ML models, still lag behind
the IChOA-RL, underscoring the impact of the improved optimization algorithm on RL’s adaptability
and performance. Fig. 6 finally illustrates not only the beneficial impact of higher transmission power
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on secrecy rates but also underscores the enhanced performance that can be achieved by a more
powerful algorithm.

Figure 6: Secrecy rate vs. the NG’s transmission power across various algorithms

In this paper, the results were evaluated using three metrics: accuracy, R2, and RMSE. The
coefficient of determination quantifies the correlation between observed and predicted values, with
values ranging from 0 to 1. A value of one signifies perfect correlation, whereas a value of zero indicates
no correlation between the observed and predicted values. Eqs (19)–(21) provide the formulas for
calculating R2, RMSE, and Accuracy.

R2 =
⎡⎣ 1

N

∑N

i=1

[
(Pi − P)(Oi − O)

]
σpσo

⎤⎦2

(19)

RMSE =
(

1
N

N∑
i=1

[Pi − Oi]
2

) 1
2

(20)

Accuracy = TP + TN
TP + FN + FP + TN

(21)

where N is the number of observations; Pi is the calculated parameter; Oi is the observed parameter;
P is the average calculation parameter; O is the average observations parameter; σp is the standard
deviation of calculations; σo is the standard deviation of observations; TN = true negative; TP = true
positive; FN = false negative; and FP = false positive.

Table 2 displays R2, accuracy and runtime results for various evolutionary architectures designed
to secure NOMA communication in SGs. The data clearly indicate that the IChOA-RL architecture
outperforms the others in terms of both R2 and accuracy, not just in the training set but also in
the validation set. The IChOA-RL architecture achieved accuracy levels of 97.41% in the testing set
and 98.86% in the training set. When it is stated that the IChOA-RL architecture has the highest
R2 value, it implies that this architecture most accurately captures and explains the variations in the
problem. In other words, it fits the actual data points best and offers the most reliable predictive
power among the architectures evaluated. The I-CSA-RL, GWO-RL, ChOA-RL, and RL models also
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recorded relatively strong performance. Conversely, the LSTM, RNN, SVM, and KNN algorithms
demonstrated lower effectiveness. When comparing the runtime across the different methods, IChOA-
RL demonstrates a significant advantage with a runtime of 724 s, making it the most efficient
among the advanced algorithms evaluated. In contrast, I-CSA-RL, GWO-RL, and ChOA-RL require
substantially more time, with runtimes of 985, 1024, and 896 s, respectively, indicating higher
computational demands. Traditional methods like RNN, LSTM, SVM, and KNN show moderate
runtimes ranging from 869 to 941 s, with the standard RL method being relatively faster at 659 s.
This comparison highlights IChOA-RL’s efficiency in delivering high performance without incurring
excessive computational costs.

Table 2: The results of proposed architectures for secure NOMA communication in SGs

Method Training dataset Validation dataset Run time (s)

R2 (%) Accuracy (%) R2 (%) Accuracy (%)

IChOA-RL 96.27 98.86 95.77 97.41 724
I-CSA-RL 94.29 96.41 92.18 94.53 985
GWO-RL 93.48 95.84 91.52 93.28 1024
ChOA-RL 92.18 94.49 90.44 92.76 896
RL 90.92 92.51 89.36 90.43 659
RNN 88.74 91.09 86.48 89.18 874
LSTM 87.49 90.17 85.81 88.82 903
SVM 85.19 87.19 83.37 85.63 941
KNN 84.72 86.76 82.26 83.18 869

These results highlight the successful training of these architectures with meta-heuristic algo-
rithms, which have effectively optimized their operational efficiency. Moreover, these architectures
consistently demonstrate high accuracy across different hybrid RL structures in both testing and
training datasets. This consistent performance suggests that the meta-heuristic algorithms used in
the training processes have delivered reliable and uniform results across various models and datasets.
The RMSE metric is used to evaluate the performance of the models presented in Table 3. The
results clearly show that the IChOA-RL surpasses its competitors, highlighting its effectiveness for
the problem at hand. This model enhances the RL network by efficiently updating its weight and bias
vectors through the integration of IChOA. The IChOA effectively tunes the parameters, enabling the
RL network to more accurately detect and model the patterns and relationships in the data. According
to Fig. 7, the IChOA-RL converges more quickly than the others. By the 100th epoch, it almost reaches
the lowest RMSE score, while the RMSE scores for the other architectures remain higher. Additionally,
the IChOA-RL shows exceptional stability and swift convergence as epoch’s progress. The significant
initial drop in RMSE for the model showcases a strong capacity for learning, and its sustained low
error rate suggests it generalizes well across the dataset. In contrast, other models gradually improve
but fail to achieve the low RMSE scores of the IChOA-RL. For example, SVM and KNN exhibit
a slower reduction in RMSE. Other architectures like I-CSA-RL, GWO-RL, ChOA-RL, RL, RNN,
and LSTM show moderate learning speeds. They manage to lower the RMSE to a commendable
level, yet their convergence trajectories indicate they may need additional epochs to potentially equal
the performance of IChOA-RL.
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Table 3: The RMSE values of the proposed methods

Method RMSE

Training dataset Validation dataset

IChOA-RL 0.08 0.95
I-CSA-RL 1.25 3.46
GWO-RL 2.98 4.24
ChOA-RL 3.57 5.69
RL 5.79 8.37
RNN 7.29 10.02
LSTM 9.15 11.73
SVM 15.24 20.18
KNN 18.34 21.73

Figure 7: The convergence curve of proposed methods

The computational complexity of the proposed RL technique primarily hinges on the intricacies
of the RL algorithm itself and the optimization process facilitated by the IChOA. RL, particularly in
environments modeled as MDPs, involves substantial computational effort due to the need to explore
and learn optimal policies through interactions with the environment. The computational complexity
of a DQN technique involves several key components, including the neural network architecture,
the number of states, the number of actions, and the number of iterations required for convergence.
Integrating the IChOA into this framework adds another layer of computational complexity. IChOA
enhances the training process by optimizing the parameters of the RL network, leading to more
robust policy learning. The complexity of IChOA, like other meta-heuristic algorithms, depends on
the population size, the number of iterations, and the computational cost of evaluating the fitness
function. In this paper, the total computational complexity (C) of the proposed IChOA-RL model is
calculated as Eqs. (22)–(24).

CRL = T .O(B.N.M) (22)

CIChOA = O(P · D) + G · O(P · F) + G · O(PlogP) + G · O(P · U) (23)
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C = H.CRL + H.CIChOA (24)

where CRL is the computational complexity of RL, CIChOA is the computational complexity of IChOA, T
is the total number of iterations for convergence, B is the mini-batch size used during training, N is the
total number of neurons in the neural network, M is the average number of connections per neuron, P is
the population size, G is the number of generations, F is the complexity of the fitness function, D is the
number of dimensions, U is the complexity of updating positions for one individual, and H denotes
the number of times the IChOA process is invoked within the DQL training process. The proposed
IChOA-RL technique effectively addresses scalability challenges in smart grid implementations by
integrating the IChOA for efficient training, enabling rapid convergence and adaptive policy updates
in response to real-time data. This approach optimizes resource use, ensuring the method can operate
within the constraints of existing smart grid infrastructure, from high-power servers to lower-power
edge devices. Extensive simulations validate the method’s ability to maintain high performance and
adaptability across various network conditions and scales, demonstrating its robustness in managing
large-scale smart grid networks. This scalability is essential for widespread deployment in complex
smart grid environments, where efficient resource management and dynamic adaptability are crucial.

4 Conclusions

This paper has presented an in-depth exploration of a novel RL-based strategy for optimizing
secrecy performance in an SG environment utilizing NOMA communication. By integrating IChOA
to adjust the parameters of a fully connected neural network within the RL framework, we have
demonstrated a significant enhancement in the secrecy rates across a range of operational scenarios.
The IChOA-RL model was compared against eight other ML architectures. The IChOA-RL model
achieved the highest accuracy, recording 97.41% on the validation datasets, making it the most
effective approach. Our simulation results have conclusively shown that the IChOA-RL method
outperforms traditional ML approaches such as RNN, LSTM, KNN, and SVM, as well as standard
RL techniques. The robustness of IChOA-RL was particularly evident in its superior performance
at higher power allocation coefficients and transmission power levels, showcasing its potential for
practical implementation in real-world SG systems. The scalability of the NOMA communication
system was also put to the test, giving insights into the relationship of the number of NOMA SMs with
the utilization of the power domain for enhancing secrecy rates, as indicated by the higher slopes in the
secrecy rate curves as the number of SMs. This finding underscores the importance of considering user
density in designing secure SG communications. Furthermore, the study has contributed to the body
of knowledge by highlighting the critical role of sophisticated optimization algorithms in RL. The
application of IChOA to the training process of the neural network has been shown to significantly
accelerate learning and convergence to optimal policies, ensuring efficient use of power resources while
maintaining high levels of security.

Implementing the proposed IChOA-RL technique in real-world SG environments faces several
challenges. The significant computational complexity and resource demands of the hybrid method
require substantial processing power and memory, making real-time applications potentially costly
and impractical. Scalability is also a concern, as the SG’s vast network size demands efficient
handling without performance degradation or exponential computational increases. Ensuring real-
time adaptability and convergence is crucial, as the RL algorithm must quickly adapt to the dynamic
conditions of the SG to maintain optimal performance. Integration with existing SG systems poses
further challenges, requiring seamless incorporation without disrupting current operations while
ensuring interoperability and regulatory compliance. While the paper addresses some of the practical
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challenges associated with implementing the IChOA-RL approach in SG environments, there are
additional considerations that future research could explore in greater depth. These include real-time
processing requirements, data quality issues, energy consumption, and security concerns. Addressing
these challenges through innovative solutions and rigorous testing will be essential to realize the full
benefits of the proposed method in enhancing the security and efficiency of SG communications.

Moreover, the IChOA-RL method may face difficulties in converging to a global optimum in
highly complex or non-convex problem spaces, particularly if the initial conditions or parameter
settings are not well-tuned. This is a common challenge shared with other evolutionary algorithms
and advanced optimization methods like RL, RNN, LSTM, SVM, KNN, GWO, and I-CSA, which
also require careful parameter tuning and can suffer from premature convergence or getting trapped
in local optima. However, compared to these algorithms, IChOA-RL’s advantage lies in its ability
to adapt more dynamically to changing conditions, albeit at the cost of potentially higher compu-
tational demands. In summary, while the IChOA-RL method offers superior performance in terms
of adaptability and scalability, its limitations include increased computational requirements and the
need for careful tuning to ensure convergence, challenges that are also in other state-of-the-art ML
algorithms. Additionally, several unresolved questions regarding the IChOA and RL underscore the
need for further investigation in this field. Future studies on the IChOA should delve into refining
the algorithm’s specific parameters and thresholds. Such research could involve detailed assessments
of how parameter variations affect the algorithm’s rate of convergence, the quality of solutions,
and computational efficiency. Researchers might consider employing strategies like meta-heuristic
parameter tuning or adaptive adjustments to dynamically optimize parameters during the process.
Meanwhile, the development of RL models is likely to evolve towards overcoming the challenge
posed by the scarcity of labeled data. This shift may lead to a stronger focus on semi-supervised
and unsupervised learning methods. Future efforts could also examine the integration of IChOA into
these learning frameworks to better leverage unlabeled data, thus enhancing the performance and
generalization capabilities of RL models.
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