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ABSTRACT

Federated Edge Learning (FEL), an emerging distributed Machine Learning (ML) paradigm, enables model training
in a distributed environment while ensuring user privacy by using physical separation for each user’s data. However,
with the development of complex application scenarios such as the Internet of Things (IoT) and Smart Earth,
the conventional resource allocation schemes can no longer effectively support these growing computational and
communication demands. Therefore, joint resource optimization may be the key solution to the scaling problem.
This paper simultaneously addresses the multifaceted challenges of computation and communication, with the
growing multiple resource demands. We systematically review the joint allocation strategies for different resources
(computation, data, communication, and network topology) in FEL, and summarize the advantages in improving
system efficiency, reducing latency, enhancing resource utilization, and enhancing robustness. In addition, we
present the potential ability of joint optimization to enhance privacy preservation by reducing communication
requirements, indirectly. This work not only provides theoretical support for resource management in federated
learning (FL) systems, but also provides ideas for potential optimal deployment in multiple real-world scenarios.
By thoroughly discussing the current challenges and future research directions, it also provides some important
insights into multi-resource optimization in complex application environments.
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1 Introduction

With the proliferation of the Internet of Things (IoT) and mobile devices, the paradigm of
data generation and processing is fundamentally changing. In the past decades, data was typically
collected and transmitted to remote data centers for processing and analysis. However, with the
explosive growth of data volume and the growing concern for low latency, high reliability, and privacy
protection, this centralized data processing model is no longer applicable. As a result, edge computing
has been proposed as an emerging computing paradigm to address these issues. Edge computing
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involves performing computing tasks on devices close to the user, thereby reducing the time and
network load for data transmission. Currently, Federated learning (FL) is a distributed machine
learning (ML) approach that allows different devices to train models without sharing their data.
With the development of technology in recent years, significant progress has been made in theory
and practice, and in-depth research has been carried out on model fairness, heterogeneity handling,
privacy-preserving security, model training efficiency, robustness, and scalability. The combination
of edge computing and the FL will benefit from both of them and have more powerful functions
in the application. However, FL requires frequent client-to-server communication for updating model
parameters, so the communication efficiency of FL is still a key issue. Edge learning (EL) is a method of
data processing and model training on edge devices (ED) close to the data source to reduce computing
and communication latency [1], improve real-time performance, and reduce the burden on the center
server (CS). However, EL usually suffers from resource constraints as well as device heterogeneity.
Because of the defective problems of FL and EL, an emerging distributed learning technique called
Federated Edge Learning (FEL) has been proposed [2]. In recent years, the development of edge
computing technology has provided a solid infrastructure for FEL to better handle the large amount
of data generated by IoT devices.

FEL combines the advantages of FL and EL by performing local model computation and training
on the ED, which can leverage the computational power of the device for learning, speeding up
data processing while preserving data privacy, and then aggregating the updates on the edge server
(ES) through the mechanism of FL [3]. The core features of FEL include distributed training, data
privacy protection, as well as low latency and high efficiency. FEL achieves distributed training by
performing model training on multiple ED, which prevents the transmission of sensitive data to the
CS and thus effectively protects user privacy. The approach significantly reduces data transmission
latency and improves the overall computational efficiency since data processing and model training
occur in the edge network close to the data source. Moreover, FEL is able to utilize distributed
computation and storage resources at the edge of the network, thus ensuring effective model training
while enhancing data privacy protection [4]. However, the resource allocation problem remains a
challenging issue. With the popularity of IoT as well as mobile ED, in the smart planet, a large amount
of distributed data is generated, and the combination of FEL and resource allocation is designed to
address the resource constraints [5], data privacy, communication efficiency, and energy management
in distributed computing environments to achieve efficient model training data processing while
protecting data privacy and security. In FEL, resource allocation involves optimizing computational
resources, communication resources, network topology, data selection, device scheduling, and energy
consumption among participating ED. In fact, optimizing computational resources refers to the pro-
cess of allocating computational power to the participating ED in FL, and optimizing communication
resources refers to the strategy for efficient data transfer and model updating among ED. Optimizing
network topology refers to the process of improving system performance and efficiency by adjusting
the connections between ED in the network. Optimizing data selection refers to the process of selecting
the most valuable data for model training from the data collected from multiple ED. Optimizing device
scheduling refers to the process of reasonably allocating and scheduling computing tasks to individual
devices in a distributed computing system according to the real-time state and demand of the system, in
order to achieve the optimal use of resources and the maximization of system performance. Optimizing
energy consumption refers to minimizing the energy consumed by ED during model training and
data processing while ensuring system performance, which is crucial for extending the service life of
the devices, reducing operating costs and achieving sustainable development. Therefore, an effective
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resource allocation strategy cannot only significantly reduce the communication cost, but also improve
the overall system efficiency.

In today’s increasingly sophisticated technology, focusing on a single performance metric to the
exclusion of other important factors may have limitations in fully dealing with complex multi-objective
problems, whereas joint optimization can efficiently integrate and weigh different performance metrics
in a multi-objective environment by selecting different weight for each metric where multiple available
resources can simultaneously get a balance among multiple objectives, satisfying multiple physical con-
straints. For example, joint optimization of computation and communication resources can balance
the weights between computation and communication appropriately, which can significantly improve
the overall energy efficiency of the system [6,7]. Joint data selection and communication resources
are to select effective data to train the model and address the allocation of communication resources
across devices. In such a way, it can effectively protect device privacy, reduce local model training
time, and reduce energy consumption [8] to improve learning efficiency [9]. Joint scheduling and
communication resource allocation is trying to optimize system performance and efficiency and reduce
latency and energy consumption [10,11]. Joint topology and computational resource optimization are
usually used in minimizing energy consumption and latency by adjusting the connectivity between ED
in the network [12].

In practical applications, joint optimization resources have demonstrated significant benefits. For
example, in intelligent transportation systems, joint optimization of computing and communication
resources enables real-time adjustment of traffic light control strategies, improving traffic flow and
reducing congestion. In smart agriculture, by optimizing data selection and communication resources,
edge devices are able to efficiently collect and transmit agricultural data, thereby improving the
timeliness of decision-making. In addition, in smart manufacturing, through joint device scheduling
and communication resource optimization, the resource utilization and productivity of production
equipment are significantly improved. Meanwhile, in financial services, joint optimization of equip-
ment scheduling and communication resources ensures fast processing and security of real-time
financial transactions. Similarly, in some smart agriculture, joint optimization of network topology
and communication resources improves the efficiency of data collection and transmission in precision
agriculture, enabling low-latency agricultural monitoring. The financial domain also improves the
collaboration capability of distributed models through joint optimization, which effectively improves
the accuracy of fraud detection. Therefore, joint optimization resources can effectively improve system
performance in various application scenarios.

This survey bridges the gaps in existing research, mainly from the single resource optimization
to the multi-resource co-optimization. This survey will discuss in detail the latest technological
developments and cutting-edge advances in FL, with a special focus on joint optimization problems in
resource allocation, which is less covered in existing reviews. Through the specific joint optimization
case analysis and practical application scenarios, the applications of FEL theory in practice are
demonstrated, while some in-depth empirical analysis and future research directions are provided.

This survey will review the research progress in combining FEL with resource allocation, focusing
on computational resources, communication resources, data selection, network topology, and device
scheduling, and present a deep analysis of the current state-of-the-art methods, as well as point out the
existing challenges, and future directions. That is, various resource allocations to enhance the efficiency
of optimized FEL and reduce energy consumption will be presented in detail. By synthesizing the
existing research results, the advantages as well as limitations will be analyzed, and the existing
challenges and future development trends will be discussed.
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2 FEL Framework

In order to more effectively capture and learn large-scale data from the edge of the network, and
provide rapid response and intelligent services for network terminals and other powerful functions,
edge intelligence technology has been developed. By applying ML algorithms at the edge of the
network, it is possible to continuously train and optimize artificial intelligence (AI) models in the edge
cloud because ML algorithms can quickly and efficiently utilize distributed mobile data [13]. Among
the many branches of edge intelligence technologies, FEL is increasingly becoming one of the most
popular EL approaches due to its superior data privacy protection and efficient utilization of endpoint
computational resources [4]. FEL is a distributed ML paradigm whose core idea is to perform local
data processing and model training on distributed ED [14], while aggregating and protecting user data
privacy through the physical separation of raw data of users [15]. In FEL, multiple components may
be involved, including ED, ES, and potentially cloud servers [16].

2.1 FEL Basic Framework and Process

In FEL, distributed wireless devices collaborate to perform the ML task, and individual ED do not
need to upload their complete training data samples to the ES [17]. Instead, each device independently
trains the model locally on its local dataset. The model parameters generated as stochastic gradient
descent (SGD) are uploaded to the ES. This approach ensures that the original data samples remain
on the device locally, thus avoiding the need to share data resources, and enhancing data privacy
protection. The basic framework of FEL is shown in Fig. 1.

Figure 1: FEL basic framework

2.1.1 FEL Typical Framework

The typical framework for FEL presented in this paper involves multiple participants, including
ED, ES, and CS.
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1) Edge Devices: refers to devices at the edge of the network, which may include smartphones,
sensors, routers, smartwatches, computers, and so on. They have computing and storage
capabilities and can perform data processing as well as model training locally.

2) Edge Server: refers to a server that exists at the edge of the network and is responsible for
coordinating and managing the computational tasks of the ED. The ES receives model updates
from the ED and then aggregates the model updates to finally generate the global model.

3) Cloud Server: refers to the CS located in the cloud, which is responsible for coordinating and
managing the computational tasks on the ES, and the cloud server receives model updates from
the ES, and finally aggregates the model updates to generate the global model.

2.1.2 FEL Basic Process

Based on the numbering of the figures in Fig. 1, the basic flow of the FEL can be understood, as
shown in Fig. 2.

1© Firstly, in the initialization phase, each ED loads its respective initial ML model, and the ES is
responsible for coordinating the model training process of the ED and broadcasting the global
model.

2© In the local training phase, each ED is trained using its own collected data, during which the
device updates the local parameters of the model.

3© In the model update upload phase, each ED will send the updated model to ES instead of
uploading its original data, and ES is responsible for receiving the updated model from each
device, which can better protect the user’s data privacy.

4© In the model aggregation phase, ES aggregates all model updates received to generate a new
global model.

5© In the update phase of the global model, the newly generated global model is sent to the CS,
which uses the aggregated updates to compute the global model. To protect data privacy, the
CS only receives model updates and does not directly access the raw data.

6© During the model distribution phase, the updated global model is broadcast to the ES.
7© The ES sends the global model back to the relevant ED, and then each ED uses its newly

received global model and continues its training to update the local model parameters.

The above looping process will continue until the model reaches the expected performance or
stops when specific conditions are met. In each iteration, the model is transferred among ED, ES, and
CS, while the original data is always kept in ED.

2.2 FEL Key Advantages

FEL combines the advantages of FL and edge computing to provide an efficient, secure, and
expandable approach to data processing and model training. FEL has several advantages over
traditional centralized ML and single FL or EL.

2.2.1 Low Latency and Efficient Computing

In traditional ML, all the data in the device needs to be transmitted to the CS, especially when
the data volume is large and widely distributed, which may lead to high latency, however, in FL, the
data transmission mainly consists of the model related data transmission, and although some of the
data volume is reduced, the model update still needs to be transmitted to the CS for aggregation,
which may have latency when the network is unstable or the bandwidth is limited [18]. EL significantly
reduces latency by processing data at the ED, which is suitable for applications with high real-time
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performance [19]. However, the emergence of FEL not only retains the low-latency advantage of EL,
which allows real-time processing and response, but also significantly improves the system efficiency
through the distributed computation and storage capabilities among the ED. ED processes the data
and trains the model locally, which reduces the traffic of model related data transmission to the CS
and thus reduces network congestion, can adapt to changes in the local environment in real time, and
improves the intelligence of the overall system by sharing knowledge with other devices through the
FL mechanism [20].

Figure 2: FEL basic flowchart local

2.2.2 Data Privacy and Security

In conventional ML, the data has to be transmitted to the CS for unified processing training, which
may have the problem of privacy leakage when some users’ private and sensitive data are involved.
However, FL performs model training on local devices and shares model updates that are not raw
data, which reduces the risk of leaking private raw data [21,22]. However, FL still relies on the CS for
aggregation and coordination of model updates [23]. There is still a privacy leakage problem during
parameter exchanges in FL [24]. EL in the vicinity of the data source can collaborate on data processing
and model training [25], which reduces data transmission and improves data privacy protection, but
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there are challenges in inter-device collaboration and global model training. Finally, FEL excels in
protecting data privacy as it avoids centralized data storage and transmission by training the model
locally at the ED and updating it collaboratively with other ED and CS, and the training and updating
process does not require the uploading of raw data [26,27]. In addition, ED usually have better security
as they are located at the edge of the network and are subject to a lower risk of attacks. Performing
a large number of computations on ED allows the computational burden of CS and the frequency of
data transmission to be further reduced, so that it is evident that FEL is better at protecting privacy
compared to others.

2.2.3 Reduce Energy Consumption and Minimize Communication Costs

In traditional ML, the entire data needs to be uploaded, which results in a large amount of
data being transmitted to the CS for processing updates and storage. Therefore, it may cause high
communication costs. The CS needs to process a large amount of data from the ED, which requires
a large amount of energy consumption. In FL, although there is no more transmission of raw data,
frequent model updating and aggregation still consume a large amount of communication cost [28,29],
especially with a large number of participating ED. EL processes the data locally. The requirement for
data transmission is reduced, and leads to a reduction in communication costs and energy consumption
[30,31]. However, independent ED processing may lead to uneven resource utilization and overall
energy consumption is not optimized [32]. However, FEL reduces the amount of raw data transmission
to the CS by performing local model training at the ED, so not only the communication cost but also
the energy consumption is reduced. The collaborative learning and model update transmission between
each ED is relatively small, further minimizing the communication overhead. In addition, the data is
distributed and processed locally, which can further optimize the energy consumption of the devices,
especially when using low-power devices and optimizing the allocation of computational tasks, making
the overall system more efficient and significant in reducing energy consumption [33].

3 Related Work to FEL Based Resource Allocation

FEL excels in data privacy protection, real-time processing, and resource optimization. However,
due to the heterogeneous nature of ED and limited resources [34], how to efficiently allocate and
manage computational and communication resources as well as optimize network topology, data
selection, energy consumption, and communication efficiency in the scaling of multiple demands have
become important research issues in FEL. In this section, we provide a detailed overview of the current
state of research on resource allocation in FEL.

3.1 FEL Based Computational Resource Allocation

Computational resource allocation in FEL involves efficiently distributing computational
resources among multiple ED to support the training and updating of distributed machine
learning models [35]. These computational resources include central processing units (CPU),
graphics processing units (GPU), memory, storage, and other hardware resources used to perform
computational tasks, etc. In FEL, the goal of computational resource allocation is to optimize the
efficiency of computational resource utilization and reduce latency while ensuring the quality of model
training.

In [36], Aghapour et al. utilized the ES available in the environment, which can optimize the
total latency and energy consumption of the IoT devices in the system. Then a Deep Reinforcement
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Learning (DRL)-based strategy is proposed to decompose the device offloading and resource allo-
cation problem into two independent sub-problems. Specifically, the offloading strategy is adjusted
by constantly updating the environment information, and the resource allocation is optimized using
the Salp Swarm Algorithm (SSA). Simulation experimental results show that the algorithm achieves
significant cost minimization and performs well in terms of latency and power consumption. In [37],
in order to minimize the total cost of FL, Liu et al. proposed a DRL-based resource allocation
algorithm for joint optimization of computational resources and multi-UAV association. With this
algorithm, it aims to optimize the allocation of computational resources while reducing the energy
consumption of Unmanned Aerial Vehicle (UAV). In order to reduce the computational energy
consumption of UAV, a UAV computational resource allocation strategy is proposed. This strategy
reduces energy consumption by dynamically adjusting the allocation of computational tasks on the
UAV. Ultimately, it is demonstrated that this strategy can effectively reduce the total cost of FL, thus
improving the economy and sustainability of the system. In [38], in order to address the computational
power limitations encountered by clients when training Deep Neural Networks (DNN) using FL,
Wen et al. designed an innovative FL framework by combining edge computing and split learning
techniques. This framework allows the model to be split during the training process, which reduces
the latency during the training process while ensuring that the test accuracy is maintained. In this
way, Wen et al.’s work effectively alleviates the problem of insufficient computational resources on
the client side when dealing with complex DNN models, providing a new solution for the application
of FL on ED. In [39], Salh et al. developed efficient integration of federated edge smart nodes by
investigating the computational resource allocation, optimal transmission power, etc., to reduce the
energy consumption of each iteration of the FL time from IoT devices to edge smart nodes and to meet
the learning time requirements of all IoT devices. In [40], Zhang et al. designed an FL service-oriented
computational allocation policy algorithm to solve the problem of allocation policy computation in
time-varying environments. Finally, it is found that the wise allocation of computational resources is
crucial for the overall performance of the FL task allocation system. The task allocation is dynamically
adjusted according to the real-time computing capability and current load of the device.

In [41], Sardellitti et al. proposed a DRL-based task allocation algorithm that is able to adjust
the allocation of computational tasks in real-time according to the state of the devices and network
conditions. Part of the computational tasks are offloaded to the ES for execution to reduce the
computational burden of the ED. In [19], Shi et al. proposed an innovative offloading strategy for edge
computing, which achieves optimal allocation of computing resources by subdividing computing tasks
into segments and making offloading decisions. Through collaborative computing between devices,
this strategy realizes effective offloading and sharing of tasks, and improves the overall computational
efficiency and performance of the system. In [42], Liu et al. designed an FL framework that centers on
collaborative computing and significantly improves the overall computational efficiency by facilitating
the collaboration of tasks among devices. In addition, an energy-aware scheduling method is proposed,
which is able to intelligently adjust the allocation of computational tasks by real-time monitoring of
the device’s battery power and computational load, thus effectively extending the device’s endurance.
In order to achieve this goal, an energy consumption model is also established, which is able to
dynamically adjust the allocation of computing tasks according to the real-time energy consumption
of the device, ensuring the effective use of resources and the optimization of energy consumption. In
[43], Wang et al. proposed a task scheduling algorithm based on the energy consumption model, which
considers a typical EL framework, utilizes limited computational communication resources in EL for
the best performance, and optimizes the task scheduling strategy by real-time monitoring of device
power consumption. In [44], Zhou et al. used a low-power algorithm to reduce energy consumption
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during computation, and designed an energy-efficient FL algorithm through the overall architecture,
framework, and emerging key technologies for training and reasoning in deep learning models at
the edge of the network, which effectively extends the device’s endurance by optimizing the energy
consumption during the computation process. Through this innovation, the energy efficiency of the
FL system is improved, which enables the device to run for a longer period of time while performing
learning tasks, thus enhancing the utility and flexibility of the system. For tasks with high real-time
requirements, computational resources are prioritized and allocated to improve the real-time response
capability of the system. In [45], Li et al. designed a computational scheduling framework centered on
real-time prioritization, which significantly improves the real-time response performance of the system
by dynamically adjusting the priority of computational tasks. This innovation ensures that the system
can respond quickly to real-time tasks and improves the efficiency of the system.

The above studies address a single computational resource allocation, and through various
strategies such as task decomposition and scheduling, task offloading, energy-aware scheduling and
computational priority scheduling, the utilization of computational resources can be optimized to
improve the overall performance and efficiency of the system. However, in [46], computation offload-
ing is a key technique for solving the resource-constrained problem of user devices. Computing on a
single device may lead to increased application latency due to limited computation and communication
as well as storage resources, computing resources alone may not be sufficient to handle complex and
large-scale data streams, leading to processing capacity bottlenecks. On the contrary, for multiple
devices, joint scheduling of resource allocation effectively reduces overall latency by optimizing the
distribution of tasks across them. In the next chapter, we will explore in-depth in conjunction with
other resource allocation algorithms, dynamic scheduling strategies, and co-scheduling mechanisms
to jointly enhance the resource management capabilities of FEL.

3.2 FEL Based Communication Resource Allocation

Communication resource allocation for FEL involves efficiently distributing wireless communi-
cation resources among multiple ED to support the training and updating of the distributed ML
model. These communication resources include wireless spectrum, transmission power, bandwidth
optimization, and coding resources. In FEL, the goal of communication resource allocation is to
optimize the efficiency of communication resource utilization and reduce latency while ensuring the
quality of model training.

FEL faces great challenges in communication resource allocation, especially when the number
of ED is huge and the network environment is complex, how to efficiently allocate and manage
communication resources becomes a key issue to improve the overall performance of FEL. FEL needs
to frequently exchange model parameters between ED and ES, so the optimization of communication
bandwidth is especially important. The bandwidth allocation is dynamically adjusted according to the
network state and data volume to optimize the data transmission efficiency.

Current research focuses on reducing the amount of transmitted data and improving transmission
efficiency. For example, methods based on model compression and sparsity can significantly reduce the
communication overhead [28]. Through data compression and coding techniques, the amount of trans-
mitted data is reduced and the efficiency of communication bandwidth utilization is improved. The size
of the model is reduced by removing parameters that contribute less to the model through pruning. In
[29], McMahan et al. proposed an SGD algorithm for differential privacy, called Differential Private
SGD (DPSGD). This algorithm adds Gaussian noise to the transmitted parameters, thereby reducing
the amount of exact data to be transmitted while preserving data privacy. By adding Gaussian noise
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to the gradient update, the DPSGD algorithm is able to provide effective protection of user privacy
without sacrificing model performance. In [47], Lin et al. proposed a gradient quantization technique
that effectively reduces the amount of data transmission by reducing the representation accuracy of
model parameters. Specifically, the gradient values are converted to a low-precision representation,
which significantly reduces the communication cost. With this approach, not only the communication
efficiency is improved, but also the network bandwidth requirement is reduced, providing an effective
solution for the application of FL systems in resource-constrained environments.

The utilization of communication resources can be effectively improved by dynamically adjust-
ing the communication frequency through real-time monitoring of the network status and device
requirements. Based on the current network bandwidth and the computational load of the devices,
the communication period of the model update can be dynamically adjusted. Based on the real-time
network load and data transmission demand, the bandwidth allocation strategy can be dynamically
adjusted.

In [43], Wang et al. proposed an adaptive FL mechanism that dynamically adjusts the commu-
nication frequency by monitoring the network and device status, thus reducing the communication
overhead. This method can flexibly adjust the communication strategy according to the actual condi-
tions, which optimizes the allocation and utilization of communication resources. In [48], Aji et al. sig-
nificantly reduced the amount of data transmitted by evaluating the importance of gradients, which
allows selective transmission of parameters that are critical for model updating. This approach
optimizes communication efficiency as it transmits only key information that is critical for model
improvement, thus reducing unnecessary data transmission and saving bandwidth and communication
resources. In a multi-device environment, a communication prioritization allocation strategy based on
device characteristics can be used for more efficient use of communication resources. Each device is
assigned a corresponding communication priority based on its computing power, data volume, and
network condition. This strategy enables the devices to contribute more computational resources
and updates during the training process according to their capabilities, which in turn improves the
overall model training efficiency. In [49], Nishio et al. proposed that better performing devices can
communicate with the server more frequently to provide timely model updates, thus speeding up the
training progress. This method of prioritization assignment based on device characteristics helps to
achieve collaborative training among multiple devices and improves the overall performance of FL.
According to the urgency and importance of tasks, the allocation of communication resources can be
flexibly adjusted to prioritize the needs of critical tasks. In [18], Kairouz et al. proposed that more
communication bandwidth can be allocated to tasks that are critical for model training or decision
making to ensure that they can be completed in a timely and efficient manner. This task-priority based
communication resource allocation strategy helps to improve the overall performance of the system,
especially when resources are limited, and ensures that critical tasks are prioritized, thus optimizing
the response time and resource utilization efficiency of the system. ES plays an important role in FEL
by optimizing the resource allocation through auxiliary communication, and ES locally aggregates the
model parameters and reduces communication with the CS. In [19], Shi et al. designed a hierarchical
aggregation technique that effectively reduces the overall communication through local aggregation of
ES. With this approach, the communication efficiency is significantly improved and the overhead of
data transmission is reduced, thus optimizing the system performance. In [30], Mao et al. designed a
hierarchical network architecture that optimizes communication resources through multi-layered ES
distribution. In this multilayered ES architecture, data can be processed and aggregated at different
levels, thus reducing the communication burden on a single node. Communication delay and energy
consumption are reduced by optimizing communication paths and selecting the best transmission
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protocol. Data traffic is decentralized and congestion on a single path is reduced through multi-path
transmission techniques. It also improves communication efficiency and reliability by selecting the
optimal transmission protocol according to the network conditions.

The communication resource allocation based on FEL effectively optimizes the communication
bandwidth utilization through the strategies of model compression, adaptive communication, inter-
device collaboration, and ES assistance. Separate communication resource allocation has been exten-
sively studied in the aforementioned works, aiming to optimize the efficiency of federated learning
through effective communication resource management. In contrast, federated resource allocation
approaches can bring more performance improvements. In [50], Ni et al. suggested that complex tasks
with multiple rounds of updates lead to high communication costs, increasing network bottlenecks
and affecting system performance. In addition, load imbalance is a serious problem and may lead to
degradation of quality of service. Joint resource allocation addresses these challenges more effectively
by sharing the load and improving system reliability and flexibility. Joint resource allocation not only
enhances the flexibility and robustness of the FEL system compared to single communication resource
optimization, but also substantially improves the model performance in multi-device and multi-task
environments, making it more efficient and practical in real-world applications. Future research can
be combined with other systematic processing methods to jointly enhance the resource management
capability of FEL.

3.3 FEL Based Data Selection

Due to the uneven and diverse data distribution on each device, the role of data selection strategies
in FEL is crucial. This subsection explores effective data selection strategies in the FEL framework to
enhance model performance and training efficiency.

In FEL, data selection not only affects the performance of the model, but also directly relates to the
efficiency of training and privacy protection. Data on different ED may have significant differences,
i.e., data heterogeneity, and such differences can lead to inconsistency in model performance. If an
effective data selection strategy is not chosen during model training, it may result in data on certain
devices contributing less to the model, thus affecting the overall model accuracy and generalization
ability. The privacy of the devices should also be protected during the data selection process while
maintaining the validity and availability of the data.

In [51], Serhani et al. designed a dynamic sample selection model designed to optimize resource
utilization and address the problem of big data heterogeneity and data imbalance. On ED, com-
putational and storage resources are usually limited. Therefore, by selecting a subset that best
represents the overall data distribution for training, resource utilization efficiency can be significantly
improved and unnecessary computational overhead can be reduced. In [52], Hu et al. developed a
framework called Auto FL, which enhances device involvement in model training by empowering
clients to make autonomous decisions. This autonomous decision-making process allows the client
to flexibly decide whether or not to participate in model training based on its own resource status and
network conditions, thus effectively increasing the device’s participation. This increased participation
not only expands the range of devices participating in training, but also significantly improves the
performance and training efficiency of FEL. In FEL, data selection also requires consideration
of privacy protection. By selecting the non-sensitive data that contributes the most to the model
training, the model performance can be improved while ensuring privacy. In [53], Wei et al. proposed
a participant selection problem aiming to minimize the total cost of hierarchical FL with multiple
models, and based on this, to enhance privacy protection and reduce the total learning cost. In [54], a



1964 CMC, 2024, vol.81, no.2

wireless gradient aggregation technique is employed in order to achieve efficient resource management
in FEL. In order to solve the channel and data distortion problem caused by channel fading and data-
aware scheduling, Su et al. proposed a sensor-side residual feedback mechanism. This mechanism is
able to offset the bias caused by channel and data distortion, which improves the convergence speed
of training, reduces the training loss, and avoids the distortion problem. In this way, not only faster
convergence speed and lower training loss are realized, but also the accuracy and reliability of the
training process are ensured. In [55], Kim et al. developed an innovative mobile edge computing
(MEC) server selection and datasets management mechanism for FL-based mobile network traffic
prediction. The impact of MEC server participation and datasets utilization on global model accuracy
and training cost is deeply analyzed to construct an accurate mixed-integer nonlinear programming
problem. Validated by simulation experiments and real datasets, the proposed framework achieves a
40% reduction in energy consumption while reducing the number of MEC servers involved in the FL
process and maintains a high prediction accuracy.

Data selection plays a crucial role in FEL. An effective data selection strategy not only improves
the performance of the model, but also optimizes resource utilization, improves training efficiency,
and protects data privacy. However, separate data selection strategies, while optimizing the quality
of training data to some extent, often fail to take full advantage of their inherent values when
communication bandwidth is limited or computational power is restricted. In [56], Xin et al. suggested
that a single data selection strategy has several drawbacks. It can lead to poor data representation,
significant model bias, high risk of over-fitting, and poor performance in dealing with data imbalance
and insufficient update frequency. Comparatively, joint resource allocation, by combining data sources
from multiple nodes, can provide more comprehensive data diversity, reduce bias, balance data
categories, and improve the generalization ability and updating effectiveness of the model. Future
research can further explore more data selection methods and combine them with other resources
(computational resources, communication resources). Compared to individual data selection, the
joint resource allocation approach not only considers the importance of data selection, but also
simultaneously optimizes multiple dimensions such as communication resources, computational
resources, and device scheduling. This integrated optimization approach can better coordinate the
use of data selection with other system resources, enabling the system to achieve better performance
under different network conditions and computing environments when facing the growing multiple
demands of users.

3.4 FEL Based Device Scheduling

In FEL, the heterogeneity of ED makes device scheduling crucial. A reasonable device scheduling
strategy can fully utilize the computational resources of ED, balance the load, reduce the training
time, and improve the overall performance of the system. The wide variation in ED in terms of
computational power, storage capacity, network bandwidth, and battery life poses challenges to device
scheduling. How to maximize the utilization of these heterogeneous resources while ensuring the model
training effect is the core problem of device scheduling. The main goals of scheduling strategies include
maximizing resource utilization, balancing device load, minimizing model training time, optimizing
communication overhead, and extending device battery life, etc.

Resources such as computing power, storage space, and energy supply of the ED are evaluated
to determine the performance and capacity of the equipment. Since the ED has limited resources, the
device capacity assessment can optimize resource utilization and improve the scalability and utility of
the system.
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Through the application of DRL algorithm, it can dynamically learn and adjust the task allocation
strategy according to the real-time state of the equipment and network conditions, so as to improve
the efficiency of resource utilization. In [57], Chen et al. constructed an adaptive scheduling model for
energy hubs based on the DRL algorithm. The model adopts the federated DRL method to meet the
requirements of data privacy protection. The matching learning technique accelerates the convergence
of DRL intelligence by solving the training instability problem in large-scale shared learning. The
algorithm significantly improves the training efficiency and economic benefits in the application of
multi-energy hubs. In [58], Yan et al. pointed out that due to the rapid development of IoT and edge
computing technologies in recent years, personal privacy and data leakage have become major issues in
IoT edge computing environments. FL has been proposed as a solution to address these privacy issues.
However, the heterogeneity of the devices in the IoT edge computing environments poses a significant
challenge to the implementation of FL. To overcome this challenge, a novel DRL-based node selection
strategy is proposed to optimize FL in heterogeneous device IoT environments. Furthermore, the
proposed strategy can ensure the efficiency of heterogeneous devices participating in the training and
improve the accuracy of the model while guaranteeing privacy protection.

Dynamic task allocation strategies achieve efficient resource utilization by dynamically adjusting
the allocation of tasks based on the real-time state of the device. In [59], Ren et al. introduced
an innovative scheduling strategy aimed at improving the performance of FEL by developing a
probabilistic-based scheduling framework that ensures unbiased aggregation of global gradients and
accelerates the convergence speed of the model. The strategy designs a relatively optimal scheduling
scheme by taking into account the importance of channel states and updated data. In addition, a
detailed convergence analysis is performed to demonstrate the effectiveness of the strategy. The final
experimental results show that the strategy can significantly improve the learning performance of FEL.
In [60], Chu et al. explored the Constrained Markov Decision Process (CMDP) problem of combining
FL with MEC server. In this model, the mobile device periodically transmits updates of the local
model to the ES, which contains training on locally sensitive data. ES is responsible for aggregating
the parameters from the mobile device and broadcasting the aggregated parameters back to the mobile
device. The ultimate goal is to dynamically optimize the mobile device’s transmit power and the
scheduling of training tasks. In the first step, the resource scheduling problem during synchronized
FL is modeled as a CMDP problem and the size of the training samples is used as a measure of FL
performance. Due to the coupling between iterations and the complexity of the state-action space, the
authors employ a Lagrange multiplier approach to solve this problem. The final simulation results
show that the proposed stochastic learning algorithm outperforms other benchmark algorithms in
terms of performance. This suggests that the strategy can effectively balance the performance and
resource constraints of FL, thus realizing efficient FL in an MEC environment.

Energy-aware scheduling strategies dynamically adjust task assignments to reduce energy con-
sumption through the real-time energy consumption of devices. In [61], Hu et al. conducted an in-
depth study on the problem of device scheduling in FEL systems, which face stochastic data generation
constraints of energy and delay at the ED. To cope with the system dynamics of data arrivals and energy
consumption, a dynamic scheduling algorithm was designed using Liapunov optimization, which aims
to maximize the importance of long-term data while taking into account the energy consumption and
per-round latency under the constraints of the set of scheduling devices. The final results show that
the proposed method has significant advantages in reducing energy consumption and achieving better
learning performance. This suggests that the strategy can effectively balance the performance and
resource constraints of the FEL system to achieve efficient FEL in practical applications. Both energy
consumption and model performance are important metrics of FEL. In [62], Hu et al. modeled the
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two metrics, energy consumption and model performance, to reveal the relationship between them,
especially the correlation with the size of training data. In order to further optimize the FEL system,
a workload constraint is added to the model, resulting in a common factor constraint problem. A
strategy for resource optimization and device scheduling is proposed to address this problem, aiming
to achieve a balance between energy consumption and model performance. The strategy minimizes
the energy consumption of the training device by dynamically adjusting the workload of the device
and the size of the training data. Experimental results demonstrate the effectiveness of the strategy,
which can significantly reduce the energy consumption of the training device while maintaining good
model performance.

In FEL, communication time minimization is necessary for device scheduling. In FEL, due to
bandwidth constraints, only some devices can be selected to upload their model updates at each
training iteration. This challenge has led to the study of optimal device scheduling strategies in
FEL aiming at minimizing communication time. In [11], Zhang et al. proposed a new probabilistic
scheduling scheme aimed at minimizing the communication time. The final results of this scheme show
that the method is robust to changes in different network conditions and device performances, and
it is effective in minimizing the communication time. In [63], Zhang et al. focused on exploring the
optimal device scheduling strategy in FEL to significantly reduce communication time. However, due
to the difficulty in quantifying the communication time, the current study can only partially address
this issue by considering the number of communication rounds or the delay per round to indirectly
determine the total communication time. In order to address this challenge more precisely, a first
attempt is made to formulate and solve the communication time minimization problem. Based on the
analytical results, a closed form of an optimized probabilistic scheduling policy is obtained by solving
an approximate communication time minimization problem. As the training process progresses, this
optimized strategy gradually shifts the priority from reducing the number of remaining communication
rounds to reducing the delay per round. Ultimately, the proposed scheme is demonstrated to be
effective in minimizing the communication time and reducing the delay per round in a case study
of cooperative 3D target detection.

FEL-based device scheduling effectively improves the overall system performance and resource
utilization efficiency through the application of DRL algorithms, dynamic task allocation, energy-
aware scheduling, and minimization of communication time. Unlike standalone device schedul-
ing, joint device scheduling and communication resource allocation not only focuses on selecting
which devices participate in training, but also simultaneously optimizes each device’s communication
resources, bandwidth allocation, and computational capabilities. In [64], Taïk et al. suggested that
single-device scheduling strategies face problems such as poor data representation, uneven resource uti-
lization, large fluctuations in model performance, data imbalance, and insufficient update frequency.
In contrast, joint resource allocation can improve data diversity, optimize resource allocation, enhance
model stability, balance data categories, and increase update frequency and efficiency by integrating
data from multiple devices. Future research can delve into more intelligent scheduling algorithms, real-
time dynamic adjustment strategies, and multi-level collaborative mechanisms. By jointly optimizing
additional resources, FEL systems can better coordinate the relationship between device selection and
other resource allocation.

3.5 FEL Based Network Topology

Network topology is the structure of devices and their connections in a network. In FEL,
network topology directly affects data transmission, model synchronization, and resource allocation.
FEL based network topology is a distributed computing architecture that combines edge computing
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and FL to enable collaborative learning among devices while protecting data privacy and reducing
communication overhead. In this topology, ED such as smartphones, sensors, and IoT devices collect
data locally and train on local models. These devices then share updates to the model, typically usually
gradient or parameter updates, rather than raw data, in a privacy-preserving manner, either through
ES or by directly collaborating with other devices.

The network topology in FEL can be categorized as star topology, tree topology, mesh topology,
hybrid topology, etc.

The origin of FL is the co-training of ML algorithms on devices in multiple locations, and the core
idea is to implement ML without centralizing or directly exchanging private user data. Nevertheless,
most FL implementations still rely on the presence of CS. The most common network topology in
FL, including the initial work, uses a centralized aggregation and distribution architecture, which is
also known as a star topology. Thus, the graphical representation of this server-client architecture
resembles a star, as shown in Fig. 3. Many FL studies and algorithms have been designed based
on the assumption of this star topology. In a star topology, all ED are directly connected to a CS,
which is responsible for coordinating the aggregation and distribution of models. The advantage
of this topology is that the CS can easily manage all the ED, but the disadvantage is that the CS
then becomes a single point of failure and can lead to bottlenecks in large-scale networks. In [65],
Wu et al. considered that traditional Federated Averaging Algorithm (FedAvg)-based FL approaches
tend to use a simple star network structure, which does not adequately consider the changes in
edge computing environments in real-world scenarios and the diverse heterogeneous and hierarchical
characteristics of the network topology. Therefore, other topology needs to be considered to address
the limitations and bottlenecks of the star topology.

Figure 3: Star topology

Between the CS and the ED, one or more additional levels may exist. For example, the ES
connecting the ED and the CS may form one or more layers to form a tree topology, as shown in
Fig. 4. In this structure, the CS is located at the top of the tree and the ED is located at the bottom
of the tree. A tree topology contains at least three levels, otherwise it would be considered as a star
topology. Tree topology helps to overcome the bottleneck in performance and single point of failure
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in star topology as compared to conventional FL. Thus, FL with tree topology can achieve different
communication costs in different clusters based on their energy profiles. In the FL system with tree
topology, any level of clients can exist. Fuzzy logic research in tree topology is divided into two main
categories: hierarchical and dynamic. Hierarchical research is concerned with how to rationally divide
and design the hierarchical structure of the tree topology in order to improve the overall performance
and stability of the system. Dynamic research, on the other hand, focuses on how to dynamically
adjust the hierarchical structure of the tree topology according to the changes in the system state and
requirements in order to adapt to different application scenarios and environmental conditions. The
tree topology is similar to a hierarchical network, where ED are connected according to a hierarchical
structure and data and models can be transmitted along tree paths. This structure reduces the risk of
single point of failure and can be scaled efficiently, but bottlenecks may still exist at some levels.

Figure 4: Tree topology

A mesh topology is a network structure in which all end devices are directly connected in a local
network. In recent research, this topology is often used in FL systems. For example, Peer-to-Peer
(P2P) or Device-to-Device (D2D) FL models are mesh topologies. Nevertheless, many existing FL
systems still rely on centralized or cloud servers for model aggregation. When centralized servers
are not feasible, decentralized approaches are sometimes considered as a sub-optimal alternative to
centralized approaches. In a mesh topology, each ED can be directly connected to multiple other
devices to form a mesh-like network, as shown in Fig. 5. The mesh topology provides high redundancy
and fault tolerance, but the network complexity is higher and more difficult to manage and maintain.
In [66], Xu et al. proposed a decentralized learning architecture using a mesh topology with multiple
autonomous computing nodes. In this setup, all nodes are equal and communicate directly with each
other through P2P, promoting efficient and flexible data exchange.
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Figure 5: Mesh topology

In the previous study, we explored a series of topologies that are prevalent in the FL domain.
Although these topologies are able to cope with numerous scenarios, each of them has certain
advantages and limitations. In order to fully utilize the advantages of different topologies, attempts
have been made to fuse various topologies to form a hybrid network topology. The design concept
of this hybrid topology is to combine the advantages of at least two traditional architectures in
order to seek a balance between performance and complexity, and thus create a more flexible and
efficient solution, as shown in Fig. 6, where the addition of mesh connections can be added on top
of a star, and the redundancy and fault tolerance can be improved. In [67], Kaur et al. modeled and
simulated a wireless sensor network using Zigbee technology according to the characteristics of the
Zigbee protocol, designed a hybrid topology, considered three unused combinations of possibilities of
routing schemes for Zigbee in different scenarios, and finally verified the communication by testing
key metrics such as latency, throughput, network loading, and packet delivery rate, and finally verified
the communication reliability of the network.

Network topology plays a crucial role in FEL. Properly designing the network topology and
adopting some dynamic and collaborative resource allocation strategies can significantly improve the
performance and efficiency of FEL as well as the stability of the system. However, under complex
network conditions, it is difficult to achieve globally optimal performance with separate topology
optimization strategies. In contrast, the joint resource allocation strategy is able to optimize the
network topology and communication resources together as a whole. In [68], Wei et al. noted the
limitations of single network topology resource allocation, including constraints and high communi-
cation costs, and stressed that federated resource allocation improves flexibility and scalability. Under
the framework of joint network topology and communication resource allocation, not only can the
network topology be dynamically adjusted according to the geographic location of devices, network
structure, and communication status between devices, but also the allocation of communication
resources can be optimized simultaneously. This strategy can effectively reduce the communication
delay under different topologies and maximize the participation of devices and the overall efficiency
of the system. The next chapter will further explore more ways to combine network topology with
other resource allocations.
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Figure 6: Hybrid topology

4 Optimized Multi-Resource Allocation for FEL

With the popularity of IoT devices and the explosive growth of data volume, the traditional
centralized data processing paradigm can no longer meet the demands of real-time and privacy
protection. Therefore, FEL, an emerging distributed ML paradigm, has been proposed to address
these issues. FEL allows model training and updating on distributed devices at the edge of the network,
thereby reducing data transmission latency, improving computational efficiency, and enhancing
privacy protection. However, FEL faces many challenges in its implementation, one of which is
how to efficiently allocate and manage multiple resources to ensure model training efficiency and
performance. In FEL, multi-resource allocation involves how to rationally allocate computational
resources, communication resources, data selection, device scheduling, and network topology to
support model training and updating. In this section, we explore the issue of multi-resource allocation
in FEL.

4.1 Joint Computing and Communication Resource Optimization for FEL

In FEL, computational and communication resources are closely related. The computational
capacity of ED determines the speed and energy consumption of local model training, while the
limitation of communication resources affects the transmission efficiency of model parameters. Jointly
optimizing the computational and communication resources can reduce the training time and energy
consumption and improve the overall efficiency of the system under the premise of ensuring the
model’s accuracy. Existing research focuses on the following aspects, dynamic task allocation and
scheduling, model compression and communication optimization, and energy consumption awareness
and energy saving optimization.

4.1.1 Dynamic Tasking and Scheduling

Dynamic task allocation and scheduling is to dynamically adjust the allocation and communica-
tion frequency of computing tasks according to the real-time status of ED. Dynamic task allocation
and scheduling contains not only task decomposition and dynamic scheduling, but also load balancing
and computational prioritization. Among them, the task decomposition and dynamic scheduling
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technique improves the efficiency of resource utilization, improves the training efficiency, and reduces
the overall training time while fully utilizing the computational resources of the ED by decomposing
the computational task into a number of sub-tasks, decomposing the model into a number of sub-
models, and dynamically adjusting the order of the task execution allocation and scheduling according
to the real-time computational capacity of the device system and the network condition [69]. Task
decomposition is the process of decomposing a large-scale model training task is decomposed into
multiple small tasks and assigned to different ED.

In [45], Li et al. proposed a task decomposition method based on ED collaboration, which
optimizes resource utilization by decomposing and assigning tasks. Dynamic scheduling refers to the
dynamic adjustment of task allocation and scheduling based on the real-time computing capability,
load and network conditions of the device, then in [70], Chen et al. proposed a DRL-based dynamic
scheduling algorithm to achieve efficient resource allocation by monitoring and predicting the device
status in real-time. Through load balancing and computing priority setting in dynamic task allocation
and scheduling, the computing load of each ED is balanced, avoids overloading of a single device,
and effectively improves the computational efficiency of the overall system. Load balancing refers
to real-time monitoring of the computing load of each device according to the computing capacity,
storage space and energy supply and other resources of the ED, and reasonably allocating tasks, and
realizing load balancing by adjusting the task allocation, and ultimately achieving the optimal use of
resources. Among them, load balancing can improve the overall performance of the system and avoid
resource waste and bottleneck problems. In [71], Lu et al. proposed a load balancing framework to
optimize resource utilization by dynamically adjusting task allocation through distributed algorithms.
Computational prioritization refers to setting the computational priority according to the importance
and urgency of tasks and prioritizing the allocation of resources to high-priority tasks. Computational
prioritization ensures that critical tasks are prioritized and improves the response speed and perfor-
mance of the system. In [49], Nishio et al. proposed a priority scheduling algorithm that improves
system response speed by prioritizing high priority tasks. In [72], Gu et al. proposed an improved
federated self-supervised learning algorithm. It optimizes computational and communication resource
allocation by combining integrated sensing and communication technologies in an intelligent transport
system. The algorithm does this by offloading some tasks to the roadside unit (RSU). It also adjusts
the transmission power, CPU frequency and task allocation ratio to balance the energy efficiency of
local computing with RSU computing while optimizing resource allocation. The study shows that the
improved algorithm reduces energy consumption and improves offloading efficiency, demonstrating
its effectiveness in dynamic task offloading and resource allocation.

In FEL, dynamic task allocation and scheduling is a complex process that requires comprehensive
consideration and optimization of factors such as task decomposition, dynamic scheduling, load
balancing, and computational priority. By reasonably allocating tasks and scheduling, the overall
performance and efficiency of the system can be improved and the optimal utilization of resources
can be achieved.

4.1.2 Model Compression and Communication Optimization

Model compression and communication optimization are used to reduce the amount of trans-
mitted data and optimize communication resources through model compression and parameter
quantization [28]. Model compression techniques significantly reduce the amount of transmitted
data, reduce storage and computation requirements, and improve the efficiency of communication
bandwidth utilization by reducing the number of model parameters, using simpler model architectures,
and so on [47]. In FEL, since ED are usually limited in terms of resources, such as computational
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power, storage space, and energy supply, model compression is crucial to improve the scalability and
utility of the system. Parameter pruning in model compression techniques is used to reduce the size of
the model by removing parameters that contribute less to the model through pruning.

A weight pruning method significantly reduces the number of parameters of the DNN by pruning
and fine-tuning layer by layer to achieve model compression. The low-rank decomposition in the
model compression technique is to reduce the number of parameters by decomposing the weight
matrix into two smaller matrices. This approach reduces the model storage space and improves the
computational efficiency. Communication optimization strategy in FEL is to reduce unnecessary com-
munication overhead, optimize communication resources, improve communication efficiency, reduce
communication delay and optimize system performance through adaptive communication frequency
and differential privacy strategies. In FEL, communication overhead is an important performance
bottleneck. By optimizing the communication, the overall efficiency and responsiveness of the system
can be improved. Adaptive communication in the communication optimization strategy dynamically
adjusts the communication frequency according to the network state and device requirements. In
[43], Wang et al. proposed an adaptive communication mechanism that dynamically adjusts the
communication frequency and reduces the communication overhead by monitoring the network and
device states. Differential privacy in the communication optimization strategy protects data privacy
by adding noise to the transmission parameters while reducing the amount of precise data to be
transmitted. In [29], the DPSGD algorithm proposed by McMahan et al. protects user privacy by
adding Gaussian noise. These techniques not only reduce the amount of communication but also
increase the efficiency of communication at the same time. In [73], Guo et al. proposed a robust
and efficient soft clustered federated system named REC-Fed, which aims to solve the problem of
resource-constrained edge networks. The system enhances the personalization and robustness of model
aggregation through a hierarchical aggregation method. In addition, adaptive model transmission
optimization was also designed to jointly optimize model compression and bandwidth allocation to
improve transmission efficiency. In [74], Ma et al. proposed a novel FL framework. Joint optimization
of computational and communication resources is achieved through computational offloading. The
framework utilizes computational offloading to deal with the challenges posed by data heterogeneity.
It also minimizes Kullback-Leibler (KL) scatter by optimizing computational offload scheduling.
Minimizing communication costs through resource allocation. Federated learning based on comput-
ing Offloading decouples the optimization of computational and communication resource allocation
into two steps. It effectively improved the convergence and accuracy of the model and reduced the
negative impact of data heterogeneity on the system.

In FEL, model compression and communication optimization are interrelated. Model compres-
sion reduces the amount of data that needs to be transmitted, thus reducing communication overhead.
Meanwhile, communication optimization can improve communication efficiency and thus reduce the
need for model compression. Therefore, in FEL, model compression and communication optimization
are complementary and need to be considered and optimized comprehensively.

4.1.3 Energy Consumption Sensing and Energy Optimization

Energy-aware and energy-saving optimization is to reduce the energy consumption in the com-
putation and communication process by means of an energy model and a low-power algorithm [43].
The energy-aware scheduling method dynamically adjusts the allocation order of computation tasks
according to the real-time situation by means of the ED battery power and the computation load
in order to balance the system devices, reduce the waiting time, reduce the energy consumption, and
prolong the device’s endurance [44]. The energy model in energy-aware scheduling is implemented
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by means of establishing an energy consumption model to dynamically adjust the computation tasks
according to the real-time energy consumption of the devices.

In [75], Li et al. proposed a task scheduling algorithm based on the energy consumption model
to optimize the task scheduling strategy by monitoring the device power in real-time. In addition, the
energy-saving algorithm in energy-aware scheduling uses a low-power algorithm to reduce the energy
consumption in the computation process. In [76], Wen et al. proposed an energy-efficient FL algorithm
to improve the device endurance by optimizing the energy consumption during computation. Inter-
device Collaboration and Energy Sharing in Energy Sensing and Energy Saving Optimization Achieve
efficient use of resources and energy saving optimization through collaborative computation and
energy sharing between devices. In [77], Stergiou et al. proposed an innovative cloud-based architec-
ture, InFeMo, focusing on optimizing the allocation of computational and communication resources.
InFeMo achieves efficient computational resource utilization by combining FL scenarios and existing
cloud models with the flexibility of choosing to train the model on either a local client or a cloud
server. This strategy not only reduces the waiting time for user requests, but also optimizes resource
efficiency through energy-efficient design, further enhancing the coordinated allocation of computing
and communication resources.

Collaborative computing is inter-device collaborative computing, where a task or model training is
accomplished together through the decomposition and sharing of tasks and communication collabora-
tion between ED [78]. Inter-device collaboration can fully utilize the computational resources of ED to
improve computational efficiency and system performance, while reducing the energy consumption of
individual devices [79]. In [42], Liu et al. proposed a FL framework based on collaborative computing,
which improves computational efficiency through inter-device task collaboration. Energy sharing is
an energy saving optimization through energy sharing and dynamic scheduling among ED. Energy
sharing can improve the overall energy efficiency of the system and extend the device’s endurance
while reducing energy consumption. In [80], Zhang et al. proposed an energy sharing mechanism that
optimizes computational resource utilization through energy scheduling between devices.

In FEL, energy sensing and energy saving optimization is a complex process that requires
comprehensive consideration and optimization of factors such as energy sensing scheduling, inter-
device collaboration and energy sharing. By reasonably assigning tasks and scheduling, the overall
performance and efficiency of the system can be improved and the optimal utilization of resources
can be achieved. At the same time, through inter-device collaboration and energy sharing, the energy
consumption of individual devices can be reduced, the duration of the devices can be extended, and
energy-saving optimization can be achieved.

4.2 Joint Data Selection and Communication Resource Allocation for FEL

In FEL, due to the heterogeneity of ED and resource constraints, how to effectively select training
data and optimize communication resources becomes the key to improving the performance of FEL.
In this paper, we explore the strategy of joint data selection and communication resource optimization
based on FEL and its application to achieve efficient resource allocation and system performance
improvement.

In FEL, the data on ED are often non-independently and identically distributed (non-IID),
and there are large differences in data distribution and data volume across devices. An effective
data selection strategy not only reduces the communication overhead, but also ensures the global
convergence and performance of the model. Therefore, reasonable data selection is crucial for the
successful implementation of FEL. In addition, communication resources are one of the key factors
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affecting system performance. An efficient communication resource optimization strategy can reduce
the transmission delay, lower the energy consumption, and improve the transmission efficiency, thus
enhancing the overall performance of FEL.

The integration of joint data selection and communication resource optimization strategies aims
to construct an efficient optimization framework to achieve the co-optimization of data selection and
communication resource allocation. The joint data selection and communication optimization model
is constructed to achieve overall optimization by comprehensively considering data characteristics and
communication costs. By incorporating data selection and communication resource optimization into
the same optimization model, global optimization is achieved by comprehensively considering data
distribution, computational load and communication cost. Current research on sensing technology
mainly focuses on a single federated device, ignoring the competition between devices and the resource
allocation problems within devices, which limit the application of sensing technology.

To address this challenge, in [3], Fu et al. first delved into the potential bottlenecks when executing
multiple federated tasks and constructed a federated optimization model to model the problem as
a multidimensional optimization problem, which involves the device selection and communication
resource allocation in a two-stage Stackelberg game. In order to solve this problem more efficiently,
we propose a device selection and resource allocation method based on a multi-coalition game, which
ultimately proves that the proposed method can reduce training time and save communication costs.
The traditional centralized learning approach transmits data directly to the center for processing,
which, although simple, introduces significant communication delays and may raise the risk of serious
privacy breaches. To overcome these challenges, a significance-aware FEL system has been proposed
in [81]. The system aims to enhance learning efficiency by optimizing end-to-end latency. By analyzing
the relationship between communication resource allocation and data selection, and by exploiting
the correlation between loss attenuation and gradient paradigm, an optimization model aiming
to maximize the learning efficiency is constructed. Based on this, a data selection strategy and a
communication resource allocation method are further developed that achieves optimal performance
for a given end-to-end delay and sample size. By using a golden section search algorithm with low
computational complexity, the optimal end-to-end delay setting can be determined. Experimental
results on three popular convolution neural network (CNN) models show that the scheme not only
significantly reduces the training latency but also improves the learning accuracy compared to other
benchmark algorithms.

In [82], Liu et al. developed a new user scheduling algorithm for data collection in EL called data
importance-aware scheduling. A key feature of this scheduling algorithm is that the informativeness
of the data samples is taken into account, in addition to communication reliability. Specifically, the
scheduling decision is based on the data importance indicator (DII), which elegantly combines two
“importance” metrics from communication and learning perspectives, namely, signal-to-noise ratio
(SNR) and data uncertainty. The scheme can intelligently perform a joint selection of channels and
data for training data upload to accelerate learning. In FEL, due to frequent model updates, the system
needs to adapt to the limited communication bandwidth, the limited energy source of the ED, and
the statistical heterogeneity of the ED data distribution. Therefore, the subset of devices used for
training and uploading models must be carefully scheduled. Compared to previous work on FEL,
data properties have been under-explored, and for this reason, in [64], Taïk et al. proposed a new
scheduling scheme for FEL with non-IID and unbalanced datasets. Because data is a key component
of learning, a new set of factors is considered for taking data properties into account in the FEL
wireless scheduling algorithm. In the proposed algorithm, both data and resource perspectives are
considered. In addition to minimizing the completion time of FEL and the transmission energy of
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the participating devices, the algorithm prioritizes devices with rich and diverse data sets. Ultimately,
this strategy helps to reduce costs and improve the efficiency and performance of FEL. Sometimes,
limited wireless communication resources greatly restrict the number of participating users and are
considered to be the main bottleneck hindering the development of FEL. To address this problem,
in [83], Jiang et al. proposed a user selection strategy for FEL systems based on data importance. In
order to quantify the data importance of each user, the relationship between loss attenuation and the
squared gradient paradigm is first analyzed. Then, a combined optimization problem is formulated to
maximize the learning efficiency by jointly considering user selection and communication resource
allocation. Through problem transformation and relaxation, the optimal user selection strategy
and resource allocation are obtained, and a polynomial time optimal algorithm is given. Finally,
simulations are performed with DNN models. The experimental results show that the algorithm has
strong generalization ability and can obtain higher learning efficiency compared with other traditional
algorithms. In [84], Xu et al. proposed a multi-intelligence reinforcement learning algorithm for
optimizing data selection and communication resource allocation in intelligent cyber-physical systems
(ICPS). By modeling the resource allocation problem among heterogeneous devices as a Stackelberg
game and utilizing a partially observable Markov decision-making process, the algorithm efficiently
optimizes data selection and communication policies among participating devices without sharing
private information. The method reduces the differences in policy evaluation caused by interactions
between devices and significantly improves the convergence speed of the system, ensuring efficient
allocation of data and communication resources.

In FEL, the unreliability of the wireless channel may lead to random errors in the packets,
which in turn has a significant impact on the convergence speed and learning delay of the model.
To address this challenge, in [85], Xu et al. proposed an adaptive modulation strategy that aims
to balance the learning delay and convergence speed caused by random channel errors. Unlike the
traditional fixed modulation, this new scheme allows the wireless FEL system to dynamically adjust the
modulation based on the computational capability of the device, the channel condition, and the relative
importance of the training data, i.e., to achieve the joint consideration of the data importance and
the optimization of communication resources. To enhance the sensing performance, an optimization
algorithm for joint spectrum allocation and modulation scheme selection is further proposed, aiming
to maximize the learning efficiency. Experimental results confirm that the proposed FEL framework
can significantly improve the convergence speed of model training and thus the overall learning
efficiency. For the new radio in unlicensed spectrum (NR-U) based industrial IoT networks under, in
[86], Chen et al. proposed an innovative communication efficient FEL mechanism. The mechanism
aims to select industrial IoT devices with high importance to data for local training under some
relatively abundant resources. The objective function aims to balance the relationship between the
importance of total data and transmission delay in FEL, which is achieved through joint learning,
device selection and resource management scheduling. The Gradient norm value (GNV) of the local
model of industrial IoT devices is used as the data importance indicator. When dealing with the Mixed
Integer Nonlinear Programming (MINLP) problem, the Alternating Direction Method of Multipliers
with Block Coordinate Update (ADMM-BCU), which has a low computational complexity, is used.
ADMM-BCU algorithm, which is capable of deriving closed form expressions for optimal device
selection and resource management. The final results show that the proposed strategy is able to
accelerate the training process, improve the accuracy of the FEL, and significantly enhance the system
efficiency. In [87], Albaseer et al. introduced new algorithms for running semi-supervised FL at the
edge of the network, where devices have scarce labeled data and abundant unlabeled data. Considering
the limited computational and communication resources, as well as the deadline constraints specified
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by the system, a dichotomous based algorithm is finally proposed to minimize the energy consumption
and find the optimal transmit power and local CPU speed. Three control algorithms are then proposed
to automatically label the unlabeled data samples during the training round. All algorithms use strong
data augmentation during the training phase and weak data augmentation during the pseudo-labeling
phase. Ultimately the algorithms effectively utilize the unlabeled data samples. In [9], He et al. due
to limited communication resources, traditional centralized learning methods by directly transmitting
data can lead to significant communication delays and may pose a serious risk of privacy leakage.
To address these challenges, the FEL framework is explored and a novel joint selection and resource
allocation strategy that takes into account the importance of data is designed with the aim of improving
the efficiency of the learning process. By integrating the allocation of communication resources
and the selection of data, an optimization scheme with low computational complexity is proposed.
Experimental results show that the scheme can significantly reduce the delay in the training process
and improve the accuracy of the model.

In the hierarchical FEL architecture, in [8], Qiang et al. proposed a hierarchical FEL strategy
with data importance awareness. This strategy aims to maximize the learning efficiency of hierarchical
FEL by optimizing data selection and resource allocation. To achieve this goal, a joint algorithm that
integrates the importance of data is designed. To solve the problem of data selection and resource
allocation, it is decomposed into three sub-problems: ED association, resource allocation and data
selection. For each sub-problem, a corresponding processing method is made. By correctly selecting
important data, optimizing resource allocation and reasonably associating ED, the convergence speed
can be significantly accelerated, which in turn significantly improves the learning performance. The
selection of Hierarchical Federated Learning (HFL) nodes affects the quality of model training. In [56],
Xin et al. investigated the optimization problem of node selection accuracy in HFL. To improve the
quality of model training, a reputation-based node selection algorithm is designed. In the reputation-
based node selection algorithm, ES selects nodes with high reputation prediction value to participate
in model training, and nodes select neighboring nodes with high transmission capacity to collaborate.
In [88], Chen et al. proposed a new Semi-Asynchronous Hierarchical Federated Learning (SAHFL)
framework for mobile edge networks to enable resilient edge cloud model aggregation from data
sensing. We further formulate a federated edge node association and resource allocation problem
proposed under the SAHFL framework to prevent the individuality of heterogeneous devices and
achieve communication efficiency. The scheme is finally demonstrated to speed up the training process
and improve the performance of mobile edge networks.

Intelligent systems across application domains face challenges such as data heterogeneity, limited
wireless resources, and device heterogeneity, which require intelligent participant selection schemes
to speed up convergence. In [89], Albaseer et al. proposed joint participant selection and bandwidth
allocation schemes to address these challenges. A relaxation method is utilized to handle the combined
nature of participant selection, making the complex constraints less stringent. Subsequently, a prior-
itized selection algorithm is developed to select optimal participants with low time complexity using
relaxation-based solutions. The results show that the solution improves data utilization and speeds up
convergence. In [90], Albaseer et al. went on to propose a new cluster FEL client selection method that
exploits the heterogeneity of the devices to schedule clients based on their round delays and utilizes
bandwidth reuse for clients that take more time to update their models. The server then performs model
averaging and clusters the clients based on predefined thresholds as a way to reduce training time
and speed up convergence. In FEL, energy-constrained devices at the edge of the network consume
a large amount of energy when training and uploading local ML models, leading to a shortened
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lifetime. In [91], Albaseer et al. considered how to find the optimal user’s resources, including fine-
grained selection of relevant training samples, bandwidth, transmission power, beam forming weights,
and processing speed objectives, to minimize the total energy consumption during communication
rounds in FEL for a given deadline constraint. Since data heterogeneity degrades the performance of
FL and reduces resource utilization, then in [51], Serhani et al. proposed a heuristic Dynamic Edge
Selective Scheduling algorithm (DSS-Edge-FL) aiming to optimize the resources and address the data
heterogeneity. The final experimental results show that the method can speed up convergence and
improve resource efficiency, since the server needs to first capture all data distributions from all clients
to perform correct clustering. Due to resource and time constraints at the edge of the network, only
a small number of devices are selected in each round, so efficient scheduling techniques are needed to
address these issues, so in [92], Albaseer et al. newly proposed new client scheduling and selection
algorithms for cluster federated multitasking learning in order to improve the convergence speed
while capturing all the data distributions, thus improving the model for each cluster. This approach
ensures proper clustering and fairness among clients by utilizing bandwidth reuse, and the results
show that the proposed algorithm reduces the training time and improves the convergence speed
significantly. In [93], Hu et al. proposed a clustered data sharing framework to optimize the processing
of non-IID data. Through side-link-assisted multicasting, the framework selectively shares data to
mitigate the data heterogeneity problem. In addition, model convergence is accelerated by an adaptive
clustering algorithm and a stochastic optimized resource allocation algorithm. The model accuracy
in a limited communication resource environment is improved. The application of joint data selection
and communication resource allocation is effectively demonstrated.

In the FEL system, vehicles upload data to the ES, which trains the vehicles’ data to update the
local model [94] and then returns the results to the vehicles to avoid sharing the raw data [95,96].
However, the cache queue at the edge is limited and the channel between the ES and each vehicle is
time-varying [97]. Therefore, it is a challenge to choose the right number of vehicles to ensure that the
uploaded data maintains a stable cache queue in the ES [98] while maximizing the learning accuracy. In
addition, selecting vehicles with different resource states to update the data affects the total amount of
data involved in training, which in turn affects the accuracy of the model [99,100]. Therefore, in [101],
Wu et al. proposed a vehicle selection scheme for FEL systems in in-vehicle networks. This scheme
considers the states of all vehicles in the coverage area to maximize learning accuracy while ensuring
cache queue stability amid the influx of diverse data in 6G environments. In [102], Zhou et al. proposed
an FL model for efficient learning in a distributed end-edge-cloud setup, focusing on data privacy
and lowering communication costs. The two-tier design maximizes data use from vehicles and RSUs.
Table 1 summarizes the details of the review in this subsection and shows the highlights of this section.
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Table 1: Summary of reviewed works

Literature Algorithm deployment
location

Advantages and
disadvantages

Main technologies Impact of resource
optimization on other
system performance

[3,64,81–84] ED and cloud Data selection and
resource allocation
strategies perform well
in edge environments
but may be limited in
high-complexity tasks.

Focuses on
optimization of ED
such as data selection
and user scheduling.

Optimization improves
edge computing
response time and
computational
efficiency but may
negatively impact data
transmission and
system stability.

[9,85–87] ED and IoT networks High-complexity
algorithms may incur
higher computational
and communication
costs but offer
significant performance
optimization
advantages.

Includes advanced
technologies such as
adaptive modulation
and semi-supervised
learning.

Enhances
communication
efficiency and model
accuracy but may
increase computational
load when handling
large-scale data.

[8,56,88] Hierarchical edge
computing
environments

Hierarchical learning
methods effectively
optimize resource
allocation but may
introduce additional
computational
complexity and
synchronization issues.

Includes hierarchical
learning and
reputation-based node
selection techniques.

Improves efficiency in
hierarchical learning
but may affect system
synchronization and
stability.

[51,89–93] Heterogeneous edge
computing networks
and clustered
environments

Different approaches
have varied advantages
and disadvantages
regarding energy
efficiency, response
time, and fairness, with
significant optimization
effects in these areas.

Data-driven selection,
fine-grained selection,
and dynamic
scheduling
technologies.

Improves system energy
efficiency and response
time but may impact
system fairness.

[94–96,101,102] Vehicular networks and
heterogeneous edge
computing
environments

Applications in
vehicular networks and
heterogeneous
environments may face
stability and accuracy
issues, but overall
optimization effects are
notable.

Includes
mobility-aware caching,
asynchronous learning,
and multi-agent
reinforcement learning.

Enhances stability and
information timeliness
in vehicular networks
but may require
additional
computational
resources in dynamic
environments.

The efficient allocation of joint data selection and communication resources based on FEL,
with a wide application coverage, can significantly improve the overall system performance and
resource utilization efficiency through the integration of intelligent data selection and communication
optimization strategies. Future research can conduct in-depth exploration in terms of smarter resource
optimization algorithms, real-time dynamic adjustment strategies, and multi-level collaboration mech-
anisms to further enhance the performance and scalability of the FEL system.



CMC, 2024, vol.81, no.2 1979

4.3 Joint Scheduling and Communication Resource Allocation for FEL

FEL plays an important role in distributed ML, and by performing local training on ED and
transmitting only model parameters instead of raw data, FEL effectively protects data privacy.
However, the heterogeneous and resource-constrained nature of ED, as well as network bandwidth
limitations, make how to efficiently perform task scheduling and communication resource allocation a
key issue in improving the performance of FEL. In this chapter, we will explore the joint scheduling and
communication resource allocation strategy based on FEL and its applications, aiming to construct
an efficient optimization framework to achieve collaborative performance optimization of scheduling
and communication resource allocation.

In FEL, model convergence speed can be improved by optimizing scheduling and resource
allocation strategies to reduce training time. Due to the heterogeneity of the training data distribution,
enhancing the convergence speed can improve the training efficiency and performance of the model.
In [103], Shi et al. formulated the bandwidth allocation and scheduling problem to improve FL
convergence. They decouple it into two sub-problems: for bandwidth allocation, they find that more
bandwidth should be given to devices with poorer channels or weaker computational abilities. For
scheduling, a greedy strategy is used to balance training rounds and latency, selecting devices with
the fastest model updates to optimize learning efficiency. In [104], Yin et al. addressed convergence
delay with a client scheduling and resource allocation algorithm that considers system and client
heterogeneity, using an adaptive bandwidth allocation strategy. In [105], Shi et al. proposed a strategy
that combines device scheduling and resource allocation to maximize FL model accuracy within a fixed
training time, balancing per-round delay and the number of training rounds. In [106], Ren et al. focused
on FEL gradient averaging, proposing a probabilistic scheduling strategy that considers channel
quality and the importance of updates. This framework achieves faster model convergence and higher
accuracy compared to traditional methods.

Airborne Computing (AirComp) shows potential as a future solution by exploiting the super-
position properties of wireless channels. However, fading and noise in wireless channels may lead
to distortion in aggregation during FL, thus affecting the accuracy of the model. In addition, the
quality of the data and the energy consumption of the ED can also affect the efficiency of model
aggregation and convergence. To address these issues, in [107], Du et al. proposed a dynamic device
scheduling mechanism that is able to select eligible ED with appropriate power control strategies for
transmitting their local models to participate in server-side model training in FL. In this mechanism,
the importance of the data is jointly measured by the gradient of the local model parameters, the
channel conditions and the energy consumption of the device. In particular, in order to fully utilize
the distributed datasets and speed up the convergence of FL, the mechanism retains and accumulates
the local updates from the distributed devices for potential future transmissions rather than discarding
them directly. In addition, a strategy for searching for the best device selection is developed through
a Liapunov drift plus penalty optimization problem. Simulation results show that the scheduling
mechanism has higher test accuracy and faster convergence speed, and is robust to different channel
conditions. This suggests that the mechanism is able to effectively deal with various challenges that may
arise in FL, thus improving the accuracy and learning efficiency of the model. Since the wireless devices
involved in FEL have limited resources in terms of communication bandwidth, computational power
and battery capacity, their scheduling must be carefully designed to optimize the training performance.
In this study [108], Sun et al. highlighted the importance of over-the-air FEL systems with simulated
gradient aggregation and proposed an energy-aware dynamic device scheduling algorithm to optimize
the training performance of the devices within energy constraints.
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In FEL, enhancing the FEL performance can improve the generalization ability and robustness
of the model by optimizing the scheduling and resource allocation strategies, thus improving the
performance and effectiveness of the model. Due to frequent communication, FEL needs to adapt
to the limited communication bandwidth. In addition, the statistical heterogeneity of local dataset
distributions and the uncertainty of data quality pose important challenges to the convergence of
training. Therefore, careful selection of participating devices and similar bandwidth allocation are
necessary. In [109], Taïk et al. proposed a data quality-based scheduling algorithm that prioritizes
reliable devices that have rich and diverse datasets. In this way, the algorithm aims to improve the
performance of the FEL system and to ensure that the FL process can be carried out efficiently in
resource-constrained environments. Furthermore, in [110], Wen et al. designed a training algorithm
for a hierarchical FEL system, which consists of phases such as local gradient computation, weighted
gradient uploading and ML model updating. By mathematically describing these phases and analyzing
the convergence bounds of a single round of the training algorithm, a design problem involving
scheduling and resource allocation schemes is proposed. The design problem aims to simultaneously
take into account the uncertainty of the wireless channel and the importance of the weighted gradient,
so as to effectively mitigate the privacy risk and communication overhead, and improve the overall
performance of the FEL system. In [111], Wen et al. mathematically modeled device availability,
wireless channel quality, and gradient quality and derived convergence bounds for model training in
FEL systems, and based on the analysis, formulated a joint device scheduling and resource allocation
problem aimed at improving FEL efficiency and performance.

In FEL, due to the energy constraints of ED, minimizing energy consumption can extend the
device range, reduce energy consumption, and improve system efficiency. In [112], Hu et al. examined
the use of FEL in cellular networks and proposed a strategy to reduce energy consumption while
maintaining model performance. This approach makes FEL more suitable for real-world applications,
offering a flexible and adaptable solution for different scenarios. One of the key challenges addressed
is balancing learning tasks with extending device battery life. In [34], Feng et al. explored combining
Heterogeneous Computing (HC) and Wireless Power Transfer (WPT) in FL to improve energy
efficiency. They formulated an optimization problem to minimize smart device energy consumption
while maximizing energy acquisition and solving the heterogeneous scheduling problem. This included
optimizing WPT timing, dataset size, transmission power, sub-carrier allocation, and processor fre-
quency. The solution was derived by decoupling the variables for high efficiency. Simulations showed
improved energy efficiency and fast convergence. In [113], Albaseer et al. proposed a scheduling
strategy to balance energy consumption across devices, ensuring fairness and faster convergence. In
[114], Ozfatura et al. explored the implementation of FEL in wireless fading channels, addressing
challenges from downlink and uplink delays and random computational delays. They accelerated
model training by overlapping communication and computation using fountain-encoded global model
updates, allowing clients to asynchronously start local computations. A dynamic scheduling policy,
Minimum Remaining Time-based Policy (MRTP), was proposed for uploading local updates, focusing
on minimizing upload time. To address biases in non-IID data scenarios, they introduced two fairness-
focused alternatives: age-aware MRTP (A-MRTP) and opportunity-fair MRTP (OF-MRTP). OF-
MRTP significantly reduced delays while maintaining high accuracy, as confirmed by simulations.
In [115], Hu et al. addressed challenges from the time-varying nature of wireless channels that
affect training delay and energy consumption. They developed a dynamic scheduling and resource
allocation algorithm for streaming data scenarios, where new data samples are generated over time.
Using a stochastic network optimization approach with a Lyapunov drift-plus-penalty framework, the
algorithm adapts device scheduling, computational capacity, bandwidth, and transmit power. Results
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demonstrated enhanced learning performance and improved energy efficiency. In [116], Liu et al. intro-
duced a hybrid split and FL framework for wireless UAV networks, addressing user resource diversity
and computational capacity. Users can choose between split and joint training methods. To handle
unreliable channels and limited energy, they modeled scheduling and method selection as a multi-
choice knapsack problem. Their energy-efficient algorithm selects users each round, allowing method
choice. Simulation results showed that this framework significantly reduces energy consumption while
maintaining test accuracy, underscoring its efficiency in resource-constrained environments. Table 2
summarizes the details of the review in this subsection and shows the highlights of this section.

Table 2: Summary of reviewed works

Literature Algorithm deployment
location

Advantages and
disadvantages

Main technologies Impact of resource
optimization on other
system performance

[103–106] Wireless federated edge
networks

Strategies offer fast
convergence and
manage heterogeneity
effectively, but may
struggle with non-IID
data and latency
constraints.

Focuses on client
scheduling, wireless
resource allocation, and
channel awareness.

Improves system
latency and
convergence speed but
may impact overall
communication
efficiency and fairness
in heterogeneous
environments.

[107,108] Federated edge learning
systems with
over-the-air
computation

Dynamic scheduling
optimizes gradient and
channel awareness but
can be complex and
energy-intensive.

Incorporates gradient
and channel awareness,
energy constraints.

Enhances scheduling
efficiency and energy
use but may increase
computational and
scheduling complexity.

[109–111] Hierarchical and
quality-based federated
edge environments

Quality-based
scheduling improves
energy efficiency but
may introduce
complexity in managing
hierarchical systems.

Emphasizes data
quality, availability, and
hierarchical scheduling.

Improves energy
efficiency and
scheduling quality but
may affect system’s
overall hierarchical
performance.

[34,112–116] Energy-efficient
federated edge
networks and hybrid
environments

Focuses on balancing
energy consumption
and optimizing
scheduling, but may
struggle with dynamic
environments and
streaming data.

Includes
energy-efficient
scheduling, historical
participation, and
Lyapunov
optimization.

Enhances energy
efficiency and
scheduling but may
introduce complexity
and affect system
stability in dynamic
environments.

Joint Scheduling and Communication Resource Allocation Based on FEL summarizes the
importance of joint scheduling and communication resource allocation in FEL through the integration
of dynamic task allocation, priority scheduling, model compression and quantization, dynamic
bandwidth allocation and so on, as well as how to improve the convergence speed, minimize the energy
consumption to reduce the communication overhead and enhance the performance of FEL through
the optimization of the scheduling and resource allocation strategies. Future research can explore in-
depth smarter resource optimization algorithms, real-time dynamic adjustment strategies and multi-
level collaboration mechanisms to further enhance the performance and scalability of FEL systems.
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4.4 Joint Network Topology and Communication Resource Allocation for FEL

In FEL, network topology and communication resource allocation involve how to rationally
design the network topology and how to effectively allocate communication resources to support
model training and inference. Optimizing network topology and communication resource allocation
is the key to improving the overall performance of FEL. In this section, various network topology
and communication resource allocation issues in FEL are explored. Through the study, we hope to
provide theoretical support and practical guidance for the deployment and development of FEL in
real applications.

Network topology plays an important role in FEL as it determines how data is shared and
transmitted between devices. Transmit power optimization is the process of adjusting the transmission
strength of wireless signals to improve communication. In FEL, transmit power optimization helps
to reduce communication delays and improve the reliability of data transmission. Transmit power
optimization refers to adjusting the transmission strength of wireless signals to improve communica-
tion. In FEL, transmit power optimization helps to reduce communication delay and improve the
reliability of data transmission. The communication frequency is dynamically adjusted according
to the real-time status of the device and the network to optimize the communication resource
utilization. In [117], Lim et al. proposed a reinforcement learning based communication frequency
optimization method to achieve adaptive optimization of communication resources by dynamically
adjusting the communication frequency. The joint optimization of the adaptive network topology
and the communication transmission frequency can optimize resource utilization more. In [118],
Zhang et al. proposed an innovative device selection method for the impact of inter-cell interference on
the performance of AirComp-based FL in large-scale cellular networks. The method first delineates
an interference reduction region within each cell and selects the devices involved in FL from it. At the
same time, the devices that may cause interference in each cell are set to be silent on the resource block
used by AirComp as a way to mitigate the interference between cells. In addition, the effects of path loss
and small-scale fading will be overcome by adjusting the transmit power. In order to fully evaluate the
performance of the proposed scheme, different network topologies of base stations and devices with
different spatial distribution characteristics are also considered and valid and realistic datasets are
used in the neural network-based FL experiments. The experimental results show that this approach
not only significantly improves the average prediction accuracy of FL, but also effectively reduces the
inter-cell interference.

Task offloading techniques optimize the utilization of computational and network resources and
improve system performance by offloading computational tasks from the ED to the ES or cloud
[119]. The computation offloading policy determines which tasks should be offloaded to the ES
for execution to optimize system performance. In [120], He et al. explored how compute offloading
techniques in MEC can effectively deal with problems such as core network congestion and mobile
device resource constraints. However, these solutions often fail to adequately consider user mobility
and the uncertainty of the MEC environment. To this end, an innovative architecture is proposed for
the first time that combines digital twin (DT) technology with MEC and FL frameworks. DT networks
can virtually simulate the states of physical entities and network topology, enabling real-time data
analysis and network resource optimization. Meanwhile, the computational offloading technique of
MEC is utilized to alleviate the resource constraints of mobile devices and the congestion problem
of the core network. FL is further utilized to construct a DT model based on the operational data of
physical entities and network topology, which is jointly optimized for the computation offloading and
resource allocation problems, aiming to reduce the “laggard” effect in FL. Ultimately, this scheme
significantly reduces the total cost by about 50% and improves communication performance. In
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[121], Huang et al. proposed an HFL framework designed for the Space-Air-Ground Integrated
Network (SAGIN). The framework utilizes aerial platforms and Low Earth Orbit (LEO) satellites
as multi-layered ES and CS to optimize the joint network topology through inter-satellite links. DRL
and hybrid control strategies are applied in the study to equitably allocate resources and optimize
aggregation weights in HFL. The method performs superiorly in resource allocation and network
topology management, addressing the complex challenges of implementing HFL in SAGIN.

In a distributed FL environment without servers, the convergence performance of the algorithms
is not only affected by the quality of communication and the number of edge nodes, but is also closely
related to the graph topology of the communication network between these nodes. In real-world
application scenarios, the convergence of distributed FL may also be constrained by quantization
errors due to limited communication resources, e.g., the presence of latency and energy consumption.

In [122], Yan et al. studied the decentralized gradient descent (DGD) algorithm in distributed FL.
They analyzed how graph topology and quantization influence DGD convergence under different
wireless conditions and communication limits. The research identified the maximum quantization
error that can ensure convergence and compared convergence bounds for high-connectivity vs. low-
connectivity topologies, revealing their differing energy consumption. The results emphasized the
important role of graph topology in convergence under energy constraints. In [123], Huang et al. pro-
posed a topology optimization scheme for FEL to address data heterogeneity and enhance efficiency.
The method co-optimizes node aggregation topology and computational speed to minimize energy
consumption and communication delay. They used an iterative convex approximation method for
stable solutions and introduced an imitation learning approach with a DNN for real-time decisions.
Simulation results demonstrated that the scheme accelerates FL training and significantly improves
energy efficiency. In [124], Sun et al. proposed a semi-decentralized FEL framework that enhances
training speed by leveraging diverse data from multiple edge clusters. Their training algorithm
consists of local model updates and inter-cluster model aggregation. The study shows how network
topology and communication overhead impact performance, with results indicating that this approach
converges faster than traditional FL methods. In [17], Sun et al. introduced a semi-decentralized
FEL framework for 6G networks that address non-IID data and resource allocation. The framework
integrates local training and model aggregation across clusters to improve collaboration. To minimize
model bias, multiple exchanges occur during aggregation. The study analyzes how model aggregation
cycles and network topology affect convergence speed. Results indicate that sparse connections can
slow convergence, but increasing model sharing can boost efficiency. In [125], Kavalionak et al. relied
on centralized servers to control and manage the training process of ML models is not always feasible.
Therefore, turning to explore the problem of training ML models on a network of nodes in a fully
decentralized manner, the experiments used different network topologies, datasets, and ML models
to show how the tuning of these variables can speed up convergence. In [126], Chen et al. explored
geographically distributed FL for future 6G networks, focusing on fully decentralized model training.
This approach eliminates the need for a centralized server but may increase communication costs. To
address this, they proposed a synchronization interval optimization strategy for latency-constrained
environments, aiming to maximize model accuracy within a set time frame and with limited resources.
Their analysis derives convergence bounds and shows the algorithm’s adaptability to data heterogene-
ity and network topology, enhancing convergence speed. Table 3 summarizes the details of the review
in this subsection and shows the highlights of this section.

The study of joint network topology and communication resource allocation for FEL focuses
on designing an efficient network structure and reasonably allocating communication resources to
optimize the performance of distributed model training, ensuring efficient data transmission and fast
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model convergence under limited bandwidth, delay and energy consumption, while taking into account
privacy preservation and system security, by comprehensively considering the network conditions,
device capabilities and data characteristics, with the aim of improve the communication efficiency,
robustness and reliability of the whole FEL system.

Table 3: Summary of reviewed works

Literature Algorithm deployment
location

Advantages and
disadvantages

Main technologies Impact of resource
optimization on other
system performance

[117,118] Mobile edge networks Provides broad insights,
lacks deep optimization
for specific cases.

Inter-cell interference
coordination, AirComp

Improves
communication
efficiency, may
increase inter-cell
interference.

[120,121] DT-MEC assisted
framework

Efficient integration
with digital twins,
complexity is a
challenge.

Computation
offloading, resource
allocation

Reduces latency, may
increase
computational and
resource management
complexity.

[17,122–126] Decentralized and
geo-decentralized edge
networks

Flexible, robust in static
environments,
synchronization issues
in dynamic contexts.

Quantization, graphical
topology,
synchronization
interval optimization

Reduces
communication
overhead, affects
synchronization and
update frequency.

5 Future Challenges and Perspectives

With the popularity of IoT devices and the explosive growth of data volume, the traditional
centralized data processing model can no longer meet the demands of real-time and privacy protection.
Therefore, FEL has been proposed to address these issues. FEL allows model training and inference
to be performed on distributed devices at the edge of the network, which reduces data transmission
latency, improves computational efficiency, and enhances privacy protection. However, FEL faces
many challenges in its implementation, one of which is how to efficiently allocate and manage federated
resources to ensure model training efficiency and performance. Although the optimization of multi-
resource allocation strategies is the main discussed issue in our review, other equally important
challenges do exist involving how to cope with data heterogeneity and imbalance, guarding against
malicious attacks, device failures and network instability, referred to as model accuracy, security
and robustness. These factors are equally critical in distributed machine learning environments
and need to be further investigated and addressed in the future. Moreover, the introduction of an
interdisciplinary approach can further optimize the performance of the FEL system in terms of joint
resource allocation.

5.1 Joint Computing and Communications Resource Allocation

In FEL, the computational load and communication requirements of ED may fluctuate rapidly
due to the number of devices, types of tasks, and changes in the environment. In a dynamic network
environment, devices may leave the network due to movement or other reasons. At this point, the
system needs to dynamically adjust the allocation of computational and communication resources to
ensure that other devices can continue to effectively participate in the FL process. However, traditional
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static resource allocation methods have made it difficult to cope with such dynamics, so how to achieve
dynamic load balancing and resource optimization has become an important challenge. In addition,
ED have uneven computing power and storage resources, and it is also a challenge to efficiently allocate
resources under such heterogeneous conditions. Future research can focus on developing intelligent
resource scheduling algorithms, such as real-time monitoring and dynamic adjustment of ED based
on DRL and distributed FL optimization methods [127]. These algorithms are capable of adaptive
allocating computing and communication resources based on the current load state, energy efficiency
requirements [128], and task priorities of the devices in order to optimize the overall performance and
energy efficiency of the system, but also with privacy and security in mind.

In addition, the data transmission efficiency directly affects the speed and effectiveness of model
training [129]. However, ED is usually limited by bandwidth and transmission speed, especially
in mobile environments. It remains a challenge to realize more low-latency and high-efficiency
communication while ensuring data security and privacy [130]. With the diversification of application
scenarios and the increasing explosion of data volume, traditional data compression and transmission
protocols may no longer be able to meet the demand for real-time and efficiency, which remains a
great challenge for future research. Future research can explore the application of more advanced
communication technologies, such as 5G or 6G networks, to enhance the communication speed and
stability between ED [131]. In addition, by combining techniques such as differential privacy and
secure multi-party computation, more secure and efficient data transmission mechanisms can be
designed to safeguard data privacy while enhancing communication efficiency. The application of
using Internet of Vehicles (IoV) technology can also be increased to make resource allocation in the
dynamic networks more stable [132].

ED management and optimization is the basis for joint computing and communication resource
allocation. How to intelligently manage and optimize large-scale ED, including device health mon-
itoring, hardware and software upgrade management, and resource utilization maximization, is a
complex and challenging problem. Future research can combine IoT technology or IoV technology
and AI algorithms to design intelligent ED management systems [133]. These systems can monitor
the status and operation of the equipment in real-time, predict the load and energy consumption
of the equipment, and then realize the optimized management of the ED through automation and
intelligence to improve the stability and efficiency of the overall system [134].

In the context of globalization, it is a new challenge to design resource allocation strategies for
cross-region and cross-domain collaboration to achieve joint computing and communication resource
optimization on a global scale. Network conditions and policy restrictions in different regions may
lead to inefficient resource allocation or data privacy issues. Future research could focus on the
development of globalization-oriented joint optimization algorithms and protocols that take into
account the special needs and constraints of different geographic locations and network environments.
By developing flexible resource allocation strategies and security protocols, joint model training and
data sharing on a global scale can be realized to promote the application and development of FEL
technology on a global scale.

Interdisciplinary approaches can further optimize the performance of FEL systems. The combi-
nation of reinforcement learning and optimization techniques is a potential avenue. In the work [135],
it combines DRL with service caching, communication and computational resource optimization to
provide a flexible resource management framework. Specifically, DRL can be used to dynamically
adjust resource allocation. In such a way, the proposed method in [135] can cope with changes in
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device heterogeneity, network dynamics, and mission requirements, thereby improving the overall
performance and system robustness of FEL.

5.2 Joint Data Selection and Communications Resource Allocation

In FEL, participants are usually data owners distributed on different ED who may have sensitive
personal or corporate data. How to effectively perform data selection and model aggregation while
protecting data privacy remains an important challenge. New privacy-preserving techniques and
security protocols need to be developed to address potential data leakage and model tampering risks.
Traditional data encryption and privacy protection techniques may not be able to fully meet the needs
of FL, especially the possible security threats to the data during the communication process. Future
research could focus on developing more efficient and secure FL frameworks, such as differential
privacy, further optimization of isomorphic encryption techniques, and the application of multi-party
computation. These techniques can protect data privacy while allowing efficient data selection and
model updating among ED, thus ensuring the security and trustworthiness of the whole system. As
users become more aware of data privacy, future privacy protection techniques are likely to be more
personalized and fine-grained. Users will be able to adjust the level of privacy protection according to
their privacy preferences, such as selecting which data can be used for model training and the amount
of data that can be shared, thus realizing the goal of both protecting privacy and promoting data
sharing and intelligent analysis.

In practice, the data distribution on ED usually changes dynamically, and there may be significant
imbalance in the data volume and data characteristics of different devices. It is a challenge to effectively
perform data selection and communication resource allocation under such dynamic and uneven data
distribution. Traditional data distribution strategies may not be able to fully utilize the data resources
of all participants, resulting in slower model convergence or poor model accuracy. Different devices
may collect different types and qualities of data, leading to uneven data distribution. How to effectively
utilize these heterogeneous data and avoid model bias towards some specific data distributions is a
key challenge. Future research could explore data selection strategies based on dynamic learning and
adaptive algorithms, such as adaptive aggregation methods and dynamic weight adjustment techniques
in FL. These methods can automatically and dynamically adjust the strategies for data selection
and model updating based on the current data distribution and load of the ED, thus improving
the overall performance and efficiency of the system. New algorithms can also be designed, e.g.,
through techniques such as re-weighting or oversampling, and these are able to sense and understand
the imbalance of data distribution and adjust the model training process accordingly. In the future,
migration learning techniques can also be utilized to solve the data imbalance problem by migrating
a model that has been trained on datasets to another device with a different data distribution. New
communication protocols are then researched and developed to reduce the communication for model
updates, e.g., through compressed communication protocols or selective update protocols, etc.

ED management and optimization is critical for joint data selection and communication resource
allocation. How to intelligently manage and optimize large-scale ED, including device health mon-
itoring, hardware and software upgrade management, and resource utilization maximization, is a
complex and challenging problem, and privacy protection and data security must be ensured to
avoid leaking sensitive information. Future research could combine IoT technologies and automated
management systems to develop automation tools and frameworks for FL system deployment,
monitoring and maintenance, and to design intelligent ED management platforms. It can monitor
the status and operation of the equipment in real-time, predict the load and energy consumption of
the equipment, optimize the management of the ED through automation and intelligence, and improve
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the stability and efficiency of the overall system. A more realistic and comprehensive simulation
environment can also be established to evaluate and optimize end-to-end performance and facilitate
the practical application of research results. Algorithms that can automatically adjust strategies
according to changes in the real-time environment are then developed, such as automatically adjusting
the frequency of model updates and selecting the most appropriate communication paths. Model
pruning, quantization, and other light weighting techniques are used to reduce the size of the model
and improve operational efficiency on resource-constrained devices.

ED is usually limited by issues such as energy supply and thermal management, and it is an
important technical challenge to optimize energy consumption while ensuring performance, and to
improve the energy efficiency and environmental sustainability of devices. Joint data selection and
communication resource allocation should take energy consumption and environmental impact into
account to realize green intelligent edge computing. That is to say how to ensure the computational
performance while reducing the environmental impact, such as reducing carbon emission and e-waste
generation. Future research can start from both hardware optimization and algorithm innovation
to develop low-power and high-efficiency ED, as well as researching and developing new energy
supply strategies, such as using renewable energy sources (e.g., solar energy, wind energy) to power
ED. In addition, comprehensive environmental sustainability can be achieved by considering the
impact of energy consumption and the environment throughout the entire life cycle of the device, from
design, manufacturing, and use to recycling. Data selection and communication scheduling algorithms
for energy consumption awareness are also designed. Intelligent energy management of the ED is
realized by using energy prediction and dynamic power management techniques to enhance the energy
efficiency and sustainability of the system.

Potential interdisciplinary approaches can be drawn from the combination of machine learning
and communication theory. In [136], Jia et al. proposed low-complexity suboptimal algorithms,
optimizing resource allocation and data selection using matching theory and gradient projection
methods. This approach not only improves system efficiency, but also reduces transmission and
computation costs. In the future, the uncertainty and dynamic changes in resource allocation can be
handled more effectively by using dynamic system control theory and game theory methods.

5.3 Joint Equipment Scheduling and Communications Resource Allocation

As the scale of FEL technology expands and application scenarios diversify, the scalability and
flexibility of the system becomes a key challenge. On the one hand, as more and more ED and service
providers join the FL network, the system needs to be able to handle large-scale devices and services,
which requires the system to be highly scalability. On the other hand, due to the diversity of application
scenarios, the system needs to be able to adapt to different application requirements and environments,
which requires a high degree of flexibility. How to design efficient system architecture and interface
standards to support the integration of different vendors and service providers while ensuring system
stability and performance optimization is a direction that requires in-depth research. Future research
can facilitate multi-party participation and resource sharing by developing an open FL platform and
modularization system architecture. Cloud-native technologies and micro-service architectures are
introduced to build a flexible edge computing platform that can dynamically adjust and extend system
functions, improve system adaptability and manageability, and support joint device scheduling and
communication resource allocation in complex scenarios.

FEL involves collaboration and cooperation among multiple organizations or enterprises, each
with different datasets and ED. How to achieve effective device scheduling and resource allocation
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across organizations to ensure balanced benefits and efficient cooperation among all parties is a
key challenge. This collaboration and cooperation involved not only optimization at the technical
level, but also coordination and cooperation at the management level. In addition, managing resource
sharing and data collaboration among different organizations may be affected by a variety of factors
such as laws and regulations, business competition, and privacy protection, increasing the complexity
of management and coordination. Future research can start from the perspective of organizational
management and collaboration mechanisms to design adaptable, open and transparent FL platforms.
In order to achieve fair cooperation and resource sharing among cross-organizations, the trust frame-
work of blockchain can be introduced to establish a trusted data exchange and resource allocation
mechanism to promote fair cooperation and resource sharing among cross-organizations. Blockchain
technology has the characteristics of decentralization, high transparency and non-tampering, which
can effectively guarantee the security and fairness of data exchange. Through blockchain technology,
the full tracking and verification of data in the FL process can be realized, ensuring that the source
and destination of data can be traced and preventing data from being tampered with or leaked. In
addition, smart contracts and multi-party secure computing technologies are developed to ensure
data privacy and security, and provide legal and technical guarantees for joint equipment scheduling
and communication resource allocation. Smart contracts are automated execution protocols based
on blockchain technology, which can automatically execute agreements between two parties, reduce
human intervention, and improve cooperation efficiency. Multi-party secure computing technology,
on the other hand, can realize data analysis and computation between multiple parties without
compromising privacy and guarantee data security.

FEL involves a variety of devices, platforms and communication protocols, and system integration
and application deployment may face difficulties due to the lack of harmonization of technical
standards and interoperability. This lack of harmonization may result in the inability of smooth
communication and collaboration between devices, which in turn affects the performance and
efficiency of the entire system. Therefore, the development and promotion of uniform technical
standards to achieve connectivity between devices is an urgent issue for the successful implementation
of FEL systems. Future research can advocate open and common FL standards to promote joint
participation and contribution from all parties. This includes the development of unified data formats
and communication protocols to support data exchange and task collaboration among different
vendors and platforms. Encourage cooperation among different standardization organizations, such
as the International Organization for Standardization (ISO), the International Electrician Com-
mission (IEC), and the Open Mobile Alliance (OMA), to jointly promote the development and
implementation of FL standards, and establish cross-disciplinary research teams, including computer
scientists, communication engineers, data scientists, and legal experts, to work together to research and
develop FL standards. Global technical frameworks and interoperability tests can also be established
to ensure that FL systems between different vendors and platforms can collaborate smoothly, and then
promote the standardization and application of joint device scheduling and communication resource
allocation on a global scale.

FEL involves the processing and sharing of large amounts of sensitive data, and it is a critical
challenge to build user trust and legal compliance while protecting user privacy. With increasingly
stringent data protection regulations and users’ heightened concerns about data security, the issue of
legitimacy and transparency in the management and use of data across organizations becomes a future
challenge. Future research can establish traceable and controllable data management mechanisms
by enhancing compliance with data privacy protection technologies and privacy protection laws.
For example, data privacy can be protected by adding noise to the datasets so that any analysis of
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the data cannot infer the private information of a specific individual, as well as multi-party secure
computing frontiers, which are technologies that allow multiple parties to jointly analyze data without
knowing the content of the other party’s data, to ensure data security and privacy protection during
transmission and processing. At the same time, user education and participation are being carried out
to improve users’ understanding of and trust in data use and sharing mechanisms, and to promote
social acceptance of joint equipment scheduling and communications resource allocation.

In [137], interdisciplinary approaches can be applied in resource allocation for FEL, where
it employs semantic communication in adaptive network management. Semantic communication
technology helps devices understand the meaning of data transmission, thus reducing unnecessary
communication burdens. It improves the utilization of scheduling and communication resources and
optimizes device scheduling and resource management in FEL.

5.4 Joint Network Topology and Communications Resource Allocation

FEL involves different types and geographically distributed ED and network nodes. It is a key
challenge to achieve effective network topology design and communication resource allocation in
heterogeneous network environments to support data sharing and task collaboration across orga-
nizations. Heterogeneous networks may cover a variety of communication technologies such as Wi-
Fi, 5G, Low-Power Wide-Area Network (LPWAN), etc., and how to achieve seamless integration
and optimal configuration of these networks to improve the overall performance and responsiveness
of the system is a problem that needs to be addressed. Future research can focus on developing
adaptive network management and intelligent optimization algorithms to address the challenges
in heterogeneous network environments. Real-time monitoring and optimization of edge network
topology and communication resource allocation can be achieved by introducing ML and data-
driven approaches. For example, DRL algorithms are utilized to dynamically adjust network topology
and resource allocation strategies to maximize system performance and efficiency [138,139]. The
future network topology design can use hybrid communication technology to dynamically allocate
communication resources according to different application scenarios and network loads. For example,
5G technology is used in areas with high-density data transmission, while LPWAN technology is
used in scenarios with high demand for low-power long-distance communication. This dynamic
provisioning can effectively balance the bandwidth, latency and energy efficiency of the network, and
improve the overall system performance and user experience.

With the popularity of edge computing and the diversification of application scenarios, future
research will pay more attention to the virtualization technology and resource elastic allocation of
edge networks. By introducing network function virtualization (NFV) and software-defined network
(SDN) into the edge environment, elastic allocation and flexible deployment of network resources can
be achieved. This virtualization technology can dynamically configure network services according to
application requirements, improve network scalability and flexibility, and at the same time reduce net-
work operating costs and energy consumption, providing technical support for the rapid development
of future edge networks.

Future developments should also focus on the security and privacy protection of edge network
communications. More advanced encryption technologies, authentication mechanisms, and security
auditing tools are introduced to cope with the increasingly sophisticated threats of network attack and
data leakage. With enhanced security measures, user trust in data sharing and edge computing services
can be boosted, promoting the widespread adoption and sustainable development of FEL technology.



1990 CMC, 2024, vol.81, no.2

In [140], the dynamic beam control and resource allocation method proposed by yuan et al. can
provide interdisciplinary application ideas for FEL systems, where combining graph neural networks
with reinforcement learning to adaptively deal with the network topology changes and resource
allocation in FEL, improving system adaptability and performance.

6 Conclusion

FEL, as a combination of edge computing and FL, its resource allocation may be the key solution
to the scaling problem to achieve efficient and stable model training. In the future, the joint resource
allocation of FEL will be affected by several emerging technologies. the low latency and high band-
width of 6G networks will enhance the efficiency of inter-device collaboration, while the development
of heterogeneous ED requires smarter resource scheduling algorithms. In addition, privacy computing,
layered architecture, quantum computing and dynamic resource allocation techniques will further
enhance the flexibility and security of FEL systems in the future. This paper involves multi-faceted
resource allocation and optimization, including joint computation and communication resource
allocation, joint data selection and communication resource allocation, joint device scheduling and
resource allocation, and joint network topology and resource allocation. By optimizing resource
allocation, overall performance of the system can be improved and the effective use of resources can
be achieved. In the concluding part of the study, the possible value of resource allocation strategies in
FEL in the future is predicted.
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