
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.057234

ARTICLE

AI-Driven Prioritization and Filtering of Windows Artifacts for Enhanced
Digital Forensics

Juhwan Kim, Baehoon Son, Jihyeon Yu and Joobeom Yun*

Department of Computer and Information Security, and Convergence Engineering for Intelligent Drone, Sejong University, Seoul,
05006, Republic of Korea

*Corresponding Author: Joobeom Yun. Email: jbyun@sejong.ac.kr

Received: 12 August 2024 Accepted: 25 October 2024 Published: 18 November 2024

ABSTRACT

Digital forensics aims to uncover evidence of cybercrimes within compromised systems. These cybercrimes are
often perpetrated through the deployment of malware, which inevitably leaves discernible traces within the
compromised systems. Forensic analysts are tasked with extracting and subsequently analyzing data, termed as
artifacts, from these systems to gather evidence. Therefore, forensic analysts must sift through extensive datasets
to isolate pertinent evidence. However, manually identifying suspicious traces among numerous artifacts is time-
consuming and labor-intensive. Previous studies addressed such inefficiencies by integrating artificial intelligence
(AI) technologies into digital forensics. Despite the efforts in previous studies, artifacts were analyzed without
considering the nature of the data within them and failed to prove their efficiency through specific evaluations. In
this study, we propose a system to prioritize suspicious artifacts from compromised systems infected with malware
to facilitate efficient digital forensics. Our system introduces a double-checking method that recognizes the nature
of data within target artifacts and employs algorithms ideal for anomaly detection. The key ideas of this method
are: (1) prioritize suspicious artifacts and filter remaining artifacts using autoencoder and (2) further prioritize
suspicious artifacts and filter remaining artifacts using logarithmic entropy. Our evaluation demonstrates that our
system can identify malicious artifacts with high accuracy and that its double-checking method is more efficient
than alternative approaches. Our system can significantly reduce the time required for forensic analysis and serve
as a reference for future studies.

KEYWORDS
Digital forensics; autoencoder; logarithmic entropy; prioritization; anomaly detection; windows artifacts; artificial
intelligence

1 Introduction

According to SonicWall’s cyber threat report [1], there were 6.06 billion malware attacks in 2023.
Similarly, Elastic’s global threat report indicates that Windows accounted for 94% of all behavior
alerts from operating system-based computing systems that year [2]. With a significant desktop
operating system market share of 73% in 2023 [3], Windows is a primary target for malware attacks,
making the study of Windows malware—malicious software—crucial. However, the sheer volume of

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.057234
https://www.techscience.com/doi/10.32604/cmc.2024.057234
mailto:jbyun@sejong.ac.kr


3372 CMC, 2024, vol.81, no.2

malware infections makes manual investigation of a Windows system by security analysts impractical.
Analyzing a system infected with malware is time-consuming due to the variety and large volume
of system artifacts involved. Consequently, there is a pressing need for automated digital forensics
techniques to analyze computer incidents and malware infections efficiently.

Digital forensics [4] is investigating electronic devices, such as computers and smartphones, to
collect, preserve, and analyze digital data for solving crimes or other legal matters. This technique
can also be used to analyze and track malicious code activities, such as how the code intruded,
what directories and files were accessed, whether the backdoor was hidden, and what information
was leaked. This information is usually stored in digital forensic artifacts on the system, which refer
to any tangible item produced or used during the operation of a computer system [5,6]. System
artifacts encompass a wide range of elements, including technical documents, code files, databases,
configuration files, and system logs. Notably, given the Windows operating system’s susceptibility to
malware, prioritizing digital forensics for Windows is crucial. Windows system artifacts encompass
system files, registry entries, event logs, prefetch files, user profiles, and application data files. These
artifacts comprise valuable information related to system configurations, user activities, and system
events, which can be instrumental in forensic investigations. Artifacts can be categorized into two
types: numerical data (such as time information for processes and memory usage details) and text data
(such as process paths and digital signatures).

Among the plethora of digital forensic artifacts, the manual identification of suspicious traces is
a process, which is both time-consuming and labor-intensive. A method to surmount this inefficiency
is the application of artificial intelligence (AI), which expedites the detection of malicious artifacts,
thereby reducing analysis time and effort. DS4N6 [7] proposed an automated artifact analysis by
applying autoencoder [8–12], deep-learning models ideal for anomaly detection, to digital forensics.
Unfortunately, traditional autoencoders struggle to learn representations for text data. It has been
proven that the autoencoder, which constantly reconstructs each dimension of the input vector on
the same basis, is unsuitable for extremely high-dimensional and sparse text data [13]. In contrast,
Cinque et al. [14], researchers in text data, utilized logarithmic entropy to filter interesting events
and prioritize them from vast amounts of application logs. Entropy requires the construction of a
knowledge base from normal data to define the occurrence probabilities of potential events. However,
numerical data such as time information or memory usage history varies across individual systems,
making knowledge base construction difficult.

We propose a system for prioritizing suspicious artifacts from compromised systems infected
with malware to facilitate efficient digital forensics. Our system introduces a double-checking method
that recognizes the nature of data within target artifacts and employs algorithms ideal for anomaly
detection. Recognizing the challenge of accurately detecting anomalous artifacts induced by malware
[15], we focus on prioritizing and recommending the analysis of suspicious artifacts. Our system
follows these steps. Initially, it collects target artifacts from various sources via an artifact collection
tool. Subsequently, it identifies data within the target artifacts based on user-defined features. Next,
it scales numerical data and tokenizes textual data among the identified data. The steps up to this
point represent the preprocessing of the target artifact. Thereafter, our system calculates the loss
values for the target artifacts using an autoencoder trained on benign artifacts. Then, it retains
only those artifacts that exceed the optimal loss value calculated through evaluation, filtering the
remaining artifacts for subsequent prioritization. Next, our system calculates the entropy values for
the target artifacts filtered from the initial prioritization using logarithmic entropy, which leverages
a knowledge base containing information on benign artifacts. It then retains only those artifacts
that exceed the optimal entropy value calculated through evaluation, filtering the remaining artifacts.



CMC, 2024, vol.81, no.2 3373

Finally, our system merges all the prioritization results for the target artifacts. To comprehensively
evaluate incidents due to malware, we constructed a training dataset consisting of benign artifacts
extracted from 2528 clean systems. Furthermore, we constructed a test dataset comprising benign and
malicious artifacts extracted from 6271 compromised systems infected with various types of malware.
Our evaluation demonstrates that our system can identify malicious artifacts with high accuracy and
that its double-checking method is more efficient than alternative approaches.

The main contributions of our work are as follows:

1) We propose a system that combines AI and digital forensics to automatically prioritize
suspicious artifacts, aiming to reduce manual effort and analysis time in digital forensics.

2) Our system introduces a double-checking method that utilizes ideal algorithms for anomaly
detection, namely autoencoder and logarithmic entropy. Through experiments, we demonstrate
that our system is more efficient than other approaches.

3) We constructed a training dataset comprising benign artifacts extracted from 2528 clean
systems and a test dataset comprising benign and malicious artifacts extracted from 6271
compromised systems infected with various types of malware. We performed a comprehensive
evaluation of intrusion incidents using all of these datasets.

4) Our evaluation demonstrates that our system can accurately identify malicious artifacts. Our
system achieved an area under the curve (AUC) score of 0.96 in the experiments on malicious
artifact identification using the receiver operating characteristic (ROC) curve metric. This
represents about a 22% improvement over the current state-of-the-art work.

The remainder of this paper is organized as follows: Section 2 reviews existing research and
compares it with our system. Section 3 introduces the proposed method and the system that adopts
it. Section 4 presents the evaluation questions our system aims to address and evaluates our system
in answering these questions. Section 5 discusses the limitations of our system. Finally, Section 6
summarizes the entire content of this study.

2 Related Work

Previous studies proposed systems and approaches for extracting security knowledge (e.g., IDS
alerts, system and application logs, and Windows artifacts) from various data sources within critical
computer systems. These studies employ filtering to identify interesting events from the security
knowledge, employ prioritization to assign importance to each identified event, and selectively
integrate AI to enhance efficiency in these processes. In this section, we categorize and describe diverse
studies that extract security knowledge based on the form of the target or objective.

2.1 Studies on Security Events and Alerts

2.1.1 Filtering-Only Knowledge Extraction

Julisch et al. [16] proposed a data mining approach to address the challenge of efficiently
handling a large number of alarms generated by intrusion detection systems (IDS). It utilizes historical
alarm data to extract actionable knowledge that can aid in handling future alarms more effectively.
Valeur et al. [17] proposed a comprehensive approach to intrusion detection alert correlation. The
approach includes a normalization component for standardizing alert formats, a fusion component
for combining alerts from different systems, and a verification component for determining the success
of attacks. Adaptive learner for alert classification (ALAC) [18] is a system that reduces false positives
in intrusion detection by classifying alerts using the RIPPER algorithm, a fast and effective rule



3374 CMC, 2024, vol.81, no.2

learner. ALAC enables real-time alert classification and continuously updates and refines the alert
classification model by integrating feedback from intrusion detection analysts. Bakar et al. [19]
proposed an intrusion alert quality framework (IAQF) to address the issue of poor data quality
in logs and alerts generated by security monitoring sensors such as IDS and intrusion protection
systems (IPS). The framework calculates a data quality score for each parameter and extends the alert
information with additional data attributes. Spathoulas et al. [20] proposed a postprocessing filter to
reduce false positives in IDS. It improves the accuracy of an IDS by utilizing the statistical properties
of the input alert set to differentiate between actual attacks and false positives. Cotroneo et al. [21]
proposed an automated framework composed of filters and decision trees to process a large volume
of security alerts and identify their underlying causes. The framework employs logarithmic entropy
as term weights for alert filtering and conceptual clustering for underlying cause classification.
Vaarandi et al. [22] proposed an unsupervised framework for detecting anomalous messages from
syslog log files. This framework aims to address the shortcomings of existing methods that rely on
labeled training datasets and manual rules generated by human experts. The framework automatically
discovers event patterns from log files, leveraging data mining techniques, enabling real-time detection
of anomalous messages.

2.1.2 Filtering and Prioritization Knowledge Extraction

Porras et al. [23] proposed a mission-impact-based approach to information security (INFOSEC)
alarm correlation, which aims to help security analysts cope with the high volume of alerts generated
by INFOSEC devices. The approach uses topology analysis to identify the critical assets and attack
paths in a network, alert prioritization to rank alerts based on their potential impact on mission
objectives, and common attribute-based alert aggregation to group alerts that are related to the same
attack scenario. Noel et al. [24] proposed an approach for optimal IDS sensor placement and alert
prioritization. This approach utilizes attack graphs to predict all potentially vulnerable paths through
the network and strategically deploys IDS sensors to cover these paths with a minimum number of
sensors required. Zomlot et al. [25] proposed an extended Dempster-Shafer model for prioritizing
intrusion analysis and addressing fundamental issues in applying Dempster-Shafer theory [26] to
intrusion analysis. By integrating their methodology with an IDS alert correlation framework, they
computed a numerical confidence score for each hypothesis and ranked the outcomes accordingly.
Chakir et al. [27] proposed a real-time risk assessment framework for IDS to address the challenge of
managing a high volume of alerts and false positives. This framework encompasses the consolidation of
alerts into meta-alerts, categorizing them, and computation of risk levels to prioritize alerts according
to their assessed risk. MADE [28] is a system that identifies and prioritizes malicious activities within
enterprise networks. MADE trains a machine learning model from a comprehensive set of features
related to enterprise malware communication using a random forest algorithm [29], and it computes
the probability that unknown domains extracted from web proxy logs are malicious.

Comparison with our study. Previous studies play a crucial role in identifying interesting events
from IDS alerts and system logs generated by specific security products. However, our focus lies
in assigning analysis priorities to Windows artifacts extensively collected from systems infected
with malware for digital forensic investigations. Thus, these studies fall outside our research scope.
Moreover, some of these studies do not employ AI, require manual effort, do not prioritize the
identified events, and necessitate detailed information about the environment such as IDS sensor
placement. In contrast, our study automates digital forensics using an autoencoder, an ideal deep-
learning neural network for anomaly detection. It filters and prioritizes target artifacts without relying
on the physical environment.



CMC, 2024, vol.81, no.2 3375

2.2 State-of-the-Art Studies

XTEC [30] acquires and analyzes artifacts from Windows event logs, prefetch, and application
compatibility caches (shimcache) within the Windows system to detect malicious behaviors associated
with advanced persistent threats (APTs). XTEC estimates the file execution history from these
artifacts, divides the timeline into intervals at each instance of file execution, and identifies sequences
of events (i.e., Windows commands) within these intervals. These sequences of events are fed into a
random forest model trained on normal artifacts, and anomaly scores are calculated. DS4N6 project
[7] is a study that performs anomaly detection on scheduled task artifacts using a deep-learning neural
network called an autoencoder, which consists of an encoder network that reduces the dimensionality
of the input data and a decoder network that reconstructs the encoded input data. This is based
on the observation that the loss value increases relatively when anomalous data is given as input
data, after training the autoencoder model with a real-world scheduled task artifact set consisting of
scheduled task event logs and file system metadata of the scheduled task XML files. Additionally, the
DS4N6 project developed a long short-term memory (LSTM) autoencoder model that integrates the
LSTM architecture with the autoencoder framework to enhance the detection of malicious scheduled
tasks. Cinque et al. [14] introduced a method for contextual filtering and prioritization of log data
aimed at improving security situational awareness. This method utilizes a logarithmic entropy-based
system to prioritize events in various air traffic control (ATC) application text logs, emphasizing their
informational value to highlight significant incidents. They demonstrated that this approach could
effectively filter out uninteresting events while preserving those critical for security analysts.

Comparison with our study. We have surveyed recent studies that prioritize Windows artifacts
collected from systems infected with malware or employ algorithms ideal for anomaly detection. The
algorithms used, along with their respective advantages and disadvantages, are summarized in Table 1.

Table 1: Comparison of state-of-the-art studies effective in anomaly detection

Refs. Used algorithms Advantages Disadvantages

DS4N6 project [7] Autoencoder &
LSTM-autoencoder

Prioritization of
scheduled task artifacts

Difficulty learning
representations for
text data

Cinque et al. [14] Logarithmic entropy Prioritization of ATC
logs

Difficulty calculating
entropy for
numerical data

XTEC [30] Random forest APT attack detection Limited AI features
and unproven
efficiency

ChatGPT4DF [31] Generative pre-trained
transformers

Assisting in the
detection of deviations
from typical behaviors

Phenomenon of
hallucination

Real-Time [32] YOLOv8 Real-time detection Available in limited
areas

Our system Autoencoder &
Logarithmic entropy

Double checking-based
prioritization of
artifacts

Performance
overhead



3376 CMC, 2024, vol.81, no.2

Artifacts include numerical and text data that can aid forensic investigations. However, previous
studies have not considered the nature of the data within the artifacts. DS4N6 [7] struggles to learn
representations for text data. It has been proven that the autoencoder, which constantly reconstructs
each dimension of the input vector on the same basis, is unsuitable for extremely high-dimensional and
sparse text data [13]. Cinque et al. [14] struggled to calculate the entropy for numerical data. Entropy
requires constructing a knowledge base from normal data to define the occurrence probabilities
of potential events. However, numerical data such as time information or memory usage history
varies across individual systems, making knowledge base construction difficult. In contrast, our
system leverages the advantages of autoencoder and logarithmic entropy, which are well-established
algorithms for anomaly detection. While this approach introduces some performance overhead due
to the double-checking of artifacts, it is particularly valuable in digital forensics, where post-analysis
is crucial. In this context, rapid real-time results are not a critical requirement, allowing for a more
precise and accurate prioritization of suspicious artifacts without relying on the data they contain.

For efficient digital forensics, it is essential to demonstrate the ability to handle artifacts from
systems infected with malware. However, the use of solely a single malware sample by DS4N6’s [7] for
evaluation limits it to exploratory research. Furthermore, the lack of detailed evaluation disclosure
by XTEC [30] due to confidentiality issues results in insufficient experimental validation. Moreover,
they do not acquire and analyze artifacts extensively. In contrast, we constructed a training dataset
comprising benign artifacts extracted from 2528 clean systems, and a test dataset comprising benign
and malicious artifacts extracted from 6271 compromised systems infected with various types of
malware. Furthermore, we demonstrate that our system is more efficient than alternative approaches
through a series of experiments.

2.3 Recent Digital Forensic Development

Digital forensics has evolved significantly in recent years, driven by the increasing complexity
of digital devices and the growing prevalence of cybercrime. We discuss recent advancements in
digital forensic technology, focusing on developments in cloud forensics, AI, and real-time forensics.
Although our system does not currently include these cutting-edge technologies, we could consider
applying them in future work.

• Transformer models: By training on large datasets, transformer models can learn what normal
behavior looks like and identify deviations from this norm [31]. This can be useful in detecting
unusual activities that may indicate a security breach or other malicious actions.

• Real-time forensics: Integrating AI and machine learning models, such as YOLOv8, has signifi-
cantly enhanced real-time forensic capabilities. These models can quickly analyze large volumes
of data, identify patterns, and detect anomalies in real time, aiding in the rapid identification
and classification of suspicious activities [32].

• Cloud forensics: Researchers are proposing comprehensive frameworks and taxonomies to
categorize and address the various aspects of cloud forensics. These frameworks aim to provide
holistic solutions to overcome the challenges faced during forensic investigations in cloud
environments [33].

Transformer models in digital forensics show promise in generating scripts for digital forensic
tasks, providing explanations, and assisting in detecting deviations from typical behaviors. However,
the phenomenon of ‘hallucination’ can produce incorrect information. Real-time forensic models can
quickly analyze large volumes of data, identify patterns, and detect anomalies in real time, aiding in



CMC, 2024, vol.81, no.2 3377

rapidly identifying and classifying suspicious activities. However, real-time forensic models are not
diverse and only available in limited environments.

3 Methodology

The goal of this study is to design a system that prioritizes suspicious artifacts from compromised
systems infected with malware, thereby facilitating efficient digital forensics. To achieve this goal,
our system utilizes a double-checking method that incorporates autoencoder and logarithmic entropy
algorithms, which are well-suited for anomaly detection. This method accurately identifies the nature
of the data containing the target artifacts. Our system preprocesses these artifacts, prioritizing and
filtering them to enhance the efficiency of the investigative processes of forensic analysts.

Components. Our system comprises several components. We summarize these components below
and provide detailed explanations in the following subsections:

1) Preprocessing of artifacts. This component identifies data (numerical and text) contained
within the target artifacts based on user-defined features. Subsequently, it scales the numerical
data and tokenizes the text data for subsequent steps.

2) Autoencoder-based prioritization. This component calculates the loss value for target artifacts
using an autoencoder trained on benign artifacts. Subsequently, it retains only those artifacts
that exceed the optimal loss value determined through evaluation, while filtering the remainder.

3) Entropy-based prioritization. This component calculates the entropy value for target artifacts
by leveraging a knowledge base containing information about benign artifacts. Subsequently,
it retains only those artifacts that exceed the optimal entropy value determined through
evaluation, while filtering the remainder.

4) Merging prioritization results. This component finally merges the prioritization results of all
target artifacts.

3.1 Workflow of Our System

The workflow and overview of our system are illustrated in Fig. 1. Initially, our system utilizes a
splitter to separate the data within target artifacts into two categories: numerical data and text data.
The numerical data represent metrics such as process execution and termination times, memory usage,
and the number of read/write operations, while the text data include the process name, path, and digital
signatures. Subsequently, our system scales the numerical data using a scaler and tokenizes the text
data using a tokenizer. Next, our system computes the loss values of the target artifacts using an
autoencoder trained on benign artifacts. It prioritizes them in descending order of loss values using
an initial prioritizer. Next, our system retains only those artifacts that exceed the optimal loss value
determined through evaluation, filtering the rest for subsequent prioritization. Thereafter, our system
calculates the entropy values of the filtered target artifacts using an entropy calculator that leverages a
knowledge base containing information on benign artifacts. It prioritizes them in descending order of
entropy values using a subsequent prioritizer. Following this, our system retains only those artifacts
that exceed the optimal entropy value determined through evaluation, filtering all other artifacts.
Finally, our system merges the prioritization results using a merger, resulting in the final prioritized
list of artifacts.



3378 CMC, 2024, vol.81, no.2

Figure 1: Workflow of our system with double-checking artifacts

3.2 Preprocessing of Artifacts

We collected artifacts from a total of eight diverse sources, namely: master file table (MFT), event
logs, jumplists, prefetch files, web browser history, Windows management instrumentation (WMI),
registry, and digital signatures. As delineated in Table 2, we analyze the artifacts collected from these
sources and establish common features. These are all features that we can acquire from the artifacts
and are useful for AI learning. We use some performance metrics as relative values such as kernel
mode duration. Our system leverages these user-defined features to identify data embedded within the
target artifacts. It then separates the identified data into numerical and textual data. Subsequently, our
system preprocesses this numerical and text data to optimize the prioritization process for artifacts.

Table 2: Features extracted from artifacts

Property Description

Caption Short description of the object
DigitalSignature Authenticity and integrity of an executable file
CSCreationClassName Creation class name of the scoping computer system
CSName Name of the scoping computer system
ExecutablePath Path to the executable file of the process
KernelModeDuration Duration time in kernel mode, in milliseconds
PageFaults Number of page faults that a process generates
PageFileUsage Amount of page file space that a process is using currently
ReadOperationCount Number of read operations performed
ShimCache Component of the application compatibility database
ThreadCount Number of active threads in a process
UserModeDuration Duration time in user mode, in 100 ns units
WorkingSetSize Amount of memory in bytes that a process requires to execute efficiently
WriteOperationCount Number of write operations performed



CMC, 2024, vol.81, no.2 3379

Our system employs an autoencoder to analyze numerical data and a logarithmic entropy to
analyze text data. However, data that is not preprocessed can diminish the efficiency of artifact analysis.
The range of numerical data varies in terms of minimum and maximum values and distribution
patterns, which may interfere with the autoencoder model’s training and loss value computation.
Therefore, our system performs normalization [34–36] to transform the range of numerical data to
be between 0 and 1. Consequently, normalization reduces the scale of numerical data, enabling the
autoencoder model to discern the precise significance of the numerical data.

Text data, such as process paths, can comprise sentences formed by combinations of multiple
words, which may interfere with the logarithmic entropy’s construction of the knowledge base and
computation of entropy values. Our system processes text data by tokenizing it into the smallest
indivisible linguistic elements, referred to as tokens. Fig. 2 demonstrates the removal of symbols
that serve merely as delimiters, particularly from text data representing process paths, followed by
tokenizing strings related to these paths. This tokenization shifts the granularity of the text data from
sentence level to word level, enhancing the efficiency of measurements through logarithmic entropy.

Figure 2: Tokenization for text data

3.3 Autoencoder-Based Prioritization

The autoencoder, a deep-learning neural network, comprises input, hidden, and output layers.
Although the number of neurons in the input and output layers is identical, the hidden layer has fewer
neurons. This implies that the original input data is compressed (encoded) to extract only the essential
information and then reconstructed (decoded) from the limited information [37–40].

Inevitably, there is a discrepancy between the original input data and data reconstructed by the
autoencoder, referred to as the loss value. To minimize the loss value, the autoencoder learns a com-
pressed representation of the input data that includes only the most significant variables. Consequently,
an autoencoder trained on benign artifacts struggles to reconstruct the compressed information of
malicious artifacts, leading to loss of values for malicious artifacts that reach anomalous levels.
This indicates that artifacts with loss values exceeding a user-defined threshold can be classified as
suspicious artifacts.

We utilize the cross-entropy error to define the loss function of the autoencoder. The formula for
the cross-entropy error assesses and calculates the difference between the input data and reconstructed
data as follows:

Loss = −
∑

i
pi log (qi) (1)

where i represents the number of dimensions in the data, pi represents the distribution of the true labels,
and qi represents the distribution of the predicted values by the autoencoder.

Algorithm 1 demonstrates the entire process of autoencoder-based prioritization in our system.
Initially, our system employs an autoencoder trained on benign artifacts to compress a target artifact
and then reconstruct it from the compressed information (line 3). Subsequently, the system calculates
the loss value between the original and reconstructed version of the target artifact (line 4). Next, it



3380 CMC, 2024, vol.81, no.2

appends the pair of the target artifact and its corresponding loss value to a list (line 5). This procedure
is individually applied to all target artifacts. Thereafter, the system prioritizes the list in descending
order of loss values (line 7). We evaluated the optimal loss value for identifying malicious artifacts (See
Section 4.3). Consequently, our system retains only those target artifacts with a loss value exceeding t
(line 11), while filtering the rest for subsequent prioritization (line 13).

Algorithm 1: Autoencoder-based prioritization
Input: Artifact Set X
Output: Prioritized Set Y, Filtered Set Z
1: LossValueSet ← EmptyList
2: for x ∈ X do
3: y ← Autoencoder(x)
4: loss ← GetLossValue(x, y)
5: LossValueSet.append((x, loss))
6: end for
7: LossValueSet in descending of loss
8: t ← 0.16 # SetThreshold
9: for (x, loss) ∈ LossValueSet do

10: if loss > t then
11: Y.append(x)
12: else
13: Z.append(x)
14: end if
15: end for

3.4 Entropy-Based Prioritization

Entropy is commonly employed as a measure of information uncertainty, and it has been
frequently utilized in security analysis and attack detection studies [14,41–43] through the efficient
processing of text data.

Inevitably, malicious artifacts exhibit sparsity when compared to benign artifacts. For instance,
malicious artifacts may include suspicious process names and execution paths. Consequently, the
probability of malicious artifacts originating from clean systems is low. Hence, their entropy values
can be anomalous. This implies that artifacts with entropy values exceeding user-defined thresholds
can be classified as suspicious.

The definition of entropy is the product of the probability of an event’s occurrence and the amount
of information. The amount of information is inversely proportional to the probability value, and the
formula satisfying this amount of information is as follows:

I (x) = logb

(
1

P (x)

)
= − logb P (x) (2)

where P (x) represents the probability of event x occurring, and the base b of the logarithm is typically
2. As the probability of event x occurring increases, the value of 1/P(x) decreases, thus reducing the
amount of information. Conversely, as the probability decreases, the amount of information increases.



CMC, 2024, vol.81, no.2 3381

The entropy of an event X is the sum of the products of each event x’s occurrence probability and
the amount of information, and its formula is as follows:

E (X) =
∑n

i=1
P (xi)

(− logb (P (xi))
)

(3)

We substitute the event’s occurrence probability with the probability of the appearance of text data
contained in the target artifact from the knowledge base. This knowledge base includes tokenized text
data from benign artifacts. Therefore, we replace the original formula’s P (xi) with the appearance
probability of token j, denoted as pj, and the formula is as follows:

E (T) = −
∑n

j=1
pj log2 pj (4)

where the range of j is 1 ≤ j ≤ n, and n represents the number of tokens contained within the target
artifact. Specifically, pj is the count of token j stored in the knowledge base divided by the total count
of tokens stored in the knowledge base. Specifically, 1 is added to prevent errors in the logarithmic
calculation.

Algorithm 2 demonstrates the entire process of entropy-based prioritization in our system.
Initially, our system computes the entropy values for the target artifacts by utilizing a knowledge base
that includes information on benign artifacts (Line 3). Subsequently, it appends the pair of the target
artifact and its corresponding entropy value to a list (Line 4). This procedure is individually applied
to all target artifacts. Thereafter, the system prioritizes the list in descending order of entropy values
(Line 6). We evaluated the optimal entropy value for identifying malicious artifacts (See Section 4.3).
Consequently, our system retains only those target artifacts with an entropy value exceeding t (Line
10), while filtering the rest (Line 12).

Algorithm 2: Entropy-based prioritization
Input: Artifact Set X, Knowledge Base K
Output: Prioritized Set Y, Filtered Set Z
1: EntropyValueSet ← EmptyList
2: for x ∈ X do
3: entropy ← GetEntropyValue(x, K)
4: EntropyValueSet.append((x, entropy))
5: end for
6: EntropyValueSet in descending of loss
7: t ← 0.50 # SetThreshold
8: for (x, entropy) ∈ EntropyValueSet do
9: if entropy > t then

10: Y.append(x)
11: else
12: Z.append(x)
13: end if
14: end for

3.5 Merging Prioritization Results

Our system aggregates the prioritization results for the target artifacts (See Sections 3.3 and 3.4).
Through evaluation, we demonstrated that autoencoder-based prioritization is slightly more efficient
in identifying malicious artifacts than entropy-based prioritization (See Section 4.2). Consequently,



3382 CMC, 2024, vol.81, no.2

we produce the final prioritization results by merging the results of autoencoder-based prioritization
followed by entropy-based prioritization.

The artifacts encompass two types of data, and our system utilized two prioritization algorithms
to recognize the nature of these artifacts. This implies that an artifact deemed lower priority by the
autoencoder-based prioritization can be assigned a higher priority by the entropy-based prioritization.
By adopting this approach, our system can increase the true positive rate (TPR) for identifying
malicious artifacts while reducing the false positive rate (FPR).

4 Evaluation
4.1 Overview

Evaluation questions. We evaluate our system by considering the following evaluation questions:
(1) whether it can distinguish between malicious and benign artifacts from compromised systems;
(2) what is the optimal threshold for it to identify malicious artifacts; (3) whether it outperforms
alternative models in anomaly detection; and (4) whether it outperforms state-of-the-art work in terms
of effectiveness.

To address these questions, we conducted a series of experiments. Initially, we evaluated whether
the algorithms adopted by our system (autoencoder and logarithmic entropy) could distinguish
between benign and malicious artifacts (See Section 4.2). Subsequently, we evaluated the performance
of our system in identifying malicious artifacts based on various thresholds and empirically determined
the optimal threshold (See Section 4.3). Furthermore, we constructed self-comparative systems by
replacing our system’s algorithms with other anomaly detection models and compared their perfor-
mance against our system (See Section 4.4). Finally, we compared our system with state-of-the-art
work on anomaly detection for artifacts (see Section 4.5).

Experimental environment. All of our experiments were conducted on widely used Windows-based
systems. Despite being equipped with protective features against external threats, such as firewalls and
antivirus software, these systems have become a primary target for attackers as their proliferation has
led to an annual increase in security breaches. Consequently, we adopted a Windows-based system as
our experimental environment to address and study these security breaches.

Experimental datasets. The dataset for our experiment is bifurcated into two main categories:
a malware dataset and an artifact dataset. The malware samples are available in PE and non-PE
formats. However, our study focuses exclusively on the PE format malware samples. Initially, we
collected approximately 80,000 malware samples from sources including VirusTotal [44], VirusShare
[45], and the Korea Internet & Security Agency (KISA) [46]. Nevertheless, certain samples were found
to be non-operational due to either attempts to access defunct C2 servers or were neutralized by
Windows security patches. Consequently, we utilized the ANYRUN sandbox service [47] to verify
the operational status of all malware, confirming that 6271 samples were functioning correctly. This
malware dataset was employed to construct compromised systems.

For the artifact dataset, we extracted benign artifacts from 2528 clean systems in Sejong Univer-
sity, which were systems used in labs, offices, VMs, and research labs. We verified that they were clean
systems using the results of the antivirus program. The operating systems are Windows 10, 11, and
Windows Server 2019. The artifacts extracted from clean systems were utilized as a training dataset
for our system’s core algorithms. In contrast, benign and malicious artifacts from 6271 compromised
systems infected with various types of malware were utilized as a test dataset for multiple experiments
conducted on our system. We infected malware samples on reverted clean VMs to generate the



CMC, 2024, vol.81, no.2 3383

compromised systems, so the compromised system was infected by one malware sample. In summary,
we used various clean systems for training and 6271 compromised VMs for testing.

Fig. 3 illustrates the process of extracting artifacts from compromised systems and identifying
data from the extracted artifacts. Initially, we utilized a virtual machine to establish a Windows-based
system. Next, we copy and execute malware on the virtual machine. We then wait until the virtual
machine is sufficiently infected by the malware to become a compromised system. Next, we execute
our proprietary artifact extraction tool to acquire artifacts from various sources. Next, we identify the
data contained within the extracted artifacts based on the features established in Table 2 and parse
the identified data into JSON format. As exemplified in Table 3, these JSON data outputs include
features and values for each artifact. The values in Table 3, comprising numerical or text data, will
be preprocessed to optimize the process of artifact prioritization (See Section 3.2). Finally, the JSON
data outputs are stored in our database.

Figure 3: The process of extracting artifacts from compromised systems

Table 3: Example of identified features and values from the artifact

Features Values

Caption “executable.exe”
CreationDate 202204141212102.185014
CreationClassName “Win32_Process”
ExecutablePath “C:\Users\username\AppData\Local\Temp\executable.exe”
PageFileUsage 91824



3384 CMC, 2024, vol.81, no.2

4.2 Anomaly Detection in Artifacts

Experimental setup. This experiment aims to validate the hypothesis adopted by our system,
which posits that artifacts extracted from compromised systems exhibit higher anomaly values when
compared to those extracted from a clean system. Consequently, our system prioritizes the artifacts
extracted from the compromised and clean systems and then compares the loss and entropy values
among the top 25 artifacts with the highest priority. Our system employs an autoencoder to calculate
the loss values and logarithmic entropy to calculate the entropy values.

Experimental results. Figs. 4 and 5 present graphs comparing the anomaly values between artifacts
extracted from compromised systems and a clean system. The graphs illustrate that the red lines,
representing the compromised systems, are positioned relatively higher than the blue lines of the
clean system. This represents the efficacy of our system’s adopted autoencoder and logarithmic
entropy in anomaly detection for suspicious artifacts. As shown in Fig. 4, the loss values between
the top prioritized artifacts from compromised and clean systems differ by up to 52%, with an
average difference of 40%. Similarly, as depicted in Fig. 5, the entropy values differ by up to 25%,
with an average difference of 22%. An interesting finding from these results is that the autoencoder
exhibits greater efficiency in anomaly detection than logarithmic entropy. Consequently, our system
employs the autoencoder for initial prioritization, followed by logarithmic entropy for subsequent
prioritization. The reason for using these two methods is that they work complementarily, so anomalies
that one method cannot detect can be detected by the other method.

Figure 4: (Continued)



CMC, 2024, vol.81, no.2 3385

Figure 4: Comparison of loss values in artifacts from compromised vs. clean systems

4.3 Optimal Threshold Selection

Experimental setup. This experiment aims to calculate the optimal threshold for identifying
malicious artifacts in our system. These thresholds serve to prioritize suspicious artifacts while
filtering the rest. This implies that incorrect thresholds can inadvertently filter out malicious artifacts.
Therefore, we must compute the optimal threshold for anomaly detection algorithms via empirical
evaluation to guide the best prioritization outcomes. We consider identification successful if artifacts
exceeding the threshold are malicious. For instance, if the threshold for the loss value is set at 0.1, and
an artifact exhibits a loss value exceeding this threshold, it is deemed true if the artifact is malicious and
false otherwise. Consequently, our system utilizes a test dataset comprising both benign and malicious
artifacts to prioritize them. Hence, the optimal thresholds for loss and entropy values, which enable
the identification of malicious artifacts, are selected.

Experimental results. Table 4 presents the ratio of TPR and FPR for artifacts exceeding various
thresholds. We provide Table 4 to select the optimal threshold value for each of the two combined
methods (i.e., autoencoder-based and entropy-based prioritization). TPR represents the proportion
of malicious artifacts, while FPR represents the proportion of benign artifacts. For instance, when
the threshold of loss value is set at 0.18, the TPR is 66.5%, and the FPR is 68.3%. Ideally, effective
thresholds for identifying malicious artifacts prioritize high TPR and low FPR. As thresholds decrease
(allowing more artifacts), TPR increases, but relatively, FPR also rises. Therefore, we aim to achieve
a TPR of at least 90% while minimizing FPR. Consequently, our system uses a threshold of 0.16 for
the loss value of autoencoder-based prioritization and a threshold of 0.50 for the entropy value of
entropy-based prioritization.



3386 CMC, 2024, vol.81, no.2

Figure 5: Comparison of entropy values in artifacts from compromised vs. clean systems

Table 4: Optimal threshold selection for malicious artifact identification

Threshold TPR (%) FPR (%)

Loss value 0.18 66.5 68.3
0.16 90.4 65.6
0.14 90.8 71.6
0.12 92.0 77.5

Entropy value 0.52 73.3 75.8
0.50 90.1 68.2
0.48 91.4 71.3
0.46 93.5 78.9



CMC, 2024, vol.81, no.2 3387

4.4 Comparison with Anomaly Detection Systems

Experimental setup. This experiment aims to compare the performance of our system’s adopted
algorithms with other anomaly detection algorithms. To achieve this, we constructed four self-
comparison systems by replacing only the anomaly detection algorithms while keeping our system
as the base (i.e., four systems used the same features from Table 2). These systems utilize the following
anomaly detection algorithms: autoencoder (AE), principal component analysis (PCA), isolation
forest (IF), and one-class SVM (OCSVM). For a comparative evaluation between our system and self-
comparison systems, we employ ROC curves. The ROC curve represents the ratio of FPR to TPR for
all possible thresholds, providing a graphical representation of the classification model’s performance.
The AUC is used to evaluate the performance of the classification model, where a higher AUC score
indicates better classification accuracy. We set the threshold range for the ROC curve from the top 1%
to the top 30% of prioritized artifacts. When artifacts fall within this threshold range and are malicious,
the TPR increases, while for benign artifacts, the FPR increases.

Experimental results. Fig. 6 depicts the ROC curves for all systems utilized in the experiment.
The ROC curve graph indicates that higher TPR and lower FPR are maintained when the curve is
closer to the upper left corner. Fig. 6 demonstrates that our system’s graph closely aligns with the
upper left corner, and the AUC score for our system, representing the lower region of the graph, is
0.96, which is higher than other systems. For instance, our system achieves approximately 210% higher
AUC score than the system using OCSVM. An interesting point from Fig. 6 is that a system using only
AE achieves an AUC score of 0.95, suggesting that AE is an ideal algorithm for anomaly detection.
However, it does not handle text data contained in artifacts, so targeting broader datasets may result
in lower AUC scores. In contrast, our system recognizes numerical and text data contained within the
artifacts, handling numerical data with AE and text data with logarithmic entropy.

Figure 6: Comparison with anomaly detection systems using ROC curve

4.5 Comparison with State-of-the-Art Work

Experimental setup. This experiment aims to compare the performance of our system with that
of state-of-the-art work. As previously mentioned, DS4N6 [7] is a study that employs an autoencoder
for anomaly detection in Windows artifacts (See Section 2.2). This makes it a suitable benchmark
for comparison with our system due to the similarity in objectives and methods of our research.



3388 CMC, 2024, vol.81, no.2

Consequently, we selected the DS4N6 as the benchmark for state-of-the-art work. We utilize the ROC
curve to measure their AUC scores. The methodology of this experiment is conducted in the same
manner as described in Section 4.4. Additionally, we further measure the distribution of malicious
artifacts prioritized by each system.

Experimental results. Fig. 7 depicts the ROC curves for all systems utilized in the experiment. The
AUC score for DS4N6 is 0.79, which is higher than the system using PCA shown in Fig. 6, but lower
than our system. Our system achieves an AUC score of 0.96, approximately 22% higher than DS4N6.
These results indicate that DS4N6 is limited to handling only scheduled task artifacts and cannot
manage artifacts collected from various sources.

Figure 7: Comparison with DS4N6 using ROC curve

Fig. 8 depicts the distribution of malicious artifacts across all systems used. This distribution
indicates the average percentile ranking of prioritized malicious artifacts within the total prioritized
artifacts. For the artifacts prioritized by DS4N6, malicious artifacts are distributed in the top 12.3%.
For the artifacts prioritized by our system, malicious artifacts are distributed in the top 2.6%. The
distribution of these malicious artifacts in the top percentile improves the efficiency of forensic
analysis. For instance, consider a forensic analyst sequentially analyzing 1000 prioritized artifacts
using these systems. With DS4N6, a minimum of 123 artifacts would require manual analysis. With
our system, a minimum of 26 artifacts would require manual analysis. Consequently, our system
demonstrates greater efficiency in prioritizing malicious artifacts than DS4N6.

4.6 Complexity

Autoencoders have several key hyperparameters that influence their complexity. The number of
hidden layers determines the network’s depth and ability to capture complex patterns. The number of
neurons in each layer affects the network’s capacity for data representation. The size of latent space
balances model complexity and performance. The activation function is crucial for the network’s
nonlinearity and learning ability. The objective function measures the difference between input and
output data. The optimization algorithm minimizes the objective function during training. The
learning rate dictates the step size during optimization. The number of epochs represents full dataset
passes during training. Batch size affects gradient noise and optimization efficiency [48].



CMC, 2024, vol.81, no.2 3389

Figure 8: Comparative distribution of malicious artifacts between DS4N6 and our system

Logarithmic entropy involves calculating the entropy of a given dataset and then applying a
logarithmic transformation. This calculation measures the uncertainty or randomness in the dataset
[49]. The computational complexity of calculating logarithmic entropy depends on the size and
distribution of the dataset. Larger datasets require more computational resources to estimate the
probabilities and the entropy. However, the real challenge comes with high-dimensional data, which
can significantly increase the computational complexity, making it a formidable task [50].

5 Discussion and Limitation

In this section, we discuss the limitations of our system for automatically prioritizing suspicious
artifacts and directions for future research.

1) As mentioned in Section 3.2, our system collects artifacts from eight diverse sources within
the Windows environment, including MFT, event logs, jumplists, prefetch files, web browser
history, WMI, registry, and digital signatures. However, artifacts can also be automatically
generated from various sources beyond these. For example, Device Guard, generates logs
of application execution policies, and Swapfile.sys, maintains a record of recently executed
files. Given that the accessibility and architecture of artifacts are subject to alteration due to
updates in the operating system and shifts in security protocols, ongoing research and updated
expertise are imperative for effective digital forensic analysis. In the future, our research will
aim to expand the scope of artifact collection by integrating additional sources and developing
algorithms capable of adapting to changes in artifact generation patterns.

2) We conducted a study focused on acquiring and analyzing artifacts from Windows systems.
However, Windows is just one of several operating systems. Other operating systems, such
as Linux, Mac OS, and Android, also exist, each managing systems and generating logs in
unique ways. For instance, Linux primarily stores logs in text file format within the/var/log
directory, while Mac OS uses a Unix-based logging system. Furthermore, Android, although
based on the Linux kernel, employs a logging system specialized for mobile environments. In
the future, our research will aim to delve into the intricacies of artifact analysis across different
operating systems. Recognizing the distinct methods by which systems such as Linux, Mac OS,



3390 CMC, 2024, vol.81, no.2

and Android manage and generate logs, we plan to develop a comprehensive understanding
encompassing these diverse environments. This endeavor will involve a comparative study of
the artifact generation processes and the creation of sophisticated tools designed to cater to
the unique forensic requirements of each operating system. Based on this approach, we aspire
to enhance the efficacy of forensic investigations in a multi-OS landscape.

6 Conclusion

This study presents a novel system integrating artificial intelligence with digital forensics to priori-
tize suspicious artifacts in compromised systems. Our approach addresses the inefficiencies associated
with manual investigation by leveraging a double-checking method that combines autoencoder and
logarithmic entropy algorithm for anomaly detection.

The proposed system significantly improves the accuracy and efficiency of identifying malicious
artifacts. We have shown that our system can effectively distinguish between benign and malicious
artifacts through comprehensive evaluations using extensive datasets, achieving an AUC score of 0.96.
This represents a substantial enhancement over existing methods, highlighting the potential of our
approach to streamline digital forensic investigations. In this paper, we propose a methodology to
assist in the forensic process on the Windows system. Still, this methodology can also be generalized
and applied to macOS and UNIX/Linux systems through feature extraction, model training, and
parameter tuning.

Our contributions include the development of a robust training dataset from clean systems and
a diverse test dataset from compromised systems, which have been instrumental in validating the
effectiveness of our system. The double-checking method reduces the time and effort required for
analysis and ensures a higher degree of accuracy in detecting anomalies.

In conclusion, our system offers a promising solution for the automated analysis of digital forensic
artifacts, paving the way for more efficient and accurate investigations of malware infections. We
expect our system to be useful for post-mortem forensics, but its performance overhead makes it
difficult to use in the live endpoint detection and response (EDR) system. Future work will focus
on further refining the algorithms and expanding the system’s capabilities to handle various digital
forensic challenges.

Acknowledgement: We extend our heartfelt gratitude to the anonymous reviewers whose insightful
feedback and constructive criticism significantly enhanced the quality of this manuscript. Their
expertise and attention to detail were invaluable in refining our work.

Funding Statement: This research was supported by the MSIT (Ministry of Science and ICT), Korea,
under the ITRC (Information Technology Research Center) support program (IITP-2024-RS-2024-
00437494) supervised by the IITP (Institute for Information & Communications Technology Planning
& Evaluation).

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Juhwan Kim, Baehoon Son; data collection: Juhwan Kim, Baehoon Son; analysis and
interpretation of results: Juhwan Kim; draft manuscript preparation: Juhwan Kim; manuscript final
layout and preparation for submission: Jihyeon Yu, Joobeom Yun. All authors reviewed the results
and approved the final version of the manuscript.



CMC, 2024, vol.81, no.2 3391

Availability of Data and Materials: Due to the potential for misuse, our malware dataset and artifact
dataset are not publicly available.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Sonicwall, “Sonicwall cyber threat report (navigating the relentless surge in cybercrime),” 2024.

Accessed: Feb. 1, 2024. [Online]. Available: https://www.sonicwall.com/medialibrary/en/white-paper/2024-
cyber-threat-report.pdf

[2] Elastic security lab, “Elastic global threat report,’ 2023. Accessed: Nov. 1, 2023. [Online]. Available:
https://www.elastic.co/pdf/elastic-global-threat-report-october-2023.pdf

[3] Statcounter, “Desktop operating system market share world,” 2024. Accessed: Feb. 1, 2024. [Online].
Available: https://gs.statcounter.com/os-market-share/desktop/worldwide

[4] S. L. Garfinkel, “Digital forensics research: The next 10 years,” Digit. Invest., vol. 7, no. 3, pp. S64–S73,
2010. doi: 10.1016/j.diin.2010.05.009.

[5] V. S. Harichandran, D. Walnycky, I. Baggili, and F. Breitinger, “CuFA: A more formal definition for digital
forensic artifacts,” Digit. Invest., vol. 18, no. Suppl. 2, pp. S125–S137, 2016. doi: 10.1016/j.diin.2016.04.005.

[6] D. M. Purcell and S. Lang, “Forensic artifacts of microsoft windows vista system,” in Proc. IEEE ISI ,
Taipei, Taiwan, Springer, 2008, pp. 304–319.

[7] J. Garcia, “Detecting the solarwinds malicious scheduled task with an autoencoder,” Accessed: Mar. 16,
2022. [Online]. Available: https://www.ds4n6.io/blog.html

[8] M. Catillo, A. Pecchia, and U. Villano, “AutoLog: Anomaly detection by deep autoencoding of system
logs,” Expert. Syst. Appl., vol. 191, no. 5, 2022, Art. no. 116263. doi: 10.1016/j.eswa.2021.116263.

[9] X. Xing, X. Jin, H. Elahi, H. Jiang, and G. Wang, “A malware detection approach using autoencoder in
deep learning,” IEEE Access, vol. 10, pp. 25696–25706, 2022. doi: 10.1109/ACCESS.2022.3155695.

[10] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau, “Autoencoder-based network anomaly detection,” in Proc.
Wireless Telecommun. Symp. (WTS 2018), IEEE, 2018, pp. 1–5.

[11] C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan, “Auto-encoder based data clustering,” in Proc. 18th
Iberoamerican Congress Pattern Recognit., Havana, Cuba, Springer, 2013, pp. 117–124.

[12] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep autoencoders,” in Proc. 23rd ACM
SIGKDD Int. Conf. Knowl. Dis. Data Min. (KDD ’17), Halifax, NS, Canada, 2017, pp. 665–674.

[13] S. Zhai and Z. Zhang, “Semisupervised autoencoder for sentiment analysis,” in Proc. AAAI Conf. Artif.
Intell., Phoenix, AZ, USA, 2016, vol. 30, no. 1, pp. 1394–1400. doi: 10.1609/aaai.v30i1.10159.

[14] M. Cinque, R. D. Corte, and A. Pecchia, “Contextual filtering and prioritization of computer application
logs for security situational awareness,” Future Gener. Comput. Syst., vol. 111, no. 5, pp. 668–680, 2020.
doi: 10.1016/j.future.2019.09.005.

[15] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput. Surv., vol. 41,
no. 3, pp. 1–58, 2009. doi: 10.1145/1541880.1541882.

[16] K. Julisch and M. Dacier, “Mining intrusion detection alarms for actionable knowledge,” in Proc. 8th ACM
SIGKDD Int. Conf. Knowl. Dis. Data Min. (KDD’02), Edmonton, AB, Canada, 2002, pp. 366–375.

[17] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, “Comprehensive approach to intrusion detec-
tion alert correlation,” IEEE Trans. Dependable Secur. Comput., vol. 1, no. 3, pp. 146–169, 2004. doi:
10.1109/TDSC.2004.21.

[18] T. Pietraszek, “Using adaptive alert classification to reduce false positives in intrusion detection,” in Proc.
7th Symp. Recent Adv. Intrus. Detect. (RAID 2004), Sophia-Antipolis, France, Springer, 2004, pp. 102–124.

https://www.sonicwall.com/medialibrary/en/white-paper/2024-cyber-threat-report.pdf
https://www.elastic.co/pdf/elastic-global-threat-report-october-2023.pdf
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://doi.org/10.1016/j.diin.2010.05.009
https://doi.org/10.1016/j.diin.2016.04.005
https://www.ds4n6.io/blog.html
https://doi.org/10.1016/j.eswa.2021.116263
https://doi.org/10.1109/ACCESS.2022.3155695
https://doi.org/10.1609/aaai.v30i1.10159
https://doi.org/10.1016/j.future.2019.09.005
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/TDSC.2004.21


3392 CMC, 2024, vol.81, no.2

[19] N. A. Bakar, B. Belaton, and A. Samsudin, “False positives reduction via intrusion alert quality frame-
work,” in Proc. 13th IEEE Int. Conf. Netw. Jointly Held 7th IEEE Malay. Int. Conf. Commun., Kuala
Lumpur, Malaysia, IEEE, 2005, pp. 547–552.

[20] G. P. Spathoulas and S. K. Katsikas, “Reducing false positives in intrusion detection systems,” Comput.
Secur., vol. 29, no. 1, pp. 35–44, 2010. doi: 10.1016/j.cose.2009.07.008.

[21] D. Cotroneo, A. Paudice, and A. Pecchia, “Automated root cause identification of security alerts:
Evaluation in a saas cloud,” Future Gener. Comput. Syst., vol. 56, no. 4, pp. 375–387, 2016. doi:
10.1016/j.future.2015.09.009.

[22] R. Vaarandi, B. Blumbergs, and M. Kont, “An unsupervised framework for detecting anomalous messages
from syslog log files,” in Proc. NOMS 2018–2018 IEEE/IFIP Netw. Operat. Manag. Symp., Taipei, Taiwan,
IEEE, 2018, pp. 1–6.

[23] P. A. Porras, M. W. Fong, and A. Valdes, “A mission-impact-based approach to infosec alarm correlation,”
in Proc. Int. Workshop Recent Adv. Intrus. Detect. (RAID 2002), Zurich, Switzerland, Springer, 2002, pp.
95–114.

[24] S. Noel and S. Jajodia, “Optimal ids sensor placement and alert prioritization using attack graphs,” J. Netw.
Syst. Manag., vol. 16, no. 3, pp. 259–275, 2008. doi: 10.1007/s10922-008-9109-x.

[25] L. Zomlot, S. C. Sundaramurthy, K. Luo, X. Ou, and S. R. Rajagopalan, “Prioritizing intrusion analysis
using dempster-shafer theory,” in Proc. 4th ACM Workshop Secur. Artif. Intell., Chicago, IL, USA, 2011,
pp. 59–70.

[26] G. Shafer, A mathematical theory of evidence. Princeton, NJ, USA: Princeton University Press, 1976.
[27] E. M. Chakir, M. Moughit, and Y. I. Khamlichi, “Risk assessment and alert prioritization for intrusion

detection systems,” in Proc. 3rd Int. Symp. Ubiquit. Network. (Unet 2017), Casablanca, Morocco, Springer,
2017, pp. 641–655.

[28] A. Oprea, Z. Li, R. Norris, and K. Bowers, “Made: Security analytics for enterprise threat detection,” in
Proc. 34th Annu. Comput. Secur. App. Conf. (ACSAC’18), San Juan, PR, USA, 2018, pp. 124–136.

[29] L. Breiman, “Random forests,”Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001. doi: 10.1023/A:1010933404324.
[30] S. P. Liew and S. Ikeda, “Detecting adversary using windows digital artifacts,” in Proc. 2019 IEEE Int.

Conf. Big Data (Big Data), Los Angeles, CA, USA, 2019, pp. 3210–3215.
[31] M. Scanlon, F. Breitinger, C. Hargreaves, J. Hilgert, and J. Sheppard, “ChatGPT for digital forensic

investigation: The good, the bad, and the unknown,” Forens. Sci. Int.: Dig. Invest., vol. 46, 2023, Art. no.
301609.

[32] S. Karakuş, M. Kaya, and S. A. Tuncer, “Real-time detection and identification of suspects in forensic
imagery using advanced YOLOv8 object recognition models,” Traitement du Signal, vol. 40, no. 5, pp.
2029–2039, 2023. doi: 10.18280/ts.400521.

[33] P. Purnaye and V. Kulkarni, “Comprehensive study of cloud forensics,” Arch. Computat. Methods Eng., vol.
29, no. 1, pp. 33–46, 2022. doi: 10.1007/s11831-021-09575-w.

[34] B. Li, F. Wu, S. Lim, S. Belongie, and K. Q. Weinberger, “On feature normalization and data augmentation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR 2021), 2021, pp. 12383–12392.

[35] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal
covariate shift,” in Proc. 32nd Int. Conf. Mach. Learn. (ICML 2015), Lille, France, 2015, pp. 448–456.

[36] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization to accelerate training
of deep neural networks,” in Proc. 30th Int. Conf. Neur. Inf. Process. Syst. (NIPS’16), Barcelona, Spain,
2016, pp. 901–909.

[37] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality reduction,” Neurocomputing, vol. 184,
no. 4, pp. 232–242, 2016. doi: 10.1016/j.neucom.2015.08.104.

[38] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A survey,” 2019, arXiv:1901.03407.
[39] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomaly detection techniques,” J. Netw.

Comput. Appl., vol. 60, no. 1, pp. 19–31, 2016. doi: 10.1016/j.jnca.2015.11.016.
[40] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation-based anomaly detection,” ACM Trans. Knowl. Dis. Data,

vol. 6, no. 1, pp. 1–39, 2012. doi: 10.1145/2133360.2133363.

https://doi.org/10.1016/j.cose.2009.07.008
https://doi.org/10.1016/j.future.2015.09.009
https://doi.org/10.1007/s10922-008-9109-x
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.18280/ts.400521
https://doi.org/10.1007/s11831-021-09575-w
https://doi.org/10.1016/j.neucom.2015.08.104
https://doi.org/10.1016/j.jnca.2015.11.016
https://doi.org/10.1145/2133360.2133363


CMC, 2024, vol.81, no.2 3393

[41] J. Cao, B. Yu, F. Dong, X. Zhu, and S. Xu, “Entropy-based denial-of-service attack detection in cloud data
center,” Concurr. Comput.: Pract. Exp., vol. 27, no. 18, pp. 5623–5639, 2015. doi: 10.1002/cpe.3590.

[42] S. Yu, W. Zhou, R. Doss, and W. Jia, “Traceback of DDoS attacks using entropy variations,” IEEE Trans.
Parallel Distrib. Syst., vol. 22, no. 3, pp. 412–425, 2010. doi: 10.1109/TPDS.2010.97.

[43] K. Hong, C. Chen, Y. Chiu, and K. Chou, “Scalable command and control detection in log data through
UF-ICF analysis,” in Proc. 2015 Int. Carnahan Conf. Secur. Technol. (ICCST), 2015, pp. 293–298.

[44] Virustotal, “Analyse suspicious files, domains, IPs and URLs to detect malware and other breaches,
automatically share them with the security community,” 2022. Accessed: Jun. 23, 2022. [Online]. Available:
https://www.virustotal.com/

[45] VirusShare, “A repository of malware samples to provide security researchers, incident responders, forensic
analysts, and the morbidly curious access to samples of live malicious code,” 2022. Accessed: Jun. 23, 2022.
[Online]. Available: https://virusshare.com/

[46] KISA, “Korea internet & security agency,” 2021. Accessed: May 15, 2021. [Online]. Available:
https://www.kisa.or.kr/

[47] Anyrun, “Interactive malware hunting service,” 2023. Accessed: Mar. 15, 2023. [Online]. Available:
https://any.run/

[48] K. Berahmand, F. Daneshfar, E. S. Salehi, Y. Li, and Y. Xu, “Autoencoders and their applica-
tions in machine learning: A survey,” Artif. Intell. Rev., vol. 57, no. 28, pp. 1–52, 2024. doi:
10.1007/s10462-023-10662-6.

[49] M. K. Siddiqui, M. Hussain, S. Javed, S. Khalid, T. Noor and F. T. Tolasa, “On characterization of entropy
measure using logarithmic regression model for Copper (II) Fluoride,” PLoS One, vol. 19, no. 3, pp. 1–34,
2024. doi: 10.1371/journal.pone.0300757.

[50] C. Feng, M. F. Hanif, M. K. Siddiqui, M. Hussain, and N. Hussain, “On analysis of entropy measure via
logarithmic regression model for 2D-honeycomb networks,” Eur. Phys. J. Plus., vol. 138, no. 10, 2023, Art.
no. 924. doi: 10.1140/epjp/s13360-023-04547-4.

https://doi.org/10.1002/cpe.3590
https://doi.org/10.1109/TPDS.2010.97
https://www.virustotal.com/
https://virusshare.com/
https://www.kisa.or.kr/
https://any.run/
https://doi.org/10.1007/s10462-023-10662-6
https://doi.org/10.1371/journal.pone.0300757
https://doi.org/10.1140/epjp/s13360-023-04547-4

	AI-Driven Prioritization and Filtering of Windows Artifacts for Enhanced Digital Forensics
	1 Introduction
	2 Related Work
	3 Methodology
	4 Evaluation
	5 Discussion and Limitation
	6 Conclusion
	References


