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ABSTRACT

Electricity is essential for keeping power networks balanced between supply and demand, especially since it costs a
lot to store. The article talks about different deep learning methods that are used to guess how much green energy
different Asian countries will produce. The main goal is to make reliable and accurate predictions that can help
with the planning of new power plants to meet rising demand. There is a new deep learning model called the
Green-electrical Production Ensemble (GP-Ensemble). It combines three types of neural networks: convolutional
neural networks (CNNs), gated recurrent units (GRUs), and feedforward neural networks (FNNs). The model
promises to improve prediction accuracy. The 1965–2023 dataset covers green energy generation statistics from
ten Asian countries. Due to the rising energy supply-demand mismatch, the primary goal is to develop the best
model for predicting future power production. The GP-Ensemble deep learning model outperforms individual
models (GRU, FNN, and CNN) and alternative approaches such as fully convolutional networks (FCN) and other
ensemble models in mean squared error (MSE), mean absolute error (MAE) and root mean squared error (RMSE)
metrics. This study enhances our ability to predict green electricity production over time, with MSE of 0.0631, MAE
of 0.1754, and RMSE of 0.2383. It may influence laws and enhance energy management.

KEYWORDS
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1 Introduction

Renewable and sustainable energy sources, known as green energy sources, are derived from
non-polluting and naturally existing sources. These include wind, solar, hydroelectric, geothermal,
and biomass power. Green energy’s multiple goals include diversifying and securing energy sources,
lowering greenhouse gas emissions, and decreasing dependence on fossil fuels [1]. In the battle for a
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more environmentally friendly tomorrow, green energy is making a massive splash in many sectors,
including electricity generation, transportation, and industrial activities.

Asian investment in renewable energy is being driven by growing energy needs and environmental
aspirations. China is the world’s biggest producer and consumer of renewable energy. The Global Wind
Energy Council (GWEC) projects that by 2021, China’s wind power capacity will be 2145 gigawatts
(GW) and the world’s 756 GW [2]. By 2025, Pakistan wants to boost renewable energy from 5% to 20%
and 2030 30% [3]. Pakistan offers excellent potential for wind and solar energy. 4% solar, 2% biofuel,
and 15% hydropower provide Malaysia’s energy. The 2022–2040 National Energy Policy (NEP) aims
to increase renewable energy to 4% solar, 4% hydropower, and 4% biofuels by 2040. Energy in the
Philippines comes from 7% hydropower, 4% solar, and 1% geothermal. Thailand utilizes 3% wind, 6%
solar, and 6% hydropower. The country’s capacity for renewable energy is growing. Less than 1% wind
and solar, 6% biofuel, 5% geothermal, and 8% hydropower are used in Indonesia [4].

The REN21 Renewables 2022 Global Status Report (GSR) ranks India as the fourth most potent
renewable energy country in terms of installed capacity for hydropower, wind power, and solar power.
At the 26th Conference of the Parties (COP26), the nation committed to using 500 GW of renewable
energy by 2030 [5]. At 170 watts per square meter (W/m2), the world average, western Iraq produces
the most significant solar power. The German Aerospace Center (DLR) reports that the Iraqi deserts
make 270–290 W/m2 and 2310 kWh/m2 yearly [6]. In 2015, hydro accounted for 24.1%, natural gas for
8.5%, nuclear for 8.1%, solar for 11%, geothermal for 7.8%, oil for 1.6%, and wind for 1.5% of Japan’s
energy production, with biofuels and waste making up 37.5% of that total [7]. With the following
targets in mind, the Korean government aims for new and renewable energy (NRE) to account for
5% of primary energy by 2020, 7.7% by 2025, 9.7% by 2030, and 11% by 2035. From 2014–2035,
these projects would increase NRE supply by 6.2%, more than South Korea’s primary energy demand
growth of 0.7% [8].

The impact of solar irradiance and ambient temperature on array power output can be measured
using mathematical formulas in renewable energy optimization, which is used in Asia and other regions
[9]. In this model, the power output is calculated as:

Ppv = GpvgApvgJ. (1)

Here, Gpvg stands for photovoltaic (PV ) generating efficiency, Apvg for PV generator area in square
meters, and J for solar irradiation in the sloped plane of the module in W/m2. We can additionally
define Gpvg as:

Gpvg = GrGpce

[
1 − B

(
Tc − Tcreff

)]
. (2)

When maximum power point tracking (MPPT) is employed, the power conditioning efficiency
(Gpce) is set to one, the temperature coefficient (B) ranges from 0.004 to 0.006 per degree Celsius, Gr
denotes the reference module efficiency, and Tcreff stands for the reference cell temperature in degrees
Celsius.

Power outages, load shedding, and other economic disturbances are consequences of Asia’s fast-
increasing electrical consumption. The problems are worsened because pollution and population
growth strain the energy infrastructure. Due to these constraints, correct models for predicting
renewable energy production up to 2030 are necessary. Achieving inexpensive and clean energy, the
seventh Sustainable Development Goal (SDG) established by the United Nations (UN) requires
educated decision-making and prudent energy management [10]. Stakeholders and policymakers need
accurate estimates of renewable energy generation to prepare for a sustainable energy future.
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Deep learning uses artificial neural networks (ANNs) to sift through large datasets for complex
patterns. It has numerous potential applications, including computer vision, voice recognition, and
natural language processing (NLP). In the case of green power generation, it can also predict energy
use and supply. Some advanced prediction methods are CNNs, FNNs, and GRUs. GRU stands out
among the many univariate time series analysis models [11]. Like long short-term memory (LSTM),
GRU is less complex in design, which might lead to faster training and processing times. FNNs are
accessible and practical because they can anticipate time series using successive neural layers [12].
Conversely, time series analysis extensively uses CNNs because they can detect spatial and temporal
patterns, especially local correlations in sequential data [13].

Deep-learning models are required to predict renewable energy production to maximize power
generation and distribution efficiency. The author Ateş [1] suggests using swarm intelligence and ANN
to make efficient and accurate short-term projections of wind turbine power. Shekhar et al. [14] show
that CNNs are better than recurrent neural networks (RNNs) at predicting the output of solar power
generators for wind turbines using data from the International Renewable Energy Agency (IREA) and
interconnections in Pennsylvania, New Jersey, and Maryland. Jamil et al. [15] use three deep learning
types—ANN, RNN, and CNN-LSTM—to predict how much solar energy Quaid-e-Azam Solar Park
will generate. The best model for predicting power output was the CNN-LSTM hybrid, which allows
for more precise predictions of solar energy generation. For intelligent microgrid future predictions,
Widodo et al. [16] evaluate a deep neural network (DNN) model with LSTM utilizing RMSE and
confusion matrix accuracy.

According to recent research, deep learning and machine learning have shown remarkable progress
in estimating solar panels’ power output. Khortsriwong et al. [17] examine deep learning models
for floating PV plant power production prediction and Miraftabzadeh et al. [18] for day-ahead
photovoltaic power. Furthermore, Sedai et al. [19–21] thoroughly investigate the current status of
renewable energy forecasting. They specifically look at the efficacy and adaptability of hybrid deep
learning models when projecting future solar power production.

This study suggests using deep learning instead of traditional machine learning techniques. This
is because deep learning models can find more complex patterns and dependencies in data, work
with more extensive and complicated datasets, and do better at tasks involving high-dimensional data,
which regular methods might have trouble with.

The research on green electricity output projections has substantial gaps, which this study intends
to fill. More efficient use of the Asia green electricity generating dataset is required. Mistakes in
prediction due to inaccurate data might affect energy sector planning and regulation. Only some
studies have compiled all the relevant data on renewable energy. When dealing with long-term
data, it becomes increasingly challenging to forecast energy consumption and production capacities
reliably. The shift toward renewable energy sources and away from fossil fuels is worrisome. By 2030,
the UN must have revised and achieved its seventh sustainable energy output objective. We need
accurate predictions of green electricity production if we want modern, affordable, dependable, and
environmentally friendly energy. New error reduction and prediction approaches need to be developed
to cover the research gaps. The fields of processing, data collecting, deep learning, and modelling have
all made strides forward. This project aims to improve green electricity output estimates and accelerate
the global transition to sustainable electrical infrastructure by addressing these distinct models. The
following is the primary contribution of this study:

1. This paper introduces the GP-Ensemble deep learning model, which combines FNN, GRU,
and CNN to improve the accuracy of sustainable electricity forecasts.



2688 CMC, 2024, vol.81, no.2

2. The study enhances the accuracy of long-term predictions for green electricity and minimizes
forecasting errors, lowering the chances of making errors while planning.

3. This study uses the updated dataset until 2023 and contributes by forecasting total green
electricity generation until 2030. This will help achieve the United Nations’ seventh SDG of
guaranteeing universal access to modern, affordable, dependable, and sustainable energy.

The outline for the remaining portion of the article is as follows: There is a literature review in
Section 2. Materials, dataset splitting, data processing, algorithms (FNN, GRU, CNN, GP-Ensemble),
experimental design, and assessment metrics are all covered in Section 3. In Section 4, a model
comparison and a contextual assessment of previous research are offered together with the results
and discussions. The report is concluded in Section 5, which also provides a plan for the future.

2 Literature Review

Deep learning algorithms are necessary for making green power, which sustainably meets the long-
term electricity needs of modern society. These algorithms are very good at predicting how much
green energy will be produced in the future. Therefore, they render the power system more efficient,
better at allocating resources, and better at noticing demand trends. The fact that they can learn from
complicated data and find hidden trends has helped them reach these goals. CNNs and RNNs are
the most well-known deep learning algorithms. They are employed for medium-term prediction of the
future, demand response, error identification, load profiling, and green energy prediction. Modern
methods for evaluating green electricity production are more accurate, highlighting energy use trends
and underlying causes.

This section aims to provide a full review of the literature on deep learning methods for predicting
and producing green energy, focusing on the work Asian countries do in this area. In the past few years,
many countries have realized that they need to switch to sustainable and environmentally friendly
energy sources to have less of an impact on the environment and less dependence on fossil fuels.

Al-Ali et al. [13] propose an outstanding new deep learning model that combines transformers,
LSTMs, and CNNs to predict the quantity of solar energy generated. It is easier to add solar power
to power networks now that a new way has been developed that makes predictions more accurate.
Research shows that this mixed approach works better than standard tactics. Mystakidis et al. [22]
developed and tested a new machine learning and deep learning method to make Energy Generation
Forecasting (EGF) more accurate at different levels of data. To improve smart grid layouts and demand
response management, they tried many other ways to guess how buildings would work by looking at
how they had worked in the past. With the lowest RMSE, deep neural networks are the best way to
predict how much energy will be used [23]. Green building plans that are highly complex need to be
looked into. The MAE, RMSE, and mean absolute percentage error (MAPE) values for LSTM-CNN
hybrids were lower than those for CNN-LSTM hybrids and single models (LSTM, CNN). The people
Wang et al. [24] determine that CNN-LSTM hybrids are better at predicting solar power than LSTM-
CNN hybrids.

Significant advancements in load frequency management and power generation prediction tech-
niques have been made. Kumar et al. [25] have utilized LSTM-RNNs to predict the impact of solar
and wind power on load frequency in microgrids at a specific distance. Using the deep LSTM-RNN
technique developed by Abdel-Nasser et al. [26], PV power generation may be accurately predicted.
This technique significantly improves grid planning and control over usual models by reducing
the number of mistakes due to merging hourly data from many places. Short-term wind power is
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predicted via a model developed by Huang et al. [2] that utilizes BiLSTM-CNN-WGAN-GP. A novel
generative adversarial network technique that uses variational mode decomposition (VMD) for data
decomposition has been designed to increase accuracy and stability. In addition, the model is improved
by integrating data from the Jiuquan wind farm. An et al. [27] propose a PVMD-ESMA-DELM model
to forecast wind generation over very short periods. The model’s decomposition optimization and
global optimization improve wind power projections. This method outperforms traditional prediction.
LSTM and chosen input analysis help Pasandideh et al. [28] predict steam engine output with a 0.47
error rate.

Marques et al. [29] estimate Amazon solar exposure using deep learning and data from twelve
regions. This project uses neural networks like LSTM and LSTM-GRU. The LSTM-GRU has the
lowest MAPE, especially in Labrea. Consequently, it can be used to make more clean energy in places
that are good for the environment, like the Amazon Basin. Jebli et al. [11] use data from Errachidia
(2016–2018) and RNN, LSTM, and GRU deep learning models to guess what solar energy would be
used for. To find long-term links between time series, RNN, and LSTM models do much better than
GRU regarding solar predictions and grid integration. Khan et al. [30] create an ensemble stacking
method based on deep learning to predict solar energy. ANN and LSTM models are 10 to 12 percent
less accurate in different weather situations than this method. A study by Abubakar et al. [31] says that
LSTM machine-learning models can correctly guess smart grid solar power 97% of the time. Because
of this, both the use of solar energy and its performance are better. It is found that the RNN-LSTM
model created by Akhter et al. [32] makes predictions of PV power more accurate than older methods.
Table 1 shows a list of valuable publications.

Table 1: Summary of related work

Reference, Year Methodology Country Accuracy/Error Cons

[2], 2022 BiLSTM–CNN–
WGANGP

China One-step: RMSE
0.3356, MAE
0.2894, MAPE
1.26%

Wind power is
the sole
emphasis.

Multi-step: RMSE
0.8632, MAE
0.4754, MAPE
2.35%

[11], 2021 RNN Morocco RNN: MAE 1.83,
MSE 8.53, RMSE
2.92

Attention is
solely directed
towards solar
power.LSTM LSTM: MAE 1.90,

MSE 9.20, RMSE
3.03

GRU GRU: MAE 2.74,
MSE 15.53, RMSE
3.94

(Continued)
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Table 1 (continued)

Reference, Year Methodology Country Accuracy/Error Cons

[13], 2023 CNN-LSTM-
Transformer

Finland RMSE 0.344 The exclusive
attention is on
solar energy.MAE 0.393

[22], 2023 Ensemble method Cyprus RMSE 1.9993,
MAE 0.8306
MSE 3.9972, R2

0.8913

The sole
emphasis is on
solar energy.

[23], 2023 KNN, DNN Edmonton, Alberta,
Canada

MSE: KNN 0.56,
DNN 0.53

It mainly
concentrates on
aspect of solar
energy.

SVR Adaboost SVR 0.92, Adaboost
0.95

[24], 2019 LSTM-CNN Australia MAE 0.221, RMSE
0.621

The scope of the
research is
restricted solely
to solar energy.

MAPE 0.042, SDE
0.635

[25], 2021 LSTM-RNN —— Solar Power: RMSE
4.45

The primary
focus is on solar
and wind power.Wind Power: RMSE

0.17
[26], 2019 LSTM-RNN Egypt RMSE of Dataset1

82.15
The focus is on
photovoltaic PV.

RMSE of Dataset2
136.87

[27], 2022 PVMD-ESMA-
DELM

China MAE 0.9709,
MAPE 0.0272

The exclusive
focus is on wind
power.RMSE 1.4188, R2

0.9713
[28], 2024 LSTM —— RMSE 0.47 The only focus is

steam energy.
[29], 2024 MLP

LSTM2
LSTM-GRU

Brazil MLP: MAE 0.61,
MAPE 19.5, RMSE
1.05

All attention is
focused on solar
energy.

LSTM2: MAE 0.81,
MAPE 22.77,
RMSE 1.05
LSTM-GRU: MAE
0.89, MAPE 19.2,
RMSE 0.75

(Continued)
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Table 1 (continued)

Reference, Year Methodology Country Accuracy/Error Cons

[30], 2022 DSE-XGB Netherlands MAE 0.98, RMSE
1.01, R2 0.90

The exclusive
focus is on wind
power.

[31], 2024 RNN, LSTM, GRU —— LSTM: RMSE
65.892, MAE
41.0046

The focus is
solely on solar
energy.

[32], 2022 RNN-LSTM Malaysia RMSE 26.85, 19.78,
39.2

The spotlight is
on photovoltaic
PV.R2 0.995, 0.9943,

0.996

A literature review found many knowledge gaps in green power output prediction. The research
addresses these gaps by emphasizing the necessity of trustworthy green power records in Asia. It also
emphasizes the need to avoid incorrect datasets that lead to inaccurate energy policy and planning
estimations. Integrating all renewable energy sources requires a lot of data, making long-term estimates
difficult. Limiting energy usage and abandoning fossil fuels is crucial. The research flow of this study
is given in Fig. 1.

3 Proposed Scheme

This section describes each phase of the procedure for gathering and evaluating data for our
study. This explains various models, including GRU, FNN, CNN, and the GP-Ensemble model, which
combines GRU, FNN, and CNN. The analysis that follows gives a thorough overview of our study’s
methods.

3.1 Dataset

Our dataset follows the progress of renewable energy sources from 1965 to 2021 by evaluating total
green electricity production (GEP) in several Asian countries. It includes data from 10 countries—Iraq,
Pakistan, India, China, Malaysia, Indonesia, Japan, the Philippines, Thailand, and South Korea—
and provides a comprehensive picture of renewable energy generation on the continent. The dataset
from 1965 to 2021, acquired initially from Kaggle [33], included terawatt-hours (TWh) of renewable
energy produced by solar, hydro, wind, thermal, and biofuel sources. Our study updated this dataset by
combining all the data points into a single gigawatt hour (GWh) for each country, bringing the image of
green energy generation together from its various renewable sources. The dataset from 2022 to 2023,
obtained from [34], is month-wise, which we are converting year-wise. With this update, renewable
electricity generation in ten countries is displayed consistently, as illustrated in Table 2, which are our
inputs. The update allows for a clear understanding and comparison of each country’s contributions
to the green energy sector. Using renewable energy and other sustainability measures in Asia has
advanced significantly, and we hope to bring this to light.
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Figure 1: Research framework

Table 2: GEP dataset

Year GEP in
Pakistan

GEP in
India

GEP in
China

GEP in
Malaysia

GEP in
Indonesia

GEP in
Japan

GEP in the
Philippines

GEP in
Thailand

GEP in
South Korea

GEP in
Iraq

1965 2196.442 19,166.94 22,097 587 1825.212 76,070 1550 841 710.427 70.7104
1966 2196.442 20,015.46 22,485.91 692 2373.218 79,350 1520 1064 985.322 92.8074
1967 2603.027 22,397.52 19,383.49 725 2664.898 68,550 1680 1368 953.171 106.0656
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
2023 49,273 393,393 2,662,201 40,195 63,750 240,362 25,001 33,255 50,389 7766
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3.1.1 Data Preprocessing

Using data processing to clean up the information makes our model learn from it much more
effectively. Sorting the data into a time series with each year as the primary number makes this method
more straightforward. The preprocessing stage is easy to reach and changes every year. We begin by
carefully cleaning the dataset, which is an essential first step that relies mainly on the skills of our
data scientists and machine learning engineers. It is a crucial first step that depends on their abilities.
Ensuring the dataset is safe and laying a solid foundation for training the model is essential throughout
this step. Finding and fixing data errors, outliers, and missing numbers requires careful examination.

After cleaning the dataset, it is essential to ensure the column numbers are all the same. The Min-
Max Normalization method, shown in Eq. (3), is used to do this. It’s impossible for any part of the
data to significantly affect the results when the data is reduced to a [0, 1] range [35]. Results ensure that
all features add equally to the model’s learning process. The normalization step works wonders for the
ensemble model’s data-driven learning because it harmonizes all the scales of the different qualities in
the dataset. From Table 3, you can see the normalized information.

w′ = w − wmin

wmax − wmin

(3)

The set of values is represented by w, the normalized value of w is w′, and the maximum and
minimum values in w are wmax and wmin, respectively.

Table 3: Normalized dataset

Year GEP in
Pakistan

GEP in
India

GEP in
China

GEP in
Malaysia

GEP in
Indonesia

GEP in
Japan

GEP in the
Philippines

GEP in
Thailand

GEP in
South Korea

GEP in
Iraq

1965 0 0 0.001 0 0.012 0.052 0.001 0 0 0
1966 0 0.002 0.001 0.003 0.021 0.071 0 0.007 0.006 0.003
1967 0.009 0.009 0 0.004 0.026 0.009 0.007 0.016 0.005 0.005
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
2023 1 1 1 1 1 1 1 1 1 1

3.1.2 Data Splitting

Data splitting is integral to training and testing deep learning models to ensure they can spread
well and not become too perfect. We could use this method to see how well the model works on different
data groups. Scientists often use training-to-testing splits like 90:10, 80:20, 70:30, or even 10:90 to find
the most accurate RNN model for prediction [36]. The best-split ratio depends on many factors, such
as the model’s structure, the data type, and the prediction horizon’s length. In addition, the dataset is
split into different parts for testing and training. The model is trained using about 80% of the dataset.
It helps researchers find the best mix of prediction elements and fine-tune the network parameters.
The final 20% is the test set for comparing various models.

3.2 Methodology

Many deep learning models are available, each with the potential to improve prediction precision.
As part of our research, we introduce the GP-Ensemble deep learning model, a novel technique that
combines the best features of GRUs, CNNs, and FNNs. To improve the accuracy of our forecasts,
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we propose this composite model. Our suggested GP-Ensemble model requires a basic grasp of GRU,
FNN, and CNN.

3.2.1 GRU Neural Network Model

RNNs can interpret sequence data in various ways, including the GRU. Fig. 2 shows its stream-
lined shape and how it mirrors LSTM performance. For learning long-term dependencies in sequence
data, GRU overcomes the vanishing gradient problem and requires fewer computing resources than
LSTM [37]. Three parts comprise a GRU: the hidden state, the update gate, and the reset gate. The
update gate is crucial for GRUs because it keeps data safe. On a scale from 0 to 1, values close to 1
mean that information from the past is remembered, while values close to 0 mean that it is lost. At the
same time, a number close to 0 for the reset gate means more trash and a number close to 1 means more
pass data retention. These two gates update the GRU’s memory with a mix of old and new information
by working together on the newly hidden state.

Figure 2: The GRUs internal architecture

Eq. (4) shows how GRU is written in math. St is the reset gate, yt is the update gate, ht is the hidden
state, and xt is the current input. We can find the equation here. The reset gate has weights that are ws,
and the update gate has weights that are wy.

yt = σ
(
wy · [ht−1, xt]

)
,

St = σ (ws· [ht−1, xt]),

h̃t = tanh (w · [St × ht−1, xt]), (4)

ht = (1 − yt) × ht−1 + yt × ht.

3.2.2 FNN: Feedforward Neural Network Model

The FNN, a primary ANN type, comprises layers that send input in only one direction. As data
moves through the hidden nodes from the input to the exit nodes, no cycles or loops are made. The
three levels in Fig. 3 comprise a FNN core: input, hidden, and output [38]. A FNN has an input layer
that sends data, hidden layers that use activation functions and weighted sums to process the data, and
an output layer that sends the results. All the neurons in the network can talk to each other in the layer
below them because of weights [12]. Weights show how strongly the neurons are linked to each other.
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Figure 3: The FNN’s internal architecture

The mathematical representation of a FNN consists of layers and activation functions within each
layer. In general, consider an n-layer FNN, where p is the output space (Y ), k is the input space (X),
and (d1, . . . , dn) is the intermediate space (I1, . . . , In) dimensions. Each function gi in the network is a
composite function, as can be seen in Eq. (5):

gi (xi) = ai (wixi + bi) . (5)

Here, we have xi, the input to the ith layer, the bias vector bi, the activation function ai, the weight
matrix wi that connects the previous and current layers, and the ith layer itself.

3.2.3 CNN: Convolutional Neural Network Model

CNNs are a type of deep learning model that can deal with data with many dimensions. CNNs
complete their tasks using filters, downsampling techniques, and linear operations. CNNs may directly
extract low-level characteristics from data by using convolutional layers. It employs pooling layers
to simplify how they are represented and improve the readability of these feature maps. Lastly, fully
linked layers produce the model’s output by utilizing these features to comprehend broader patterns
more effectively [13]. Fig. 4 illustrates how these architectural components work together to process
the incoming data and make conclusions efficiently.

Figure 4: Structure of CNN

Generating a feature map involves utilizing the convolution technique, which applies a kernel (or
weight function) to an input function. While undergoing training, we modify a multidimensional array
by including the updated kernel weights. The kernel obtains the feature map values by performing a
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dot product at each place while traversing the input function. The feature map values are obtained by
integrating the input function h with the kernel p using the r and s indices for the rows and columns
of the output matrix, as shown in Eq. (6).

H [r, s] = (h∗p) [r, s] =
∑

j

∑
k

p [j, k] h [r − j, s − k] . (6)

Max-pooling and average-pooling are the two most often employed pooling layers in convolu-
tional neural networks. During the processing of input segments, max-pooling filters identify and
choose the highest value from each segment, while average-pooling filters calculate the average value
of all segments [39]. Eq. (7) represents the formula for max-pooling.

pi,j = max
{
xi+k−1,j+i−1∀1 ≤ k, l ≤ r

}
. (7)

3.2.4 GP-Ensemble Deep Learning Model

Fig. 5 depicts our proposed ensemble model structure for input data analysis, which is a con-
catenated model. It uses an intricate combination of CNN, FNN, and GRU branches to optimize the
capabilities of each architecture. The novelty of this ensemble technique is that we use one hidden layer
of GRU, two hidden layers of FNN, and one layer of CNN, which reduces the cost of our ensemble
technique compared to other models. This multi-branch method allows for the complicated analysis
of time-series or sequential data by capturing many aspects of the data’s structure and trends. The
recurrent structure of the GRU branch makes it very suitable for sequence prediction problems since
it makes temporal correlations easy to identify. In our dataset, renewable electricity generation for ten
Asian countries is consistently displayed, as illustrated in Table 2, which is our input for GRU, FNN,
and CNN. However, owing to its emphasis on densely coupled layers that capture elusive patterns in the
input, FNNs excel in non-sequential data processing. Pattern recognition in the data is made simple by
the CNN branch’s use of convolutional and pooling layers to extract localized features. A final dense
layer produces the result once the model has concatenated the outputs from these several branches
using a comprehensive feature set. An ensemble approach improves the model’s forecast accuracy and
generalizability as it learns from more complicated data.

Figure 5: GP-Ensemble deep learning approach

It comes after a long talk of how this ensemble model is expressed mathematically. An X GRU , an
X FNN, and an X CNN show the inputs to the GRU, FNN, and CNN branches. The activation functions
f GRU , f FNN, and f CNN, along with the weights W GRU , W FNN, and W CNN, tell each branch what changes to
make to its input. OGRU , OFNN, and OCNN are the three separate results of each processing branch. What
these branches give us is mixed to make one feature vector. The model’s output O is found by working
this combined vector more in the previous dense layer with final weights W final and final bias bfinal. A
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function f final may or may not be used by this layer to activate things. Eq. (8) shows a mathematical
and analytical description of the process.

O = ffnall . (Wfnal . [OGRU ; OFNN; OCNV] + bfnal ) . (8)

When OGRU = f GRU (W GRU . X GRU), OFNN = f FNN (W FNN. X FNN), and OCNN = f CNN (W CNN. X CNN), the
outputs of the branches are not just combined, but collaboratively merged using the symbol [;]. This
formula underscores how an ensemble model, like a team, leverages different data representations to
enhance prediction accuracy.

The GRU, FNN, and CNN models use the last pattern from their test datasets to discern what will
happen next. An ensemble model meticulously selects the most accurate parts of each prediction and
integrates them to make the overall prediction more precise. This method demonstrates high precision
in forecasting the outcomes in ten Asian countries from 2024 to 2030.

3.2.5 Experimental Setup

This research looks into whether or not a GP-Ensemble deep learning model could be used to
predict how much green energy ten Asian countries will produce. The model’s last dense layer has a
unique layout combining GRU, FNN, and CNN results. It has ten linear units, one for each of the ten
countries being looked at. This ensemble method, which takes the best parts of several neural networks
and puts them together, makes it easier to find trends in the data related to space and time. The Adam
optimizer is used in the model optimization process because it is good at handling sparse gradients on
noisy problems. MSE, RMSE, and MAE are used to measure how accurate a prediction is. In Table 4,
you can see that the entire model, which has a batch size of 32, goes through 190 epochs of hard training
to figure out the trends in the green power production dataset. Our experiment aims to find out how
well ensemble deep learning methods can correctly predict the outputs of renewable energy sources in
Asian countries. Algorithm 1 presents the pseudocode for GP-Ensemble deep learning approach.

Table 4: Experimental setup of GP-Ensemble deep learning model

Model GP-Ensemble deep learning model

Architecture Concatenation of GRU, FNN, and CNN outputs–Dense (10, linear)
Optimizer Adam
Evaluation loss MSE, MAE, RMSE
Epochs 190
Batch size 32

Algorithm 1: Pseudocode for GP-Ensemble model for green energy prediction
1. Initialize Dataset:

- Load green energy dataset (GWh) from 1965 to 2023.
- Features: Year, GEP in 10 Asian countries.
- Targets: Future GEP values (for forecasting).

(Continued)
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Algorithm 1 (continued)
2. Data Preprocessing:

a. Normalize dataset values between 0 and 1 using Min-Max Normalization.
b. Split the data into training and testing sets (80% training, 20% testing).
c. Ensure no missing values and handle outliers if found.

3. Define GP-Ensemble Model:
a. GRU Layer:

- Input: Sequential data (time series of GEP).
- Process: Use GRU to capture long-term dependencies in the sequence.
- Output: Sequence encoding (long-term memory).

b. CNN Layer:
- Input: Same time series data.
- Process: Apply 1D Convolution to detect patterns and local trends.
- Output: Feature maps representing detected patterns.

c. FNN Layer:
- Input: Flattened time-series data.
- Process: Use FNN to predict non-sequential trends.
- Output: Prediction of GEP.

4. Concatenate Outputs:
- Combine outputs from GRU, CNN, and FNN models.
- Pass concatenated features to a fully connected layer for final prediction.

5. Model Compilation:
- Loss Function: Use MSE.
- Optimizer: Adam optimizer for fast convergence.

6. Train the Model:
- Input: Training dataset (1965–2023 data).
- Epochs: 190 (Adjust based on early stopping).
- Batch size: 32 (Adjust based on memory limits).
- Use the testing dataset for validation.

7. Model Evaluation:
- Calculate prediction accuracy using metrics: MAE, RMSE, and MSE.
- Compare results of GP-Ensemble with standalone GRU, CNN, and FNN models.

8. Forecast Future GEP:
- Input: Latest data from 2023.
- Predict GEP for 2024–2030 using the trained GP-Ensemble model.

9. Output:
- Display GEP forecasts for 10 Asian countries (2024–2030).
- Show performance comparison (MSE, MAE, RMSE) of different models.

3.3 Evaluation Metrics

To evaluate the performance of our approach, we used several evaluation metrics, such as MAE,
MSE, and RMSE. These numbers are defined by Eqs. (9)–(11). The MAE measures the degree
of difference between the actual and predicted values. The RMSE measure displays the degree
of difference between the actual and expected values. The MSE measure measures the squared
discrepancies between observed and predicted values [22].
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MSE = 1
n

∑n

1
(y − ŷ)2, (9)

MAE = 1
n

∑n

1

∣∣y − ŷ
∣∣ , (10)

RMSE =
√

1
n

∑n

1
(y − ŷ). (11)

where y is the actual power load, ŷ is the predicted load, and n is the number of values.

4 Results and Discussion

The deep learning models were constructed using Python and the Keras tools. The training
and testing phases were conducted on Google Colab [40], a platform strongly supporting graphics
processing units (GPUs). Here are the main points from the models’ findings:

1. By analyzing Green Electricity Production Database (GEPD) data from around Asia, we tested
the GP-Ensemble model’s ability to forecast and enhance renewable power generation strategies.

2. We compared the GP-Ensemble deep learning model to CNN, FCN, GRU, FNN, and an
ensemble model that combined CNN and FNN.

3. To evaluate the GP-Ensemble deep learning model, we compared its results to those of existing
research.

4.1 GP-Ensemble Deep Learning Model Performance on Dataset of Asian Countries

Table 5 shows the performance metrics of the GP-Ensemble deep learning model, which include
MSE, MAE, and RMSE. Our metrics display an MSE of 0.0631, an MAE of 0.1754, and an RMSE
of 0.2383. The MSE, MAE, and RMSE values are averaged across ten Asian countries. The lower
numbers show that the GP-Ensemble deep learning model is entirely accurate, which allowed it to
understand the trends and patterns in the Asian country’s dataset.

Table 5: Performance of GP-Ensemble deep learning model

Error description Error value

MSE 0.0631
MAE 0.1754
RMSE 0.2383

From 2024–2030, Table 6 shows the GEP in GWh for ten Asian nations. It includes Iraq, Pakistan,
India, China, Malaysia, Indonesia, Japan, Thailand, South Korea, and the Philippines. Because these
countries declare their production figures every year, it is easy to see that green electricity generation
is on the rise.
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Table 6: GEP forecasting with GP-Ensemble deep learning model on a testing set

Year GEP in
Pakistan

GEP in
India

GEP in
China

GEP in
Malaysia

GEP in
Indonesia

GEP in
Japan

GEP in the
Philippines

GEP in
Thailand

GEP in
South Korea

GEP in
Iraq

2024 51,386 418,067 2,818,646 42,933 67,304 251,777 25,429 35,447 54,615 8692
2025 55,498 473,842 2,975,092 45,672 70,857 243,192 23,858 35,639 58,840 9618
2026 53,611 469,616 3,531,538 42,410 74,411 274,607 26,286 39,831 63,066 9644
2027 57,724 505,391 3,287,984 43,149 77,965 286,022 26,714 42,023 64,292 8470
2028 59,836 561,165 3,744,430 53,887 72,519 307,437 24,143 42,215 64,518 8496
2029 66,949 546,940 3,600,876 56,626 70,073 308,852 27,571 41,407 69,743 9322
2030 64,061 522,715 3,757,321 59,364 66,131.5 320,267 27,999 43,599 71,969 9548

Projections for GEP in Asian nations from 1965 to 2030 are shown in Fig. 6 as bar charts.
The graph’s x-axis represents years, while the y-axis represents green electricity generation in GWh.
Pakistan’s GEP has steadily increased, from 2196 GWh in 1965 to 49,273 GWh in 2023. India’s energy
generation has surged dramatically, from 19,167 GWh in 1965 to 392,293 GWh in 2023, highlighting
its rapid industrialization and expanding energy needs. With its substantial economic growth, China
escalated its GEP from 22,097 to 2,662,201 GWh, representing one of the most significant increases
globally. Malaysia’s GEP grew from 587 to 40,195 GWh, reflecting steady progress in its energy sector.
Similarly, Indonesia’s production rose from 1825 to 63,750 GWh, indicating robust development.
Japan’s energy production gradually increased from 76,070 to 240,362 GWh despite challenges such as
the Fukushima disaster. The Philippines’ GEP increased from 1550 to 25,001 GWh, while Thailand’s
grew from 841 to 33,255 GWh, showcasing its expanding energy infrastructure.

South Korea’s production grew from 710 to 50,389 GWh, underscoring its industrial advance-
ment. Despite its turbulent history, Iraq saw an increase from 71 to 7766 GWh, reflecting some
growth in its energy sector. Predictions from 2024 to 2030 suggest continued growth for these nations.
Pakistan is expected to reach 51,386 GWh by 2024 and 55,498 GWh by 2025. From 418,067 GWh
in 2024 to 522,715 GWh in 2030, India’s GEP will add up. China’s energy generation is forecasted to
grow significantly from 2,818,646 GWh in 2024 to 3,757,321 GWh in 2030. Malaysia’s production is
anticipated to reach 42,933 GWh by 2024 and 56,626 GWh by 2028. Indonesia is projected to generate
67,304 GWh by 2024 and 77,965 GWh by 2028. Japan’s forecast suggests a steady increase to 251,777
GWh by 2024 and 320,267 GWh by 2030. The Philippines’ GEP is expected to rise to 25,429 GWh
in 2024 and 27,571 GWh by 2028. Thailand is predicted to generate 35,447 GWh by 2024 and 41,407
GWh by 2028. South Korea’s GEP is forecasted to increase to 54,615 GWh by 2024 and 71,969 GWh
by 2030. Iraq’s GEP is expected to reach 8692 GWh by 2024 and 9322 GWh by 2028. These projections
indicate a trend of increasing energy production across all countries, driven by growing populations
and expanding industrial activities.
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Figure 6: Prediction of GEP with GP-Ensemble deep learning model on a testing set
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4.2 Comparison of Deep Learning Models Performance on the Dataset of Asian Countries

A line graph is depicted in Fig. 7. The MSE loss is displayed on the vertical axis. One can
observe the number of epochs on the horizontal axis, which ranges from 0 to 190. The plot shows
the performance of different models over time as each line depicts a different model:

• A blue line represents the GRU model.
• An orange line shows the FNN model.
• A red line represents the GP-Ensemble, which combines GRU, FNN, and CNN.
• The purple line represents the ensemble model of FNN and CNN.
• Brown lines denote FCN.
• The dark purple line represents the ensemble model of FCN and FNN.
• The light green line represents the ensemble model of GRU and FCN.

All models exhibit a steep initial drop in training loss during the first 25 epochs, indicating rapid
learning. After that, the loss reduction rate slows as the models converge toward their minimum losses.
The GP-Ensemble model consistently achieves the lowest final loss, implying better performance in
training loss reduction. CNN and FNN demonstrate competitive performance among the remaining
models, with GRU slightly trailing behind. The ensemble models (FCN and FNN) and (GRU and
FCN) have significant alterations at the start and converge more slowly with total loss than other
methods. FCN shows moderate performance, while the ensemble (FNN and CNN) outperforms
all models in the later stages of training. Overall, ensemble models, particularly the GP-Ensemble,
enhance performance by combining the strengths of individual models.

Figure 7: Training losses comparison of forecasting models

Table 7 compares the performance of many deep-learning models. The table shows six distinct
models. These models are evaluated with three statistical measures (MSE, MAE, and RMSE). The
errors allow us to compare the models’ performance; lower values indicate more precise predictions.
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The performance of GP-Ensemble outperforms that of other deep learning models. Its error rates are
0.0631 MSE, 0.1754 MAE, and 0.2383 RMSE, the lowest in the models. Also doing well is the GRU
model, which differs only slightly from the GP-Ensemble model. Given the reduced error rates of the
other models, there may be better choices for this forecasting task than the FCN model.

Table 7: Forecasting comparison of deep learning models on a testing set of Asian countries

Model MSE MAE RMSE

GRU 0.0959 0.2198 0.3096
FNN 0.1104 0.2599 0.3323
CNN 0.1069 0.2518 0.3270
FCN 0.1286 0.2396 0.3587
Ensemble (FNN, CNN) 0.1047 0.2403 0.3236
Ensemble (FCN, FNN) 0.1210 0.2627 0.3448
Ensemble (GRU, FCN) 0.1123 0.2578 0.3362
GP-Ensemble (GRU, FNN, CNN) 0.0631 0.1754 0.2383

Fig. 8 illustrates a bar chart comparing MSE, MAE, and RMSE for different deep-learning
models on an Asian testing set. With an MSE of 0.0631, the GP-Ensemble model—a combination
of GRU, FNN, and CNN—produced the most impressive results. Also, the FCN model has an MSE
of just 0.1286. Although the FNN model received a higher total score of 0.2599, the GP-Ensemble
model remained the most accurate predictor, with an MAE of 0.1754 and RMSE of 0.2383, while
the FCN model had the highest RMSE of 0.3587. The GP-Ensemble model beats all other ensemble
approaches and solo models regarding the testing set.

Figure 8: Performance comparison of forecasting models on a testing set

4.2.1 Ablation Study on Asian Countries Dataset

Table 8 shows the study on ablation that used the GP-Ensemble deep learning model and a sample
from Asian countries. It shows how well different batch sizes (16 and 32), types of optimizers (SGD
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and Adam), and epochs (100 and 190) work. These measurements include MSE, MAE, and RMSE.
Each row shows a different mix of those things to show how different batch sizes, optimizers, and
epochs change MSE, MAE, and RMSE.

Table 8: Ablation study on Asian countries dataset

Model Optimizer Epochs Batch size MSE MAE RMSE

GP-Ensemble deep learning model

SGD
100

16 0.0808 0.2212 0.2593
32 0.0997 0.2926 0.3180

190
16 0.0816 0.2175 0.2779
32 0.0688 0.1825 0.2443

Adam
100

16 0.1201 0.3311 0.3424
32 0.1007 0.3084 0.3266

190
16 0.0776 0.1880 0.2414
32 0.0631 0.1754 0.2383

In this investigation, the Adam optimizer, 190 epochs, and 32 batches yielded the lowest MSE of
0.0631, MAE of 0.1754, and RMSE of 0.2383. It shows that more extended training and higher batch
sizes may optimize deep learning models for complicated datasets like Asian country datasets.

4.3 Comparison of GP-Ensemble Deep Learning Model Performance with Existing Studies

MSE, RMSE, and MAE of several deep learning algorithms are compared to past work in
Table 9. The study found LSTM-CNN had RMSE 0.621 and MAE 0.221 [24]. PVMD-ESMA-DELM
achieved the best RMSE (1.4188) and MAE (0.9709) in 2022 [27]. Another CNN-GRU investigation
in 2022 found reduced errors with MAE 0.2894 and RMSE 0.3356 [2]. The CNN-LSTM-Transformer
approach had an MAE of 0.393 and an RMSE of 0.344 in 2023 [13], while the ensemble method had
an MSE of 3.9972, MAE of 0.8306 and RMSE of 1.9993 [22]. A deep neural network (DNN) has an
MSE of 0.53 in the same year [23]. In contrast to one LSTM study’s 0.47 RMSE [28], the LSTM-GRU
approach reported 0.89 and 0.75 [29], while the SSA-CNN-LSTM had an MSE of 0.2031, MAE of
0.1774 and RMSE of 0.4506 [41]. In this comparison, the suggested GP-Ensemble deep learning model
has the highest forecasting ability and the lowest error scores: MSE 0.0631, MAE 0.1754, and RMSE
0.2383.

Table 9: Comparison with existing studies

Reference, Year Methodology MSE MAE RMSE

[24], 2019 LSTM-CNN — 0.221 0.621
[27], 2022 PVMD-ESMA-DELM — 0.9709 1.4188
[2], 2022 CNN-GRU — 0.2894 0.3356
[13], 2023 CNN-LSTM-Transformer — 0.393 0.344
[22], 2023 Ensemble method 3.9972 0.8306 1.9993
[23], 2023 DNN 0.53 — —

(Continued)
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Table 9 (continued)

Reference, Year Methodology MSE MAE RMSE

[29], 2024 LSTM-GRU 0.89 0.75
[41], 2024 SSA-CNN-LSTM 0.2031 0.1774 0.4506
[28], 2024 LSTM — — 0.47
Proposed model GP-Ensemble deep learning model 0.0631 0.1754 0.2383

5 Conclusions and Future Work

The study found that the GP-Ensemble model is an efficient deep learning technique for predicting
Asian green power production. It predicts better than GRU, FNN, and CNN individually and other
ensemble models. This idea improves green power output predictions as energy demand rises. It will
enable a wiser energy management strategy. Lawmakers, energy firms, and academics should read
this report to anticipate future energy demands and use energy more efficiently. The best part is that
deep learning-based green power research will improve models and predictions. Based on the study’s
excellent findings, some things could be improved with this study. It doesn’t look into more complex
models like LSTMs or attention-based models, and it only uses data from ten Asian countries, which
makes it less diverse. Also, the model only works with real-time data, which is needed to make accurate
forecasts. The GP-Ensemble model works well but takes a long time to run and doesn’t estimate
error, which is essential for making accurate energy predictions. The study also only looks at basic
error measures and doesn’t look at how they might affect the real world. It also doesn’t use advanced
data processing methods to improve the model input. The model has also yet to be used with other
types of energy or in different industries, which limits how widely it can be used. More real-time and
varied data should be used in future research, along with making the model more straightforward,
adding uncertainty measures, using more advanced data processing techniques, and trying the model
on various energy sectors to make it more useful in real life.
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