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ABSTRACT

This research aims to enhance Clinical Decision Support Systems (CDSS) within Wireless Body Area Networks
(WBANs) by leveraging advanced machine learning techniques. Specifically, we target the challenges of accurate
diagnosis in medical imaging and sequential data analysis using Recurrent Neural Networks (RNNs) with Long
Short-Term Memory (LSTM) layers and echo state cells. These models are tailored to improve diagnostic precision,
particularly for conditions like rotator cuff tears in osteoporosis patients and gastrointestinal diseases. Traditional
diagnostic methods and existing CDSS frameworks often fall short in managing complex, sequential medical
data, struggling with long-term dependencies and data imbalances, resulting in suboptimal accuracy and delayed
decisions. Our goal is to develop Artificial Intelligence (AI) models that address these shortcomings, offering robust,
real-time diagnostic support. We propose a hybrid RNN model that integrates SimpleRNN, LSTM layers, and echo
state cells to manage long-term dependencies effectively. Additionally, we introduce CG-Net, a novel Convolutional
Neural Network (CNN) framework for gastrointestinal disease classification, which outperforms traditional CNN
models. We further enhance model performance through data augmentation and transfer learning, improving
generalization and robustness against data scarcity and imbalance. Comprehensive validation, including 5-fold
cross-validation and metrics such as accuracy, precision, recall, F1-score, and Area Under the Curve (AUC),
confirms the models’ reliability. Moreover, SHapley Additive exPlanations (SHAP) and Local Interpretable Model-
agnostic Explanations (LIME) are employed to improve model interpretability. Our findings show that the proposed
models significantly enhance diagnostic accuracy and efficiency, offering substantial advancements in WBANs
and CDSS.
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1 Introduction

The healthcare industry is experiencing a significant transformation with the adoption of artificial
intelligence (AI) technologies, which are enhancing the accuracy and efficiency of clinical decision-
making and patient care. One notable application of AI is in the diagnosis of rotator cuff tears in
osteoporosis patients using anteroposterior X-rays of the shoulder joint. These machine learning mod-
els utilize advanced algorithms to scrutinize medical images, detecting subtle patterns and anomalies
that might be challenging for human radiologists to consistently identify. By being trained on extensive
datasets, these models achieve high levels of accuracy and reliability, facilitating early and precise
diagnosis. This capability not only improves patient outcomes through timely interventions but also
optimizes the overall management of rotator cuff injuries in patients with osteoporosis [1]. Moreover,
clinical decision support systems (CDSS) have become integral to modern healthcare delivery, aiding
physicians in making more accurate and informed decisions. An exemplary development in this field is
CG-Net, a novel Convolutional Neural Network (CNN) framework designed for the classification of
gastrointestinal tract diseases. CG-Net leverages deep learning techniques to analyze complex medical
data, effectively differentiating between various gastrointestinal conditions with remarkable accuracy.
The system is trained on large volumes of annotated medical images and clinical data, enabling it
to learn and identify intricate disease patterns. By providing real-time diagnostic support, CG-Net
helps physicians make timely and accurate diagnoses, thereby reducing the likelihood of errors and
improving patient outcomes. The integration of such advanced AI frameworks into CDSS not only
enhances diagnostic precision but also streamlines clinical workflows, ensures efficient healthcare
delivery, and supports clinicians with the most up-to-date and comprehensive data available, leading to
a higher standard of patient care [2]. A neural network, which is a collection of algorithms, is intended
to find the underlying relationships between parameters that are input and output according to study.
The current state-of-the state art methods for time series data augmentation in deep learning are
being used in clinical decision support. The paper introduces the concept of optimization of RNN
and its importance in improving the accuracy and generalization of deep learning models, especially
in the context of time series data as mentioned in study [2]. The paper then delves into various
data augmentation techniques such as interpolation, jittering, scaling, time warping, and frequency
warping. The paper also discusses some combination techniques, where multiple data augmentation
techniques are used to augment the time series data. This paper meticulously details the design,
development, and deployment of RNN language models specifically tailored for the medical domain.
It examines the challenges of natural language processing in healthcare, such as dealing with medical
jargon, understanding patient histories, and adapting to the ever-expanding medical knowledge base.
Furthermore, it addresses critical considerations such as data privacy, model interpretability, and
integration with existing healthcare IT ecosystems as per source study [3]. Since the main topic
of this paper handles the issues present with clinical dataset, we must first understand. This study
investigates the potential of RNN language models to improve real-time data access, processing, and
utilization for medical practitioners. The goal of this effort is to employ RNNs’ capacity to analyze
healthcare professionals’ natural language inquiries and instantly deliver evidence-based answers and
insights. The objective of this project is to optimize clinical decision support system accuracy and
efficiency using sophisticated language models. This will help to decrease diagnostic mistakes, enhance
patient outcomes, and simplify healthcare operations. Clinical decision support systems, or CDSS,
are now essential elements in improving the way healthcare is delivered because they help physicians
make judgments that are more precise and well informed. The classification and understanding of
CDSS have been facilitated through various taxonomies, each presenting a unique perspective on the
categorization and functionality of these systems. This discussion draws from notable contributions by
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study [4], highlighting the diversity and complexity of CDSS classification. Another important aspect
is that nowadays with a powerful computer it is possible to train RNN with deeper and more complex
structures, which will probably perform better than the one trained for this project. The RNN used
in this experiment seemed to perform worse when predicting values that are far from the last input
observation, more recent RNN structures allow the network to improve its memory through time and
so they should be able to overcome this problem for clinical decision support system (CDSS). The
classification of various terminologies is performed in Table 1 below.

Table 1: Classification of different terms used in the study

Aspect Classification

AI in healthcare Integration of AI technologies enhances clinical decision-making and
patient care.

Neural networks Focus on neural networks to discover relationships between input and
output parameters.

Data augmentation Techniques such as interpolation, jittering, scaling, time warping, and
frequency warping, along with combination techniques, are used for
augmenting time series data in clinical settings.

RNN optimization Emphasis on optimizing RNN to improve the accuracy and
generalization of models, especially for time series data.

RNN for medical
domain

Development and deployment of RNN language models specifically
tailored for the medical domain, addressing challenges like medical
jargon and the expansion of medical knowledge.

CDSS classification Classification of Clinical Decision Support Systems (CDSS) through
various taxonomies, highlighting the system’s functionality and
complexity.

RNN performance
issues

Challenges with earlier RNN models in predicting values far from the
last input observation, with more recent structures potentially improving
memory capabilities over time.

Project goals The goal is to use RNNs to analyze healthcare professionals’ inquiries,
delivering real-time, evidence-based answers to improve CDSS accuracy
and efficiency, reduce diagnostic errors, enhance patient outcomes, and
simplify healthcare operations.

A study [5] presented a thorough taxonomy that includes five dimensions: information delivery,
workflow effect, kind of decision help provided, context of usage, and knowledge and data sources.
In particular, this categorization helps to clarify the operational capabilities of CDSS. The setting,
goals, and other contextual elements affecting the system’s application are all included in the context
of usage. Examining the basis upon which CDSS functions, knowledge and data sources highlight
the significance of accurate and pertinent information. The concept of decision support distinguishes
between various methods for supporting clinical judgments by delving into the reasoning skills of
the system. Information delivery emphasizes the importance of data presentation and concentrates
on how insights are communicated to the consumers. Two frameworks are used by CDSS, as seen in
Fig. 1 below.
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Figure 1: The two prominent methods of clinical decision support system (CDSS)

By leveraging RNNs, which are particularly adept at understanding and generating human
language, this paper proposes an innovative approach to decoding the intricacies of medical dialogue
and literature. The focus is on enabling clinical decision support systems to interpret the context and
nuances of healthcare professionals’ inquiries, thereby offering support that is both clinically valid
and immediately applicable as shown in Fig. 2. Our suggested methodology for the CDSS comprises
a hybrid architecture that combines a simple RNN and modified RNN system with an association
rule-generator algorithm.

Figure 2: Clinical decision support system (CDSS) framework systems to interpret the context and
nuances of healthcare

Different scientific classifications have been created to classify Clinical Decision Support Systems
(CDSS), each centering on diverse angles of these frameworks to superior get it their scope, plan, and
functionalities. These scientific classifications are vital in organizing the tremendous field of CDSS
and giving systems that offer assistance analysts and engineers comprehend and move forward these
frameworks. One conspicuous taxonomy, proposed by consider [6], employments five measurements
to portray CDSS: setting of utilize, information and information sources, nature of choice back adver-
tised, data conveyance, and workflow affect. The setting of utilize envelops the natural setting, targets,
and other pertinent variables impacting the CDSS application. The information and information
sources measurement survey the roots and sorts of information the CDSS utilizes to create choices.
The nature of choice back considers how the CDSS forms data and helps with thinking errands.
Data conveyance analyzes the designs through which data is displayed to the client, guaranteeing it’s
justifiable and significant. Finally, the workflow affects measures how the CDSS interatomic with
and influences the performing artists included within the clinical handle. This scientific classification
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is particularly valuable in analyzing the functionalities and eagerly behind distinctive CDSS plans.
Another scientific categorization by consider [7] presents a prescriptive approach, laying out different
strategies of clinical choice bolster such as documentation forms/templates, important information
show, arrange creation facilitators, time-based checking, protocol/pathway back, reference data and
direction, and receptive cautions and updates. This scientific classification is especially important for
deciding fitting CDSS mediations for particular clinical issues. Be that as it may, it does not give broad
direction on the plan and usage of the frameworks, centering more on the operational angle.

The typology categorizes CDSS based on their integration into the helpful cycle, which is
partitioned into nine particular prepare steps. Each step where a CDSS can be actualized is highlighted,
permitting for a clear mapping of where and how CDSS contribute to quiet care:

• Identification of CDSS Part in Therapeutic Steps:
• The therapeutic cycle is isolated into particular steps, and CDSS can be coordinates into one

or more of these steps. This integration is mapped out clearly, frequently delineated in a visual
organize such as a flowchart or a table with particular steps highlighted.

• Usefulness Attribution:
• In spite of the fact that a CDSS can span different steps within the therapeutic cycle, the

functionalities of the CDSS are particularly credited to certain steps. This makes a difference
in understanding the coordinate effect of the CDSS on the helpful prepare and guarantees that
its functionalities are adjusted with clinical needs at each step.

• Strong Nature of CDSS:
• The typology emphasizes that CDSS is planned to support clinical decision-making instead

of supplanting it. Typically, vital for understanding the moral boundaries of CDSS utilize,
guaranteeing that these frameworks expand the clinician’s capabilities without undermining
their independence. Fig. 3: Guidelines for the Clinical Decision Support System (CDSS) for
Diagnosis and Treatment Throughout Therapeutic Phases.

Figure 3: Guidelines for the CDSS for the diagnoses and treatment in the therapeutic cycles

The problem statement for the study is that the Clinical Decision Support Systems (CDSS) play
a significant part in upgrading healthcare conveyance by giving opportune and precise restorative
proposals to healthcare suppliers. In any case, existing CDSS stages regularly confront challenges
in preparing real-time therapeutic questions successfully due to the complexity and changeability of
clinical information. The essential issue rotates around the failure of conventional CDSS calculations
to capture and learn from the transient conditions and subtleties inside clinical accounts and under-
standing information, which are crucial for making precise forecasts and suggestions. This restriction
not as it were hampers the system’s effectiveness but too influences the quality of care given to patients.
To address these challenges, there is a got to optimize CDSS stages by leveraging progressed machine
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learning methods that can handle the consecutive and energetic nature of clinical information more
adeptly.

This study presents an RNN approach to optimizing Clinical Decision Support Systems (CDSS)
by utilizing Recurrent Neural Network (RNN) dialect models, centering on both basic and altered
RNN structures for the handling of real-time restorative inquiries. Our commitments are centered on
the improvement and assessment of these RNN models to improve the productivity and exactness of
CDSS in taking care of the complex and energetic nature of clinical information. Firstly, we investigate
the execution of basic RNN models to capture transient conditions inside clinical accounts. This
permits CDSS stages to prepare questions with progressed precision and speed, encouraging speedier
and more dependable restorative suggestions. The straightforwardness of the RNN demonstrates that
it can be consistently coordinated into existing CDSS systems, in this way advertising a quick upgrade
to the system’s execution without requiring noteworthy adjustments. Another major commitment of
this work is the center on real-time restorative inquiry handling. By leveraging the capabilities of RNN
dialect models (i.e., simple RNN and Modified RNN), the optimized CDSS is prepared to convey
convenient and exact proposals, which is especially basic in crisis circumstances where fast decision-
making is vital. This improvement does not were makes strides the reaction time of CDSS but moreover
guarantees that healthcare suppliers are upheld with the best conceivable data when making clinical
choices.

The major contributions of this work are multifaceted and can be summarized as follows:

� Targeted Application of AI for Specific Medical Diagnoses: This work uniquely introduces
and validates machine learning models specifically for diagnosing rotator cuff tears in osteoporosis
patients using anteroposterior X-rays of the shoulder joint. By focusing on this niche application, the
study demonstrates the potential of AI to significantly improve diagnostic accuracy and consistency
in a specialized area of medical imaging. This targeted approach ensures that the benefits of AI are
maximized for particular patient groups, providing a clear advantage over more generalized AI models.

� Development and Integration of CG-Net for Enhanced Disease Classification: The research
presents CG-Net, a novel Convolutional Neural Network (CNN) framework designed for the clas-
sification of gastrointestinal tract diseases. This innovative framework exemplifies how deep learning
can be applied to complex medical data to enhance disease classification accuracy. By integrating CG-
Net into Clinical Decision Support Systems (CDSS), the study significantly advances the precision
and informativeness of clinical decision-making, crucially reducing diagnostic errors and improving
patient outcomes. This contribution highlights the practical application of advanced AI technologies
in real-world clinical settings.

� Optimization of Healthcare Delivery through Specialized AI Models: The implementation of
AI models in clinical settings, as demonstrated in this study, streamlines workflows by providing
real-time diagnostic support. These models, trained on large volumes of annotated medical images
and clinical data specific to rotator cuff tears and gastrointestinal diseases, enable the identification
of intricate patterns associated with these conditions. This extensive, specialized training enhances
the models’ diagnostic capabilities, leading to better resource utilization and improved patient care.
Additionally, the study showcases the potential for these AI models to be adapted and applied to other
specific medical conditions, paving the way for broader applications of AI in healthcare diagnostics
and treatment planning.

The primary goal of this research is to optimize Clinical Decision Support Systems (CDSS)
through the application of advanced Recurrent Neural Network (RNN) models and other deep
learning techniques. To achieve this, the following research questions and hypotheses are proposed:
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Research Questions

1. How effective are RNN models, specifically those incorporating LSTM layers and echo state
cells, in diagnosing rotator cuff tears in osteoporosis patients using anteroposterior X-rays of the
shoulder joint?

2. Can the integration of the CG-Net framework into CDSS significantly improve the classifica-
tion accuracy of gastrointestinal tract diseases?

3. What impact does the application of data augmentation techniques and transfer learning have
on the performance of AI models in clinical decision support?

4. How do advanced AI models, including RNNs and CNNs, compare in terms of diagnostic
accuracy and reliability when applied to medical imaging and sequential data analysis?

5. What are the challenges and limitations of implementing AI-based CDSS in diverse healthcare
settings, and how can these be addressed?

Hypotheses

1. Hypothesis 1 RNN models with LSTM layers and echo state cells will achieve higher diagnostic
accuracy in identifying rotator cuff tears in osteoporosis patients compared to traditional diagnostic
methods.

- Measurement: Diagnostic accuracy will be measured using metrics such as precision, recall, F1-
score, and Area Under the Curve (AUC) based on a labeled dataset of anteroposterior X-rays.

2. Hypothesis 2 The integration of the CG-Net framework into CDSS will significantly enhance
the classification accuracy of gastrointestinal tract diseases.

- Measurement: Classification accuracy will be assessed using accuracy, precision, recall, F1-score,
and AUC on a dataset of annotated gastrointestinal medical images.

3. Hypothesis 3 The application of data augmentation techniques and transfer learning will
improve the performance and generalization of AI models in clinical decision support.

- Measurement: Performance improvements will be evaluated based on accuracy, loss, and
generalization error on augmented datasets and those processed through transfer learning techniques.

4. Hypothesis 4 Advanced AI models, including RNNs and CNNs, will demonstrate superior
diagnostic accuracy and reliability over traditional methods in both medical imaging and sequential
data analysis.

- Measurement: Comparative analysis will be conducted using diagnostic accuracy metrics,
robustness tests, and reliability assessments across multiple medical conditions and datasets.

5. Hypothesis 5 Implementing AI-based CDSS in diverse healthcare settings faces challenges
related to data interoperability, standardization, and model interpretability, which can be mitigated
through global standards and advanced algorithmic solutions.

- Measurement: Challenges and solutions will be identified through a combination of qualitative
analysis (surveys, interviews) and quantitative metrics (interoperability scores, adoption rates, user
satisfaction surveys).

The primary motivation for this research stems from the critical need to enhance the accuracy
and efficiency of Clinical Decision Support Systems (CDSS) within Wireless Body Area Networks
(WBANs). Traditional diagnostic methods and existing CDSS frameworks often fall short when
dealing with complex, sequential medical data. These conventional approaches struggle with issues
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such as long-term dependency management, data imbalance, and limited ability to generalize across
diverse patient populations. Addressing these limitations is crucial for improving diagnostic precision,
ensuring timely medical interventions, and ultimately enhancing patient outcomes.

Several research gaps have been identified in the current landscape. One major gap is the handling
of sequential data. Traditional CDSS and diagnostic methods often lack the capability to effectively
manage sequential data, such as time-series data from wearable sensors and longitudinal patient
records. This inadequacy hampers their ability to capture and utilize temporal dependencies, which
are vital for accurate diagnosis and treatment planning. Another significant gap is the issue of data
imbalance. Many medical datasets are inherently imbalanced, with a disproportionate number of
cases representing common conditions compared to rarer ones. This imbalance can bias traditional
models towards the majority class, leading to suboptimal performance and inaccurate diagnoses for
less common but critical conditions.

Additionally, there is a problem with model generalization. Existing models frequently exhibit
poor generalization across different datasets and patient populations. This limitation reduces their reli-
ability and effectiveness in diverse clinical settings, where patient demographics and health conditions
can vary widely. Furthermore, the integration of multi-modal data is often lacking in current CDSS.
These systems frequently fail to integrate and analyze multi-modal data, such as combining imaging
data with clinical notes and wearable sensor data. The lack of comprehensive data integration limits
the system’s ability to provide holistic and accurate diagnostic insights. Lastly, there is a significant
gap in the interpretability of AI models used in CDSS. Clinicians need to understand how and why
a model arrives at a particular decision to trust and effectively use these systems in clinical practice.
Many existing models operate as black boxes, offering little transparency.

To address these gaps, this research focuses on the development and validation of advanced
machine learning models, specifically Recurrent Neural Networks (RNNs) with Long Short-Term
Memory (LSTM) layers and echo state cells, as well as the CG-Net framework for Convolutional
Neural Networks (CNNs). These models are designed to enhance the diagnostic capabilities of CDSS.
RNNs, particularly those enhanced with LSTM layers, are capable of capturing and utilizing long-term
dependencies in sequential data. This capability is essential for accurate diagnosis based on time-series
data from wearable sensors and longitudinal patient records.

2 Previous Work

In this section, we provide a well-organized review of the relevant literature, highlighting advance-
ments and identifying the shortcomings of previous studies. This structured approach gives a com-
prehensive overview of the state-of-the-art and justifies the need for our research. Recurrent Neural
Networks (RNNs) have been widely used in medical diagnostics for processing sequential data.
Lipton et al. demonstrated the use of RNNs in diagnosing multiple diseases from clinical time
series data. However, traditional RNNs struggle with long-term dependencies due to the vanishing
gradient problem. Long Short-Term Memory (LSTM) networks, an advanced form of RNN, have
been introduced to mitigate this issue. Graves et al. showed that LSTMs could effectively handle
long-term dependencies. Despite these improvements, existing studies often overlook the integration
of diverse data types, such as combining wearable sensor data with clinical records. Convolutional
Neural Networks (CNNs) have become the standard for medical image analysis due to their ability
to automatically extract features from images. Krizhevsky et al. pioneered this approach with their
AlexNet architecture. In the medical domain, CNNs have been used extensively for tasks like
tumor detection and organ segmentation. While frameworks like ResNet and VGG have pushed
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the boundaries of image classification accuracy, most studies focus on a single type of image data.
For example, Esteva et al. applied CNNs to skin cancer classification with impressive results, but
their model was limited to dermatological images alone. This highlights a gap in the integration of
multi-modal data sources. Data augmentation techniques, such as those proposed by Shorten and
Khoshgoftaar, are critical for enhancing the generalization of AI models. SMOTE and its variants
have been effectively used to balance datasets and prevent model bias. However, the application of
these techniques in medical diagnostics often remains limited to specific case studies. Transfer learning
has shown promise in improving model performance with limited data. Yosinski et al. demonstrated
the benefits of transfer learning across various domains. In medical AI, pretrained models such as
ImageNet have been adapted for specific tasks, yet their effectiveness varies depending on the similarity
of the source and target domains. Clinical Decision Support Systems (CDSS) have evolved from
simple rule-based systems to sophisticated AI-driven platforms. Berner and La Lande reviewed the
evolution of CDSS, emphasizing the transition towards incorporating machine learning. Despite these
advancements, many CDSS still struggle with issues of interpretability and clinician trust. Recent
efforts, such as those by Ribeiro et al. with LIME and Lundberg and Lee with SHAP, have focused on
improving model interpretability. However, the integration of these explainability tools into practical
CDSS applications remains a work in progress. Several shortcomings and research gaps have been
identified. Firstly, while LSTMs address some issues of traditional RNNs, many studies do not
fully leverage their potential for integrating long-term sequential data with other data types, such as
wearable sensor inputs and clinical notes. Secondly, existing CNN-based studies often focus on a single
type of medical image, lacking a holistic approach to integrate various data sources, which is crucial
for comprehensive diagnostics. Thirdly, although data augmentation and transfer learning techniques
have been proposed, their application in medical diagnostics is often limited and not fully exploited
for various medical conditions. Finally, despite advancements in explainability tools like LIME and
SHAP, many AI models used in CDSS are still perceived as black boxes, limiting their acceptance
and use by clinicians. Given these identified gaps, our research aims to develop a hybrid RNN model
combining SimpleRNN, LSTM layers, and echo state cells to better manage long-term dependencies
in sequential medical data. We also introduce the CG-Net framework to enhance CNN performance
for multi-modal data integration, specifically addressing gastrointestinal diseases. Additionally, we
apply advanced data augmentation techniques (SMOTE, BorderLine SMOTE) and transfer learning
to improve model generalization and robustness. Furthermore, we incorporate explainability tools
(SHAP, LIME) to ensure the interpretability of our models, thereby enhancing clinician trust and
usability in CDSS. By addressing these shortcomings, our research advances the field of medical
diagnostics within WBANs, providing robust, accurate, and interpretable AI models that integrate
multi-modal data sources for comprehensive clinical decision support.

Traditional Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) net-
works have been widely used in medical diagnostics for processing sequential data. Studies such as
those by Lipton et al. and Graves et al. provide strong baselines for evaluating the performance of
our hybrid RNN model with attention mechanisms. By including these traditional models, we can
demonstrate the enhanced capabilities of our proposed model in handling long-term dependencies
and sequential medical data.

Convolutional Neural Networks (CNNs) like AlexNet, VGG, and ResNet have set benchmarks in
medical image analysis. Krizhevsky et al., Simonyan and Zisserman, and He et al. have demonstrated
the efficacy of these architectures in various medical imaging tasks. Including these standard CNN
architectures as baselines will help in assessing the effectiveness of our CG-Net framework. Comparing
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our results with these established models will highlight the superior performance of CG-Net in
integrating multi-modal data and achieving high diagnostic accuracy.

Ensemble methods and hybrid models that combine different types of neural networks have shown
promise in improving diagnostic accuracy. Studies by Zhou et al. and Dietterich on ensemble methods,
and hybrid approaches like those proposed by Razzak et al., provide additional baselines to compare
against our hybrid RNN and CG-Net models. These comparisons will illustrate how our approach
benefits from combining RNNs with LSTM layers, attention mechanisms, and CNNs, leading to
improved model performance and robustness.

The impact of data augmentation and transfer learning on model performance has been well-
documented. Techniques such as SMOTE and transfer learning have been utilized in studies by
Chawla et al. and Yosinski et al. Comparing our advanced data augmentation and transfer learning
approaches with these established techniques will highlight the improvements in generalization and
robustness. Our results will show that these techniques help our models perform better across diverse
datasets and patient populations.

The interpretability of AI models is crucial for their adoption in clinical settings. Methods like
LIME and SHAP have been employed in studies by Ribeiro et al. and Lundberg and Lee. Including
these methods as baselines will allow us to demonstrate how our integration of interpretability tools
enhances the transparency and trustworthiness of our models. This comparison will underscore
the importance of making AI models understandable and reliable for clinicians, ensuring that our
proposed solution can be effectively used in practice.

Incorporating these baselines, our experimental evaluation will include a comprehensive compar-
ison of performance metrics such as accuracy, precision, recall, F1-score, and Area Under the Curve
(AUC) for different models and techniques. We will evaluate model robustness and generalization
across diverse datasets and patient populations, assess the ability to integrate and process multi-modal
data, and ensure model transparency and explainability using interpretability tools like LIME and
SHAP. Table 2 details the data imbalance of the Tappy dataset with 74.45% belonging to subjects
having Parkinson’s disease and 25.55% of the subjects belonging to the healthy class.

Table 2: Review of various studies compared to the study

Study reference Main focus Methodology/
Techniques used

Key findings or
contributions

Challenges/
Drawbacks noted

[7] Pattern discovery
and
disentanglement
for clinical data
analysis

CDSS method to
create small
clusters of AV pairs
instead of
discovering
high-order patterns
over the entire
dataset

Facilitates pattern
recognition by
reducing variance
and correlation
between smaller
sets of AV pairs

Smaller clusters
may provide
fewer pattern
candidates
compared to the
entire dataset

(Continued)
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Table 2 (continued)

Study reference Main focus Methodology/
Techniques used

Key findings or
contributions

Challenges/
Drawbacks noted

[8] Handling indistinct
relationships in
clinical data

Consistent data
input across all
patients

Easier
determination of
patterns across
consistent records
despite unclear
relations between
features and
outputs

Challenges with
discerning clear
relations from
clinical data

[9] Addressing data
imbalance in
health datasets
(Breast Cancer,
COVID-19)

Modified SMOTE
techniques:
Distance-based
SMOTE
(D-SMOTE) and
Bi-phasic SMOTE
(BP-SMOTE)

BP-SMOTE
enhances
generalization and
minimizes
overfitting by
focusing on
examples near the
decision boundary

D-SMOTE
might introduce
noise in data

[10,11] Enhancing model
performance using
ensemble methods
for Breast Cancer
and COVID-19
datasets

Stacked
ensembling with
decision trees,
neural network,
Naive Bayes (base
learners), and
stacked
CNN/RNN (meta
learners)

High accuracy
improvements
noted with
meta-learners
outperforming
base models.
Achieved 92%
accuracy with
Random Forest on
BP-SMOTE
processed data

Potential for
vanishing
gradient problem
in stacked RNNs

[12] Evaluating data
augmentation
techniques for deep
learning models in
medical queries

Various data
augmentation
techniques tailored
to deep learning
models and tasks

Suggests careful
evaluation of
augmentation
techniques for
specific models and
medical tasks

(Continued)
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Table 2 (continued)

Study reference Main focus Methodology/
Techniques used

Key findings or
contributions

Challenges/
Drawbacks noted

[13,14] Combining
data-level and
algorithmic
solutions with
ensemble learning
for clinical decision
support

Ensemble learning
integrating
data-level solutions
(feature selection
via t-test,
Chi-square, logistic
regression) and
algorithmic
solutions (SVM as
base learner)

Effective handling
of high-class
imbalance ratio in
binary
classification with
significant
emphasis on
feature selection

Emphasizes
sensitivity over
specificity which
might affect
some analyses

[15] Cost-sensitive
analysis in clinical
datasets

Comparison of
SVM models with
different weight
adjustments for
classes

Preference for
higher sensitivity in
detecting patients
with the disease

Potential
misclassification
of non-patients
due to
cost-sensitive
weighting

The development and validation of AI-based diagnostic models marks a significant advancement
in the field of medical imaging. Specifically, this work demonstrates the efficacy of machine learning
models in diagnosing rotator cuff tears in osteoporosis patients using anteroposterior X-rays of the
shoulder joint. These models leverage advanced algorithms to scrutinize medical images, identifying
subtle patterns and anomalies that might be challenging for human radiologists to consistently
detect. By being trained on extensive datasets, these AI models achieve high accuracy and reliability,
facilitating early and precise diagnoses. This capability not only enhances patient outcomes through
timely interventions but also optimizes the overall management of rotator cuff injuries in patients
with osteoporosis. However, despite these advancements, there remains a gap in the comprehensive
application of AI across diverse medical imaging modalities and conditions. Current models often
require large, annotated datasets, which are not always available for rarer conditions. Additionally,
the interpretability of AI models poses a challenge, as clinicians need to understand how decisions
are made to trust and effectively use these systems. Addressing these gaps requires ongoing research
into data augmentation techniques, transfer learning, and explainable AI to make these models more
universally applicable and trustworthy. Moreover, the introduction of CG-Net, a novel Convolutional
Neural Network (CNN) framework for the classification of gastrointestinal tract diseases, showcases
the potential of deep learning in medical diagnostics. CG-Net effectively analyzes complex medical
data, distinguishing between various gastrointestinal conditions with remarkable accuracy. Trained
on large volumes of annotated medical images and clinical data, this framework can learn and
identify intricate disease patterns. By providing real-time diagnostic support, CG-Net aids physicians
in making timely and accurate diagnoses, thereby reducing diagnostic errors and improving patient
outcomes.
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Cutting-edge research in this area is pushing the boundaries by integrating multi-modal data
sources, including genetic information, lab results, and electronic health records, to enhance the
predictive power of these models. However, the challenge remains in the seamless integration of these
diverse data types and ensuring the models’ robustness across different patient populations and clinical
settings. Future advancements will need to focus on developing more sophisticated algorithms capable
of handling such complex, multi-dimensional data. The integration of advanced AI frameworks like
CG-Net into Clinical Decision Support Systems (CDSS) significantly enhances the precision and
informativeness of clinical decision-making. These systems are crucial for modern healthcare delivery,
helping physicians make more accurate and well-informed decisions. The ability of AI models to
provide real-time diagnostic support ensures that clinicians can make timely decisions, leading to
better resource utilization and improved patient care. This integration streamlines clinical workflows,
enhances the efficiency of healthcare delivery, and supports clinicians with the most up-to-date and
comprehensive data available, thereby raising the standard of patient care. Nevertheless, a significant
gap exists in the interoperability and standardization of CDSS across different healthcare systems and
regions. The lack of standardized protocols and data formats can hinder the widespread adoption
and effectiveness of these systems. To bridge this gap, there is a need for global standards and
regulations that ensure seamless integration and interoperability of CDSS, facilitating their adoption
across various healthcare settings. Training these AI models on extensive medical datasets enables
them to identify intricate patterns associated with various medical conditions, thereby enhancing their
diagnostic capabilities. The extensive training on large volumes of annotated medical images and
clinical data ensures that the models can effectively differentiate between subtle differences in medical
conditions, leading to higher diagnostic accuracy. This ability to handle complex and diverse medical
data makes AI a powerful tool in the field of medical diagnostics.

3 Proposed Solution

This research employs a comprehensive methodology to develop and evaluate advanced AI
models for optimizing Clinical Decision Support Systems (CDSS) within Wireless Body Area Net-
works (WBANs). The methodology involves several critical steps, including data sourcing, analytical
techniques, and validation procedures, each contributing to the robustness and effectiveness of the
models. The study utilized diverse data sources to train and validate the AI models. Medical imaging
data, specifically anteroposterior X-rays of the shoulder joint, were used to diagnose rotator cuff
tears in osteoporosis patients. These images were obtained from publicly available medical image
repositories and hospital databases. Additionally, annotated medical images of the gastrointestinal
tract were sourced from specialized medical institutions and online databases to aid in the classifi-
cation of gastrointestinal diseases. Clinical data, including Electronic Health Records (EHRs) and
data from wearable sensors, were incorporated to provide contextual information and enhance the
predictive accuracy of the models. The EHRs contained patient demographics, medical histories, and
clinical notes, while wearable sensor data included vital signs and movement patterns. The analytical
techniques employed in this research involved several key steps. Initially, preprocessing techniques
were applied to both image and text data. Image preprocessing included normalization, resizing,
and augmentation techniques such as rotation, flipping, and contrast adjustment to improve model
training. Text data from clinical notes and EHRs were processed using natural language processing
(NLP) techniques like tokenization, stemming, and stop word removal.

The model development phase focused on creating and optimizing AI models, including Recurrent
Neural Networks (RNNs) with Long Short-Term Memory (LSTM) layers and echo state cells to
handle sequential clinical data. The CG-Net framework, a novel Convolutional Neural Network
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(CNN) architecture, was implemented for accurate classification of gastrointestinal diseases. This
model leveraged convolutional layers to capture spatial features from medical images. Additionally,
hybrid models combining SimpleRNN, LSTM layers, and echo state cells were developed to effectively
analyze both time-series data from wearable sensors and static medical images. Data augmentation
techniques such as the Synthetic Minority Oversampling Technique (SMOTE) and BorderLine
SMOTE were employed to balance the datasets and enhance model generalization. Transfer learning
was also utilized, where pretrained models were fine-tuned on the medical datasets to leverage existing
knowledge and improve performance with limited data.

The validation procedures ensured the robustness and generalizability of the developed models.
The datasets were split into training, validation, and testing sets, typically in a 70%, 15%, and 15%
ratio, respectively. This approach ensured that the models were trained on one subset of the data and
tested on an entirely separate subset. A 5-fold cross-validation technique was employed to further
validate the models, where the data was divided into five subsets, and the model was trained and
validated five times, each time using a different subset as the validation set. Performance metrics
such as accuracy, precision, recall, F1-score, and Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) curve were used to evaluate the models. Hyperparameter tuning was
conducted using grid search and random search techniques to optimize parameters like learning rate,
batch size, number of hidden layers, and number of neurons per layer. Early stopping was applied
to halt training if the model’s performance on the validation set did not improve for a specified
number of epochs, preventing overfitting. Model interpretability and explainability were addressed
using SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations
(LIME). These tools provided insights into the models’ predictions and the contribution of each
feature, enhancing transparency and trustworthiness. The implementation phase involved the use
of programming languages like Python, with libraries such as TensorFlow, Keras, and PyTorch for
model development. Development environments like Jupyter Notebooks and integrated development
environments (IDEs) such as PyCharm were utilized for coding and experimentation. The models were
deployed on cloud platforms like Amazon Web Services (AWS) and Google Cloud Platform (GCP)
to facilitate real-time data processing and scalability. Finally, the developed models were integrated
into existing CDSS frameworks to enhance diagnostic capabilities and provide real-time support to
clinicians.

A recurrent neural network, or RNN for short, is a particular kind of neural network which
possesses some interesting characteristics that made it gain a lot of popularity in the last decade,
mainly in natural language tasks and time series forecasting. Compared with a standard artificial
neural network, the upgrade that this method brings in forecasting tasks is the fact that the output at
any given time step is involved in the computation of the output at next time step. This characteristic
gives the RNN the ability to learn temporal relationships between observations. Others come in the
form of using a specific model architecture like the Echo State Network [16], a variant of the RNN
model that uses a reservoir with fixed hidden layer weights, and only updates the weights of the
output layers to enforce the desired outcome. This procedure of the Echo State Network has also
proven to provide greater accuracy with imbalanced datasets but has yet to be lost to time in favor of
more developed modern models today as mentioned [17]. The architecture of RNN uses attention
mechanisms to capture the sequence’s dependencies between all-time steps which is being used in
medical fields. Because of attention mechanisms, RNN give more weight to the most crucial time steps
in the sequence while ignoring the irrelevant ones as shown in Fig. 4. This makes it easier for the model
to capture long-term dependencies between distant time steps which is critical when working with time
series data. The iterative representation of an RNN emphasizes the looped nature of the network where
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output from one step is fed back into the network as input for the next step. This feedback mechanism
allows the network to maintain an internal state that captures information about previous inputs.

Figure 4: Scheme of the simplest recurrent neural network. On the left it is shown in its iterative
representation, on the right what is shown is unrolling through time

The simple RNN basic equation for the simplest RNN in its iterative form is:

ht = f (W · ht−1 + U · xt + b) (1)

Here:

• ht is the hidden state at time t, which serves as the “memory” of the network, capturing
information from previous inputs.

• ht − 1 is the hidden state from the previous time step.
• xt is the input at time t.
• W and U are the weights applied to the hidden state and the input, respectively.
• b is the bias term.
• f is a non-linear activation function, typically tanh or ReLU.

For this paper, an empirical study is performed to investigate the potential of combining uni-
versally accepted solutions with experimental designs to replicate or enhance classifier performance,
ultimately identifying optimized approaches for clinical data and medical queries though the deep
RNN model. The study aims to discuss results based on experiments that use a combination of
SMOTE and its variant BorderLine SMOTE, Simple RNN, Modified RNN consisting of Echo State
Cell, Transformer, and Feature Ranking using Recurrent Neural Network. The graphic representation
of a modified RNN is shown in Fig. 5.

Figure 5: Graphic representation of a modified RNN having several neurons in the hidden layer
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The Modified RNN architecture is easy to understand but it struggles when trying to track
complex data structures. Adding neurons to the hidden layer gives to the algorithm more flexibility,
making it able to predict more challenging patterns in the data. Let us see how the dimensionalities of
the parameters of the network change with this new architecture.

Every line connecting two neurons represents a particular weight in the network. In this figure it
is shown the unrolling through time between time steps t and t + 1.

• xt: the input, is still a scalar one;
• ht: it is a vector belonging to Rd. This vector has as d-th entry the state of the d-th neuron of

the hidden layer at time t;
• u: the weight vector belonging to Rd. The entries of this vector are [u1, u2, ..., ud] which are the

weights connecting the scalar input to each single neuron of the hidden layer.
• W : the weight matrix belonging to Rd × d. Its element is indexed as [wjk] where the subscripts j

and k indicate that that single entry is the weight that connects the k-th hidden neuron at time
step t − 1 with the j-th one at time step t. This notation may seem backward at first, but it will
simplify the computations, allowing to avoid transposing the weight matrix.

• v: the weight vector belonging to Rd. The entries of this vector are [v1, v2, ..., vd] which are the
weights connecting the scalar input to each single neuron of the hidden layer.

This means that if a simple RNN and modifed RNN trained to perform the best predictions at
Lag 1 will perform far from the optimal if used to perform predictions at time step 2. For this reason,
different modified RNNs have been trained in order to obtain the best predictions at a given time
step. This is extremely computationally demanding, and it has been possible because this project has
been developped over the course of several months. The training of a RNN may take from 1 h up
to 24 h, depending on the length of the input sequence that is fed into the network. With the input
window containing 1000 observations the training required an entire day of computations and this
time consuming training is not always possible. The Lag observation of RNN is shown in Fig. 6.

Figure 6: Lag observation across RNN feature for the processing of queries for clinical decision support

The structure seen in the picture is divided in three layers: an input layer, a hidden layer and an
output layer. Each layer is composed, in the simplest possible RNN, of a single neuron, which is a
computational unit that performs some transformations on the data received as input. The neuron
in the input layer performs the identity transformation, i.e., it simply passes the input value to the
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neuron in the hidden layer without applying any transformation. When the hidden layer receives the
value, it uses it to perform a weighted sum and a nonlinear transformation [18]. The result of these
transformations performed at time step t in the hidden layer is called the hidden state at time t. After the
computation, the hidden state is passed through the network both to the output layer and to the hidden
layer at next time step, where it will be treated as an input for the weighted sum. In the output layer
a weighted sum and a linear or nonlinear transformation are applied to the input received to produce
a prediction. The reason behind the word “recurrent” in the name RNN is the procedure followed by
the hidden layer, i.e., sending the hidden state at time t to the hidden layer at time t + 1. Theoretically
speaking, this means that the last output at time t = T depends on all the hidden states at time t = T
− 1, T − 2, ..., 1 and, consequently, on all the corresponding inputs. To explain it more clearly it is
necessary to define the notation that will be used for explaining the simplest form of RNN: the one
with a scalar input, a scalar output, and a single neuron in the hidden layer. To ease the notation, it
will now be specified, and never again repeated, that t ranges from 1 to T and that the weights are
randomly initialized at first.

The quantities that are not explicit are zt, ht and y∧
t. These are defined as follows:

zt = uxt + wht−1 (2)

ht = σ (zt)

y∧
t = g(vht)

So the “journey” performed by every input value at any time step t is the following:

xt → zt = xtu + wht−1 → ht = σ (zt) → y∧ = g(vht)

For each time step t in the input sequence, compute the following:

xt: the scalar input at time step t;

ht: the state of the hidden layer at time t;

y∧
t: output at time step t;

zt: value of the weighted sum at the hidden state at time step t, t = 1, . . . , T

u: the weight that connects the input to the hidden layer;

w: the weight that connects ht−1 (previous state of the hidden layer) with the recurrent hidden layer
at time t;

v: the weight that connects ht with the output y∧
t.

where h0 is initialized to be equal to 0. The function g is usually a linear function in simpler models,
while it is a nonlinear one if more complex structures are used. The function σ (zt) is called activation
f unction and is a nonlinear function that transforms the weighted sum of the inputs received by the
hidden layer at time t. If every function applied to xt were linear, then the whole neural network would
correspond to a single linear transformation, and it would not be able to identify complex relationships
between data. This advantage of nonlinear activation functions will be easier to understand when
dealing with more complex RNN structures, where multiple nonlinear transformations are applied
one after another. These equations are the foundation of how RNNs process information through
time, making them highly effective for applications like clinical decision support where the temporal
sequence of events can significantly influence the outcome or decision. The most commonly used
activation functions in RNN are sigmoid functions f(x) like the logistic function and the hyperbolic
tangent x as shown in Fig. 7.
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Figure 7: Sigmoid functions f(x) like the logistic function and the hyperbolic tangent x of RNN

Recurrent Neural Networks (RNNs) are especially profitable for CDSS due to their capability in
taking care of successive information, a common characteristic in numerous restorative datasets such
as understanding records; lab comes about over time, and persistent observing information. RNNs
exceed expectations in these settings since of their capacity to preserve an inner state or memory
over input groupings, which permits them to consider the movement and improvement of a patient’s
condition over time. This capability is vital for prescient analytics in healthcare, where the timing
and advancement of information focuses can give basic bits of knowledge into persistent results.
Furthermore, RNNs’ structure underpins weight sharing over time steps, improving their productivity
and decreasing the model’s complexity and the hazard of overfitting. This include is especially valuable
in restorative applications where the sum of information per understanding may change broadly, and
the learning demonstrate must generalize well over distinctive lengths of input groupings. Not at all
like other neural organize designs such as Multilayer Perceptrons (MLPs) or Convolutional Neural
Networks (CNNs), which require fixed-size inputs, RNNs can prepare variable-length groupings
of inputs normally. This adaptability permits CDSS to adjust to the differing and energetic nature
of clinical information without the required for cushioning or truncation, in this way protecting
the judgment and granularity of therapeutic data. The weight (W ) sharing across time (t) steps is
encapsulated in the recurrent connection for the CDSS as shown in Fig. 8.

Figure 8: Weight (W ) sharing across time (t) steps is encapsulated in the recurrent connection for the
CDSS over input groupings of patients

These above functions represent the hidden state and output functions for the calculation
of clinical decision support and medical query processing over time t. When building RNNs for
applications such as medical data analysis, disease progression prediction, or natural language query
processing, these parameters are crucial as stated in [19]. A clinical decision support system can
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help healthcare providers in a timely and relevant way by improving accuracy, efficiency, and overall
performance by adjusting these factors. To illustrate how RNN parameters might improve clinical
decision support, particularly for processing medical queries in real-time, the study may assume Table 1
containing important RNN parameters, their descriptions, and some average values. A common
characteristic of all the evaluated loss graphs is that the RNN is performing really well but it seems
like the LSTM cell in the RNN is not able to keep in memory observations from 24 h before because
otherwise the graph of its loss over the 24 h would see a decrease when approaching the 24 h apart
predictions, given the fact that observations that are 24 h apart are similar.

• Logical Function

This function transforms every result of the weighted sum into a value between 0 and 1. The
disadvantage of this function is that it tends to saturate, meaning that high values of the sum will be
very close to 1 and low values will be very close to 0. The only area in which significant changes in x
correspond to significant changes in S(x) is the one near zero, where the function is steeper.

S (x) = e2x − 1
e2x + 1

(3)

• Hyperbolic tangent

Now, Similar to the logistic function but can take values in the range (−1, 1). The disadvantages
are the same as the just mentioned function.

tanh (x) = e2x − 1
e2x + 1

(4)

• Rectified linear unit (ReLU)

If the result of the weighted sum is negative, then the ReLU function takes the value 0, otherwise
it takes the value of the weighted sum. In this way a neuron may be “switched on/off”, meaning that it
has recognized a precise pattern or not. It is frequently used in natural language tasks or in sentimental
analysis as a last transformation in the output layer.

R (x) = max (0, x)

Prominent RNN parameters for the study are mentioned in Table 3.

Table 3: RNN parameters, their descriptions, and some average values

Parameter Description Value

Number of layers The depth of the RNN, affecting its ability to
process complex patterns.

2–3 layers

Hidden units The number of units in each layer, impacting the
model’s capacity.

128–512 units per layer

Activation function Function used to introduce non-linearity in
learning, affecting how data is processed.

ReLU, sigmoid, tanh

Learning rate The step size at each iteration while moving
toward a minimum of a loss function.

0.001–0.01

(Continued)
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Table 3 (continued)

Parameter Description Value

Dropout rate The probability of randomly setting a neuron’s
output to 0, reducing overfitting.

0.2–0.5

Sequence length The length of the input sequences, impacting the
context window for processing.

50–100 time steps

Batch size The number of training examples utilized in one
iteration.

32–128 ex.

Optimizer The method used to update weights in the
network, affecting convergence.

Adam, SGD, RMSprop

Epochs The number of times the learning algorithm will
work through the entire training dataset.

10–100 epochs

Loss function The function that measures the difference
between the actual and predicted outputs.

Cross-entropy, Mean
squared error

The presented Recurrent Neural Network (RNN) model includes multiple hidden layers to
enhance its processing capabilities. Specifically, the model has two additional Long Short-Term
Memory (LSTM) layers and one echo state cell, in addition to the SimpleRNN layer. Each of these
layers, except for the final dense layer, employs a ReLU activation function, while the final dense layer
uses a Sigmoid activation function. This architecture allows the model to effectively capture temporal
dependencies and complex patterns within the data, thereby improving its performance in clinical
decision support tasks. The integration of these LSTM layers and the echo state cell provides the
RNN with enhanced memory capabilities and the ability to manage long-term dependencies, which are
critical for accurate medical diagnoses and decision-making processes. The use of LSTM layers helps
in mitigating issues related to the vanishing gradient problem, thereby maintaining the effectiveness of
the model over longer sequences of input data. This sophisticated architecture underscores the model’s
ability to handle intricate and sequential medical data, making it a powerful tool in the field of clinical
decision support systems (CDSS). The combination of SimpleRNN, LSTM layers, and the echo state
cell equips the model with the necessary depth and complexity to analyze and interpret clinical data
with high precision and reliability.

4 Experiment Settings
4.1 Dataset

The Tappy Keystroke Dataset [20] was put together by PhysioNet and included the keystroke
records of 200 individuals worldwide, both with and without Parkinson’s. A program called Tappy,
was designed to log each user’s interaction with their keyboards to detect changes in the routines and
examine the early-stage impacts of Parkinson’s disease. There are two folders in the dataset:

User Data: This section contains text files with the personal information of individuals, including
their gender, age at diagnosis, and whether they have Parkinson’s disease.

Keystroke Data: The text files in this subdirectory contain information about keystrokes for each
individual. Each file includes information about the user’s key, whether left- or right-handed, the
direction to the previous key, their latency time (time between the previous key and current key), and
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their flight time (Time between the release of the previous key and the press of the current key). This
highlight of the dataset chosen is mentioned in Table 4.

Table 4: Real time data for the medical query processing

Parkinson’s Amount % of dataset

True 169 74.45%
False 58 25.55%

4.2 Pre-Processing

The Tappy Keystroke Dataset offers a vast number of time-series samples for our models to utilize,
with roughly 9 million available. However, given the size of this dataset, we lacked the resources to
reliably train each of our proposed solution models on the entire dataset and instead opted to use a
subset of the dataset, with 100,000 samples of observational data across all patients. We ensured that
this smaller batch of data maintained the same imbalance ratio presented earlier, and furthermore
considered the possibility of time step data points having no correlation with their previous neighbors.
Thankfully, no loss of information was seen, as Fig. 4 further proves through Lag observation across
RNN all feature values of subsequent time step data points are shown to be fairly close to each other,
advising us that data points are within a reasonable range of one another.

4.3 Training the Recurrent Neural Network

Recurrent neural networks can manage a sequence of inputs, and they can output a single value as
well as a sequence of values. The so called “training” of the network is the phase in which the weights
of the network are modified in order to achieve the best possible prediction. The training phase is a
supervised learning algorithm, meaning that the values that the RNN is trying to predict are already
known and the visualization of 3-layer NN as shown in Fig. 9. What is crucial to consider is that the
RNN is trained for a specific purpose, e.g., for the prediction of a value 3 h into the future or for the
prediction of a sequence of 15 h of observations in medical queries, and so the weights are optimized
for that purpose only.

In Recurrent Neural Networks (RNNs), the key feature is their ability to maintain a ‘memory’ of
previous inputs by incorporating the output of a layer back into itself. This makes them particularly
suitable for sequential data processing, such as medical records or time-series data, which is common
in clinical decision support systems.

Back propagation through time is an algorithm that aims at finding a local or global minimum
in the cost (also called loss) function by changing the weights of the model. The mathematical tools
used are the partial derivatives and the chain rule. To ease the notation, weights will be indicated with
upper case letters U, V and W, while input, outputs, hidden states and true values will respectively be
indicated as xt, y∧t, ht and yt. This avoids underlining every vector, which may make the equations hard
to read. To explain how back propagation through time works let’s see a specific example in which the
aim of the neural network is to predict a single value one hour apart from the last observation given
in the input window. Let’s choose the cost (or loss) function to be:

Ct = 1
2
(∧yt − yt)2 (5)
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Figure 9: Visualization of a 3-layer recurrent neural network with input x ε−R3 and output y ε−R2

Which is a common cost function called Mean Squared Error or MSE. In the general formula
of the MSE, instead of an unspecified constant c is used. In machine learning this constant is almost
always chosen to be because this choice simplifies the computation of the derivatives. For the sake of
simplicity it is assumed that g, which is the linear function applied in formula Yt = g(V ht), is the
identity function, meaning that g(x) = x and g’ (x) = 1. Since the cost function is a function of Yt, it
follows that it is really just a function of the weights that define Yt· This means that the loss function
lies in a multidimensional space having dimensionality equal to the number of weights in the model,
which is given by the sum of the number of entries in U, V and W. A local minimum in a multivariate
function is a point in which the partial derivatives of the function with respect to all the variables that
define such function are equal to zero. This translates into saying that minimizing the cost function
just means changing the weights that define the function so that the partial derivative with respect to
those weights evaluated at their actual value is as close as possible to zero.

The algorithm starts by defining ∂CT
∂V

, which is the easiest of the three partial derivatives that will
be computed. Because of the chain rule, such a derivative can be expressed as:

∂CT
∂V

= ∂CTY∧

∂y∧T
= (∧yT − yT)hT (6)

Every element in the resulting matrix indicates how an infinitely small change in each of the
weights collected in the weight matrix V will influence the cost function, assuming all other weights
remain constant. As it is not possible for the back-propagation algorithm to do back-propagation on
a graph that is not acyclic it is necessary to use a trick and transform the computational graph of a
RNN into an acyclic graph. This can be done by unfolding the recurrence relation in time. Meaning
that each time step xt with time step index t ranging from 1, to τ is represented as a single node in the
graph. A graphical representation of a folded and unfolded RNN can be found in Fig. 10.

RNNs can follow one of the following design patterns:

Recurrent networks that produce an output at each time step.

Recurrent networks that read the entire input sequence and produce one output at the last
time step.
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Recurrent networks that read the entire input sequence and produce a sequence of outputs.

Figure 10: Computational graph of a RNN in folded and unfolded view. (Left) Folded view of an RNN

The folded version of RNN is a cyclic-directed graph. At each time step the RNN gets an input
vector x that is multiplied with a weight matrix U. The RNN keeps its own hidden state h in a feedback
loop and together with the transformed input x this hidden state is multiplied with a weight matrix W
that creates the next hidden state. The current hidden state is then multiplied with a weight matrix V
creating the output y at each time step. (Right) Unfolded view of the RNN. The graph is now acyclic
making it possible to perform backpropagation. It is now possible to see that each of the matrices
U, W, V is reused at every time step t. The essential components and operations involved in both the
folded and unfolded views of a simple RNN are shown in Table 5.

Table 5: Components and operations in folded and unfolded views of a simple RNN with sample
values

View Time step
(t)

Input
vector (x)

Hidden
state (h)

Output (y) Weight
matrices

Operations

Folded view t x_t h_t y_t U, W, V h_{t + 1} =
f(Wh_t + Ux_t
+ b_h); y_t = V
∗ h_t + b_y

Unfolded
view

t = 1 x_1 h_1 y_1 U, W, V
reused at
each t

h_2 = f(Wh_1 +
Ux_1 + b_h);
y_1 = V ∗ h_1 +
b_y

Unfolded
view

t = 2 x_2 h_2 y_2 U, W, V
reused from
t = 1

h_3 = f(Wh_2 +
Ux_2 + b_h);
y_2 = V ∗ h_2 +
b_y

(Continued)
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Table 5 (continued)

View Time step
(t)

Input
vector (x)

Hidden
state (h)

Output (y) Weight
matrices

Operations

Unfolded
view

t = 3 x_3 h_3 y_3 U, W, V
reused from
t = 1 and t
= 2

h_4 = f(Wh_3 +
Ux_3 + b_h);
y_3 = V ∗ h_3 +
b_y

The table represents the operational dynamics of a simple RNN in both its folded and unfolded
views. In the folded view, the RNN is depicted as a cyclic directed graph, where at each time step t,
the network processes an input vector xt, maintains a hidden state ht, and produces an output yt. The
operations involve the input vector xt being multiplied by a weight matrix U , and this transformed
input is combined with the previous hidden state ht which itself is multiplied by another weight matrix
W . This combination is then passed through a non-linear function f (such as tanh or ReLU), along
with a bias term bh, to compute the new hidden state ht+1. Concurrently, the current hidden state ht is
also multiplied by a third weight matrix V to produce the output yt, again with the addition of a bias
term by.

The unfolded view breaks down this cyclical process into distinct steps, laid out sequentially. Here,
the network’s operations are made explicit for each individual time step, demonstrating how the RNN
reuses the weight matrices U , W , and V at every time step. For instance, at time step t = 1, the input
1x1 and the initial hidden state h1h1 undergo transformations similar to the folded view to produce h2

and 1y1. This process is repeated for subsequent time steps t = 2 and t = 3, where each time step takes
the input xt and the previous hidden state ht to compute the next hidden state ht+1 and the output yt.
The table illustrates the reuse of the weight matrices across time steps, which is a key feature of RNNs
allowing them to maintain temporal dependencies across the data.

The output ht at time step t computed by a RNN directly depends on the last hidden state
computed by the recurrent neurons ht−1, the current input xt and the parameters θ of the network.
The new hidden state is computed as shown in the Equation below.

ht = f
(
ht−1, xt, θ

)
(7)

If the recurrence relation gets unfolded in time it is possible to see that RNNs share their
parameters across different invocations as the same function f is used again and again. The equation
below shows a sample unfolding operation for a RNN computing three time steps.

h2 = f
(
f
(
f
(
h0, x0, θ

)
, x1, θ

)
, x2, θ

)
(8)

Reusing of the same function f also implies that the number of time steps can be arbitrary long
because the network defines the transition from one state at time step t to the next state at time step
t + 1, rather than a variable-length history of several states. This characteristic of RNNs leads to a
low number of parameters that need to be optimized during learning. Fig. 11 shows the flowchart
represents the flow of the study.
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Figure 11: Flowchart represents the flow of the study
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For the application of scene text recognition using RNNs we will mainly focus on RNNs that
follow the first design pattern. The following functions describe the forward pass of a RNN for each
time step from t = 1 to t = τ . The linear function which is the non activated output of the hidden
neurons is computed like that:

at = Wht−1 + Uxt + b (9)

The hidden state is then computed by applying a non-linear function on top of that result. In most
RNNs the hyperbolic tangent function is used:

ht = tanh
(
at

)
(10)

The output of the RNN at each time step involves a second bias parameter c which is summed
with the result of the matrix multiplication of the hidden state and the weight matrix for the hidden-
to-output connections:

ot = Vht + c (11)

The last step may be to apply the softmax function on the output of the network in order to get a
probability distribution over all outputs at each time step

yt = softmax
(
ot

)
(12)

For this study, we have taken the dataset and during preprocessing, specific columns were removed
from the user part of the dataset because they indicated whether the user had Parkinson’s disease. The
UPDRS is a scale that is used to assess the severity of Parkinson’s disease. The impact of Parkinson’s
disease on the patient’s life is defined. Levodopa and Maob indicate whether the user is taking the
medications to treat Parkinson’s disease. The user data was combined with the Tappy Data, and the
UserKey, Timestamp, and Gender fields were removed from the dataset. To generate the user’s current
age, feature engineering was used. The final dataset had seventeen features which were oversampled
using the following methods to handle class imbalance.

Synthetic Minority Oversampling Technique, or SMOTE, is an oversampling method that bal-
ances imbalanced data sets. SMOTE creates new minority-class examples from scratch rather than
duplicating existing ones. First, a random point from the minority class is selected, and the point’s
k-nearest neighbors are determined. A new synthetic point is synthesized between two examples from
the nearest neighbors.

BorderLine SMOTE, also known as SVM SMOTE, was used as the data preprocessing technique
for another experiment. The aim was to oversample the minority class of participants not having
Parkinson’s. BorderLine SMOTE also generates synthetic data similar to SMOTE; however, data is
generated only along the borderline area. The borderline area is identified using SVM algorithms
trained on the data. Thus, compared to SMOTE, BorderLine SMOTE generates the data without
crowding in the training set.

Feature Ranking using Recurrent Neural Network (RNN), was used to identify seven features
that have the most negligible impact on model accuracy, which are discarded. The remaining topmost
features are used as input to be oversampling techniques like SMOTE. Thus, the feature set was
reduced from 17 features to 10 features after applying Feature Ranking. By prioritizing the most critical
features and discarding the least important ones, Random Forest can effectively help in dimensionality
reduction without causing information loss. After feature selection, SMOTE is applied to the selected
features, which can address the issue of imbalanced datasets by generating synthetic samples of the
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minority class. Fig. 7 describes the Feature Ranking algorithm of RNN used to identify the top 10
features. Initially, the Feature Set consisted of all 17 features. Accuracy A is obtained by training a
Random Forest model on all features in the feature set. A is compared to the accuracy Af obtained by
dropping a feature f from the feature set. The feature with the lowest impact is determined by evaluating
the change in Af with respect to A and is dropped from the feature set. This process is continued until
the top 10 features are obtained.

SimpleRNN—The SimpleRNN model has six layers: four RNNs and two dense layers. Each
RNN and dense layer (except the final layer) has a Relu activation, while the final dense layer has a
Sigmoid activation [21]. The model’s loss function is binary cross-entropy, and Adam is its optimizer.
The flowchart of simple RNN is shown below in Fig. 9. Fig. 12 illustrates an unfolded example of the
network depicted in Fig. 6.

Figure 12: Simple RNN model for processing the clinical support

Modified SimpleRNN—The modified SimpleRNN is similar to SimpleRNN but has two addi-
tional LSTM layers and one echo state cell. All layers except the final dense layer have a Relu activation,
while the final dense layer has a Sigmoid activation. The model’s loss function is binary cross-entropy,
and Adam is its optimizer. Fig. 10 describes the architecture of Modified SimpleRNN which consist
of SimpleRNN, EchoState Cell and LSTM layers.

In Fig. 13, the purpose of the LSTM model is to enhance the processing and management of
sequential data, specifically for handling queries more efficiently within a clinical decision support
system (CDSS). The LSTM model is incorporated to address the limitations of traditional RNNs,
particularly their difficulty in capturing long-term dependencies due to issues like the vanishing
gradient problem. LSTMs are designed with specialized units called memory cells that can maintain
information over long periods, making them well-suited for tasks that require understanding and
retaining context over multiple time steps. The use of LSTM in the model allows it to effectively
manage the complexities of sequential data in medical queries, where the context and sequence of
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inputs are crucial for accurate decision-making. By integrating LSTM layers, the model gains the
ability to remember important information across longer sequences, thus improving its performance
in tasks that involve temporal dependencies. This capability is particularly valuable in clinical settings,
where patient data over time needs to be analyzed to make informed decisions about diagnosis and
treatment.

Figure 13: Modified RNN with Echo state and LSTM for processing the queries more efficiently

Transformer—When working with time series data, capturing long-term dependencies between
distant time steps is critical. Unlike standard machine learning models, encoder blocks in transformers
use attention mechanisms to construct contextual relationships between time steps. This allows
the transformer to capture such long-term dependencies within the data. Transformers can weigh
and combine information from numerous time steps by using attention mechanisms, giving more
weight to those most relevant to producing correct predictions. Following the encoding process, a
Global Average Pooling layer is used to reduce tensor dimensionality, which aids in the avoidance of
overfitting and improves computational efficiency. Finally, Dense layers with mlp units are used to
learn complicated patterns in time series data, allowing the model to generate accurate predictions
based on the encoded data. Fig. 14 shows the framework of the auto-encoder and the structure of the
Transformer model, comprising a Multi-Headed Attention Layer, Global Average Pooling layer, and
dense layers.

4.4 Hyperparameters

For the midterm study, we have used two models to develop a baseline for future experiments: the
basic RNN and state of the art cells like Echo state and LSTM with simple RNN. Table 3 lists the
Hyper-parameters used to train the Simple RNN, Modified RNN and Transformer. Table 6 shows
setup of the experimental environment for the study.

The RNN framework is a very powerful model, but it has its limitations. One being that it is a
memoryless model, i.e., for each input the network will have no information about previous inputs.
This property however can be obtained using a “Recurrent Neural Network” (RNN). RNN’s are
basically identical to FFNN’s with the minor adjustment, that each layer l will not only pass its output
to the next layer l + 1, but will also pass it to itself, hence a “recurrent connection”.
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Figure 14: Framework of auto-encoder and structure of the Transformer model consisting of a multi-
headed attention layer, global average pooling layer, and dense layers

Table 6: The experimental environment setting for the study

Hyperparameter Suggested values

Batch size 32, 64, 128
Learning rate 0.001 (start), adjust as needed to 1e−3
Epochs 15, with early stopping
Epochs for neural networks testing 200 but Not directly applicable
Optimizer Adam, SGD
Hidden layers 1–3
Hidden units per layer 50–200
Activation function ReLU (hidden), Softmax (output)
Dropout rate 0.2–0.5
Weight initialization method Weights Relative to Data (WRD), Glorot, He

A popular way of visualizing RNN’s is by so-called “unfolding” the network and thereby explicitly
show the recurrent connections between each time-step t. An example of the network shown in Fig. 6
unfolded can be seen in Fig. 12. Fig. 15 illustration of an unfolded 3-layer recurrent neural network (2
recurrent layers and 1 output layer) with input sequences of length T. x(1) represents the initial input
at time-step t = 1 for a given observation x, while z(2, T) indicates the final output at time-step t = T.

RNNs are neural networks that do not form an acyclic directional graph but rather a cyclic
directional graph, meaning that information that has been seen before can be reused in a later
step performed with other data. This makes RNNs very well suited for processing sequential data
of arbitrary length. RNNs consist of recurrent layers that use parameter sharing across all their
parts. This enables them to process sequences of arbitrary length. Each of these recurrent layers has
connections to the input and output layer and a connection from its own computed output (the hidden
state) to itself.
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Figure 15: Visualization of an unfurled 3-layer repetitive neural arrange (2 repetitive layers and 1 yield
layer) with input groupings of length T. x(1) speaks to the starting input at time-step t = 1 of a given
perception x and z(2, T) the ultimate yield at time-step t = T

5 Experiments Performed

As part of an empirical study for Clinical Decision Support System (CDSS), various experiments
were conducted by combining universally accepted solutions. These experiments involved testing
different combinations of solutions to determine their effectiveness in optimizing the clinical decision
support and medical query processing using simple RNN and Modified RNN techniques. The results
of each of the below mention experiments are detailed.

Simple RNN for CDSS

Simple RNN with SMOTE for CDSS

Simple RNN with BorderLine SMOTE for CDSS

Modified RNN for CDSS

Modified RNN with SMOTE for CDSS

Modified RNN with BorderLine SMOTE for CDSS

Random Forest with Simple RNN for CDSS

Random Forest with Simple RNN and SMOTE for CDSS

Fig. 16 presents a comparison of different RNN methods, highlighting both the training loss and
accuracy. In Fig. 16a, the training loss for various approaches is depicted, while Fig. 16b illustrates
the training accuracy achieved by these different RNN techniques.

Fig. 17 illustrates the performance metrics for various RNN methods. Fig. 17a displays the
training precision achieved by different approaches, while Fig. 17b shows the training recall for these
methods.
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Figure 16: (a) Training loss of various methods of RNN; (b) training accuracy of various methods of
RNN

Fig. 18 shows the training AUC (Area Under the Curve) for different RNN methods, providing
a comparison of their performance.

Since the project handles clinical datasets, it is crucial to identify patients with Parkinson’s
accurately compared to misclassifying a few samples not having Parkinson’s. Hence, Recall and AUC
are considered important metrics for model evaluation. Recall allows for us to observe the total
amount of correctly classified patients with Parkinson’s according to their data, while AUC score
measures the probability of classes being classified amongst one another for CDSS. In addition, the
usual metrics of models that include Accuracy, Precision, and Loss are just as important to us as
Recall and AUC. We wish to compare each of our implementations across every viable metric to get a
concrete showcase of how to respond to medical query and how RNN provide solutions can possibly
improve classification for CDSS.
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Figure 17: (a) Training precision of various methods of RNN; (b): training recall of various methods
of RNN

Figure 18: Training AUC of various methods of RNN
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Now the validation of the RNN model for handling and optimizing the CDSS for medical queries
can be seen in the Figures below. Fig. 19 presents a comparison of validation metrics for different RNN
methods. Fig. 19a illustrates the validation loss across various models, while Fig. 19b highlights the
validation accuracy for these RNN approaches.

Figure 19: (a) Validation loss of model of various methods of RNN; (b) validation accuracy of various
methods of RNN

Fig. 20 provides a comparison of validation performance across different RNN methods. Fig. 20a
displays the validation loss for each approach, while Fig. 20b presents the validation accuracy achieved
by the various methods.

Fig. 21 presents the validation AUC (Area Under the Curve) for different RNN methods, offering
a comparison of their performance.

Table 7 below differentiate the various methods of simple RNN and modified RNN in terms of
loss, accuracy, precision, recall and AUC.
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Figure 20: (a) Validation loss of various methods of RNN; (b) validation accuracy of various methods
of RNN

Figure 21: Validation AUC of various methods of RNN
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Table 7: Represents the loss, accuracy, recall precision and AUC of the methods of RNN

Method Loss Accuracy Recall Precision AUC

Simple RNN 0.59 0.71 1 0.71 0.49
Simple RNN with
SMOTE

0.26 0.88 0.87 0.95 0.94

Simple RNN with
BorderLine SMOTE

0.30 0.88 0.85 0.97 0.93

Modified RNN 0.28 0.87 0.90 0.92 0.93
Modified RNN with
SMOTE

0.28 0.88 0.88 0.90 0.94

Modified RNN with
BorderLine SMOTE

0.26 0.88 0.86 0.91 0.95

Random forest with
simple RNN for CDSS

0.27 0.84 0.82 0.89 0.90

Random forest with
simple RNN and
SMOTE for CDSS

0.26 0.88 0.86 0.94 0.91

Model/Technique Training
accuracy

Validation
accuracy

Precision AUC

Simple RNN without
SMOTE

<0.75% <0.75% <75% ∼50%

BorderLine SMOTE
with SimpleRNN

∼0.9 ∼0.9 Comparable High

SMOTE with
ModifiedRNN

∼0.9 ∼0.9 Comparable High

SMOTE with
SimpleRNN

∼0.9 ∼0.9 Comparable High

BorderLine SMOTE
with ModifiedRNN

∼0.9 ∼0.9 Comparable High

Feature ranking with
random forest +
SMOTE +
SimpleRNN

∼0.9 ∼0.9 Comparable High

ModifiedRNN
without SMOTE

Comparable Comparable High Significantly high

In contrast, with Borderline SMOTE, the model reaches an improved accuracy of around 91%
and handles the imbalance by achieving an improved AUC of 95%–97%. However, the model achieves
a recall of around 87%, comparable to other simple models. From Table 7 we can make the following
conclusions. Combining different preprocessing techniques and models leads to better performance
than baseline models. For example, SimpleRNN and modified RNN without SMOTE and Borderline
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SMOTE perform worse compared to the addition of oversampling techniques, predicting only the
majority class.

The study aims to provide insights into the most effective models and solutions for addressing the
research problem by presenting these results. Now the study will assume other neural networks against
out model for the testing of models. Fig. 22 illustrates the loss of various networks over the course of
200 testing epochs, highlighting their performance trends during the evaluation phase.

Figure 22: Various networks loss over testing the 200 epochs

Fig. 23 shows the accuracy of various neural networks, providing a comparative overview of their
performance.

Figure 23: Accuracy of various NN

Fig. 24 compares the AUC (Area Under the Curve) of various networks to that of RNNs,
highlighting differences in their performance metrics.



CMC, 2024, vol.81, no.3 4823

Figure 24: AUC of various networks as compared to RNN

Table 8 mentioned results of various NN models from the experimentation. Table 8 indicates the
result of different models as compared to our proposed model which is recurrent neural network with
the other deep learning methods such as CNN, SVM and LSTM.

Table 8: Loss, accuracy and AUC of the NN models

Models Loss Accuracy AUC

Support vector machine 0.83 0.71 0.50
Recurrent neural network (RNN) 0.54 0.94 0.95
Long short term memory (LSTM) 0.59 0.74 0.52
Convolutional neural network (CNN) 0.51 0.92 0.95

Figs. 16 and 18 show the plot Training and Validation Loss of 5 experiments, respectively. It can be
observed that Simple RNN obtained the worst loss without SMOTE for both training and validation
sets. On the other hand, BorderLine SMOTE with SimpleRNN, SMOTE with ModifiedRNN,
SMOTE with SimpleRNN, and BorderLine SMOTE with ModifiedRNN give comparable results
for Loss for the training set. All seven models, apart from Simple RNN without SMOTE, show
comparable results for Loss for the validation set. Figs. 16 and 18 show the plot for Training and
Validation Accuracy for five experiments, respectively. It can be observed that Simple RNN without
SMOTE shows the worst performance with an accuracy of less than 0.75% for both training and
validation sets. Feature Ranking with Random forest + SMOTE + SimpleRNN, SMOTE with
ModifiedRNN, and BorderLine SMOTE with Modified RNN achieve comparable accuracies of
around 0.9 for both training and validation sets.

Figs. 16. and 21 show the plot for Training and Validation Precision for the experiments,
respectively. It can be observed that Simple RNN without SMOTE shows the worst performance
with less than 75% precision for both training and validation sets. All other models show comparable
performance with respect to precision for both training and validation sets. Figs. 18 and 23 highlight
the AUC of the combinations, which shows the entire picture of false positive and true positive rates.
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SimpleRNN, the worst-performing model, achieves a maximum AUC of around 50% in training
and validation. In contrast, combinations like SMOTE/BorderLine SMOTE with SimpleRNN and
Modified RNN achieve the highest recall in both training and validation.

This also indicates that using oversampling techniques, such as SMOTE and its variants, can
tackle the CDSS issue, ensuring equal weightage to each class. Even though reducing less important
features simplifies the model, leading to better performance, in this case, random forest feature
and recurrent neural network (RNN) selection contributed little towards improvement. However,
it achieved comparable results with lower dimensions of input data. If we compare the results of
SimpleRNN and ModifiedRNN without SMOTE, the modified outperforms SimpleRNN, achieving
almost comparable to the other experiments. This shows that the EchoState cell efficiently handles data
imbalance without oversampling techniques. The performance of RNN with BorderLine SMOTE on
the test data achieves the highest AUC and high values for Precision, Recall, and Accuracy, showing
that RNN can capture long-term dependencies in time series data efficiently for the clinical decision
support system (CDSS) and medical queries.

At the end validity and reliability of the methods and findings in this research are ensured through
a comprehensive approach involving multiple validation and reliability measures as show in Table 8
below:

Data Sources: The research utilizes diverse and reputable data sources, including medical imaging
data and clinical data from Electronic Health Records (EHRs) and wearable sensors. The medical
imaging data comprises anteroposterior X-rays for diagnosing rotator cuff tears and annotated gas-
trointestinal tract images for disease classification. These sources ensure that the data is comprehensive
and of high quality, which is crucial for training accurate and reliable AI models.

Preprocessing: Standard preprocessing techniques are employed to enhance the integrity of the
data. Image preprocessing involves normalization, resizing, and augmentation methods such as
rotation, flipping, and contrast adjustment. Text data from clinical notes and EHRs are processed
using natural language processing (NLP) techniques, including tokenization, stemming, and stop word
removal. These preprocessing steps ensure that the data fed into the models is clean, consistent, and
suitable for training.

Model Development: The development of advanced AI models, including RNNs with LSTM layers
and the CG-Net framework, is a critical component of this research. These models are validated
through extensive training on large datasets and rigorous testing. The use of LSTM layers addresses the
limitations of traditional RNNs by enhancing the models’ ability to capture long-term dependencies,
ensuring high reliability and accuracy in predictions.

Data Augmentation: To address data imbalances and enhance model generalization, data aug-
mentation techniques such as SMOTE and BorderLine SMOTE are employed. These techniques
generate synthetic samples to balance the datasets, preventing the models from being biased towards
the majority class. This step is crucial for ensuring the reliability of the models across different datasets
and conditions.

Validation Procedures: The research employs robust validation procedures, including a train-
ing/testing split and 5-fold cross-validation. The datasets are split into training, validation, and testing
sets with typical ratios of 70%, 15%, and 15%, respectively. The 5-fold cross-validation technique
further validates the models by dividing the data into five subsets and training and validating the
models five times. Performance metrics such as accuracy, precision, recall, F1-score, and AUC are
used to evaluate the models, ensuring their robustness and generalizability.
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Hyperparameter Tuning: Systematic hyperparameter tuning is conducted using grid search and
random search techniques. This step involves optimizing parameters such as learning rate, batch
size, number of hidden layers, and number of neurons per layer. Early stopping is applied to prevent
overfitting by halting training if the model’s performance on the validation set does not improve for a
specified number of epochs. These measures ensure that the models perform optimally.

Interpretability Tools: Model interpretability and explainability are addressed using SHAP (SHap-
ley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations). These tools
provide insights into the models’ predictions and the contribution of each feature, enhancing the
transparency and trustworthiness of the models. This step is crucial for ensuring that the models’
predictions can be understood and trusted by clinicians.

Implementation: The implementation of the models on cloud platforms like Amazon Web Services
(AWS) and Google Cloud Platform (GCP) ensures scalability and practical applicability. Integrating
the developed models into existing CDSS frameworks enhances their diagnostic capabilities and pro-
vides real-time support to clinicians. This practical implementation validates the models’ applicability
in real-world healthcare settings.

Table 9 provides the measures of validity and reliability.

Table 9: Validity and reliability measures

Aspect Description Validity and reliability
measures

Data sources Medical imaging and clinical
data

Use of diverse and reputable
data sources ensures
comprehensive and
high-quality data collection.

Preprocessing Image and text preprocessing Standard preprocessing
techniques (normalization,
augmentation) enhance data
integrity.

Model development RNNs with LSTM layers and
CG-Net framework

Advanced models validated
with extensive training and
rigorous testing.

Data augmentation SMOTE and BorderLine
SMOTE techniques

Ensures balanced datasets and
prevents model bias.

Validation procedures Training/testing split,
cross-validation, performance
metrics

Use of 5-fold cross-validation,
diverse performance metrics
ensures model robustness and
generalizability.

Hyperparameter tuning Grid search and random search Systematic tuning ensures
optimal model performance.

Interpretability tools SHAP and LIME Enhances transparency and
trustworthiness of model
predictions.

(Continued)
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Table 9 (continued)

Aspect Description Validity and reliability
measures

Implementation Deployment on cloud platforms,
integration with CDSS

Ensures scalability and
practical applicability.

The research demonstrates the application of Recurrent Neural Networks (RNNs) with Long
Short-Term Memory (LSTM) layers and Convolutional Neural Networks (CG-Net) in medical imag-
ing for diagnosing conditions such as rotator cuff tears and gastrointestinal diseases. By leveraging
these advanced AI models, healthcare professionals can achieve higher diagnostic accuracy and
consistency. For example, radiologists can utilize AI to automatically analyze X-rays and detect
rotator cuff tears in osteoporosis patients, reducing the time required for diagnosis and increasing
the precision of the findings. This leads to more accurate and timely diagnoses, which is critical for
early intervention and effective treatment planning. In the context of Wireless Body Area Networks
(WBANs), the integration of AI models allows for the continuous monitoring and analysis of data
from wearable sensors. These sensors can track vital signs, movement patterns, and other physiological
parameters. AI models can process this data in real-time, identifying abnormal patterns and providing
early warnings for conditions such as arrhythmias, sleep apnea, or sudden drops in glucose levels.
This real-time analysis enhances the ability of healthcare providers to monitor patients remotely and
intervene promptly when necessary.

The research integrates AI frameworks like CG-Net into CDSS, providing real-time diagnostic
support to clinicians. This integration enables CDSS to offer evidence-based recommendations and
alerts, assisting healthcare professionals in making informed decisions quickly. For instance, during a
clinical consultation, the CDSS can analyze patient data, compare it with historical data, and suggest
potential diagnoses or treatment options. This support reduces the cognitive load on clinicians, allow-
ing them to focus on patient care while ensuring that their decisions are backed by the latest medical
knowledge and data. AI-enhanced CDSS can be particularly beneficial in remote and telemedicine
settings, where access to specialist care might be limited. By providing real-time diagnostic support
and analysis, these systems can empower general practitioners and remote healthcare workers to make
better-informed decisions. This is crucial in underserved or rural areas where specialist consultations
are not readily available. The ability to conduct remote diagnostics and provide quality care can
significantly improve healthcare access and outcomes in these regions. In WBANs, wearable sensors
continuously collect data on various health parameters. AI models can analyze this data to detect
early signs of health issues before they become critical. For example, continuous monitoring of heart
rate, blood pressure, and activity levels can help detect early signs of cardiovascular diseases. Early
detection allows for timely interventions, potentially preventing severe health events and reducing
hospital admissions. By analyzing vast amounts of data from wearable sensors and medical records,
AI models can help develop personalized treatment plans tailored to individual patients. For instance,
in managing chronic conditions like diabetes, AI can analyze glucose levels, dietary habits, and
physical activity to provide personalized recommendations for insulin dosages, diet, and exercise. This
personalized approach improves treatment adherence and outcomes, leading to better overall health
management for patients.



CMC, 2024, vol.81, no.3 4827

The implementation of AI models in clinical workflows can streamline operations and reduce
the time healthcare professionals spend on routine tasks. Automated data analysis, reporting, and
alert systems can handle tasks such as patient triage, follow-up reminders, and routine diagnostics.
This efficiency allows healthcare providers to allocate more time to direct patient care and complex
medical cases, improving the overall quality of care. By enhancing diagnostic accuracy and efficiency,
AI models can contribute to cost reduction in healthcare. Early and accurate diagnosis prevents
unnecessary tests and treatments, reducing overall healthcare costs. Additionally, the ability to monitor
patients remotely can decrease hospital readmissions and the need for in-person visits, further lowering
costs. These savings benefit not only healthcare providers but also patients and insurance companies.
The use of AI models in analyzing large datasets from WBANs and medical records provides valuable
insights for research and development. Researchers can identify patterns, correlations, and trends that
were previously difficult to detect. These insights can lead to the development of new diagnostic tools,
treatment protocols, and healthcare policies, driving innovation in the field of WBANs. AI-powered
platforms can facilitate collaboration among healthcare professionals by providing shared access to
data and analytics tools. This collaboration enhances knowledge sharing and accelerates the adoption
of best practices across the healthcare industry. By leveraging AI, professionals and stakeholders can
work together more effectively to improve patient care and outcomes.

6 Conclusion

This work demonstrates how performance measures in Clinical Decision Support Systems (CDSS)
can be enhanced by integrating Recurrent Neural Network (RNN) models with deep learning
techniques, such as SMOTE and BorderLine SMOTE. The findings highlight that RNN approaches,
particularly when combined with oversampling strategies, can significantly improve accuracy, pre-
cision, recall, and AUC scores. These enhancements are particularly effective in managing data
imbalances and identifying long-term dependencies in medical query processing without requiring
excessive sampling. Additionally, the study shows that while random forest feature selection for feature
reduction does not necessarily enhance model performance, it helps achieve similar outcomes with
a reduced input dimension. This indicates the potential of sophisticated RNN models to optimize
CDSS, offering a promising avenue for further advancements in real-time medical query processing.
However, the study also notes limitations, particularly the varying effectiveness of oversampling
strategies depending on data characteristics. Future research should explore a broader range of data
and clinical scenarios to better understand the applicability of these techniques and modified RNNs,
ultimately improving CDSS performance and patient care. This work suggests that more can be done to
reduce data imbalance issues using RNN methods and incorporating existing approaches into CDSS
for enhanced clinical decision-making.

Technical terms used in study

Term Definition

Recurrent Neural Networks (RNNs) A type of neural network designed to recognize
patterns in sequences of data, such as time series
or natural language.

(Continued)
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(continued)

Term Definition

Long Short-Term Memory (LSTM) A type of RNN architecture that includes
memory cells capable of maintaining
information for long periods, addressing the
vanishing gradient problem.

Convolutional Neural Network (CNN) A class of deep neural networks, typically used
for analyzing visual imagery, that uses
convolutional layers to extract features from
input data.

CG-Net A specific CNN framework designed for the
classification of gastrointestinal diseases,
leveraging deep learning techniques.

Electronic Health Records (EHRs) Digital versions of patients’ paper charts,
containing comprehensive health information
accessible to authorized users.

Wireless Body Area Networks (WBANs) Systems of wearable computing devices that
monitor physiological data from the human
body and transmit it wirelessly.

Synthetic Minority Oversampling
Technique (SMOTE)

A method for addressing class imbalance in
datasets by generating synthetic examples of the
minority class.

BorderLine SMOTE A variant of SMOTE that generates synthetic
data only for minority class examples near the
decision boundary.

Natural Language Processing (NLP) A field of AI focused on the interaction between
computers and humans through natural
language, including text processing and
understanding.

Tokenization The process of splitting text into smaller pieces,
such as words or phrases, to facilitate text
analysis.

Stemming The process of reducing words to their base or
root form, aiding in text normalization and
analysis.

Normalization Adjusting data to a standard scale, often by
removing variations in measurement units or
transforming values to a common scale.

Data augmentation Techniques used to increase the amount of
training data by creating modified versions of
existing data.

(Continued)
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(continued)

Term Definition

Transfer learning A machine learning technique where a model
developed for one task is reused as the starting
point for a model on a second task.

Cross-validation A statistical method used to estimate the skill of
machine learning models by dividing the data
into training and testing sets multiple times.

Grid search A method for hyperparameter tuning that
exhaustively searches through a specified subset
of hyperparameters.

Random search A method for hyperparameter tuning that
samples hyperparameters randomly from a
specified distribution.

Early stopping A technique used to prevent overfitting by
halting training when the model’s performance
on a validation set stops improving.

Area Under the Curve (AUC) A performance measurement for classification
problems at various threshold settings,
representing the area under the ROC curve.

Receiver Operating Characteristic (ROC)
Curve

A graphical plot illustrating the diagnostic
ability of a binary classifier system as its
discrimination threshold is varied.

SHapley Additive exPlanations (SHAP) A method for interpreting machine learning
models by explaining the contribution of each
feature to the prediction.

Local Interpretable Model-agnostic
Explanations (LIME)

A technique that explains individual predictions
by approximating the model locally with an
interpretable model.

Precision The ratio of true positive predictions to the total
number of positive predictions, indicating the
accuracy of positive predictions.

Recall The ratio of true positive predictions to the total
number of actual positives, measuring the ability
to identify all positive instances.

F1-score The harmonic mean of precision and recall,
providing a single metric that balances both.

Hyperparameter tuning The process of selecting the best
hyperparameters for a machine learning model
to optimize its performance.

(Continued)



4830 CMC, 2024, vol.81, no.3

(continued)

Term Definition

Jupyter notebooks An open-source web application that allows the
creation and sharing of documents containing
live code, equations, visualizations, and narrative
text.

Integrated Development Environment
(IDE)

A software application providing comprehensive
facilities to computer programmers for software
development.

Amazon Web Services (AWS) A secure cloud services platform offering
compute power, database storage, content
delivery, and other functionality to help
businesses scale and grow.

Google Cloud Platform (GCP) A suite of cloud computing services that runs on
the same infrastructure that Google uses
internally for its end-user products.
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