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ABSTRACT

Visual Question Answering (VQA) is an interdisciplinary artificial intelligence (AI) activity that integrates com-
puter vision and natural language processing. Its purpose is to empower machines to respond to questions by
utilizing visual information. A VQA system typically takes an image and a natural language query as input and
produces a textual answer as output. One major obstacle in VQA is identifying a successful method to extract
and merge textual and visual data. We examine “Fusion” Models that use information from both the text encoder
and picture encoder to efficiently perform the visual question-answering challenge. For the transformer model, we
utilize BERT and RoBERTa, which analyze textual data. The image encoder designed for processing image data
utilizes ViT (Vision Transformer), Deit (Data-efficient Image Transformer), and BeIT (Image Transformers). The
reasoning module of VQA was updated and layer normalization was incorporated to enhance the performance
outcome of our effort. In comparison to the results of previous research, our proposed method suggests a substantial
enhancement in efficacy. Our experiment obtained a 60.4% accuracy with the PathVQA dataset and a 69.2%
accuracy with the VizWiz dataset.
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1 Introduction

In the field of deep learning research, the Visual Question Answering (VQA) task is a multimodal
challenge that involves computer vision [1,2] and natural language processing [3]. The primary goal
of a general VQA model is to generate credible answers to questions related to visual content. This
involves understanding and combining multimodal representations, specifically the features extracted
from images and text-based questions. The model learns these representations by integrating visual
features from images and linguistic features from questions.
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VQA models indeed have a wide range of applications across different domains as follows: (1)
Healthcare: VQA models are used to assist in medical diagnosis by analyzing medical images (like
X-rays, and MRIs) and answering related questions [4]. This can help doctors make more accurate
diagnoses and provide quick responses to patient inquiries. (2) Education: VQA models can be
employed as educational tools to help students learn about various subjects through visual content. For
example, students can ask questions about a historical image or a scientific diagram, and the model can
provide informative answers [5]. (3) Accessibility: These models can help visually impaired individuals
by describing images’ content when they ask questions about visual scenes. This improves accessibility
to visual information for those with vision impairments [6]. (4) Retail and E-commerce: VQA models
can be used to enhance customer experience by answering questions related to product images, such
as the color, size, or availability of an item in an online store [7]. (5) Security and Surveillance: In
security applications, VQA models can be used to analyze surveillance footage and answer questions
regarding the activities or objects detected in the video, helping in threat detection and incident analysis
[8]. (6) Autonomous Vehicles: In the context of self-driving cars, VQA models can assist by analyzing
images from the vehicle’s cameras and answering questions related to road conditions, nearby objects,
or potential hazards [9]. (7) Entertainment: In interactive media and gaming, VQA models can be used
to create more immersive experiences by allowing users to ask questions about the visual content they
are interacting with, such as scenes in a video game or movie [10].

The Visual Quality Assessment (VQA) is tough work since it incorporates a variety of vision-
related activities, including object detection, scene detection, object counting, color detection, object
segmentation, and a great deal more. This work has gotten much simpler because of the rapid
advancements that have been made in deep learning models. Layer Normalization, a method for
stabilizing and expediting training by the normalization of activations inside a layer, has been widely
employed in natural language processing, particularly in Transformer-based models. Nonetheless,
its application in VQA is still constrained. Layer Normalization may enhance learning efficiency
and model robustness by stabilizing the training process and minimizing internal covariate shifts.
Notwithstanding its demonstrated advantages in other areas, its direct implementation in VQA models
remains insufficiently investigated. Despite the notable advancements of VQA systems, they continue
to encounter substantial hurdles. Addressing obstacles such as biases, shallow learning, and challenges
in reasoning and generalization necessitates additional research, particularly in investigating novel
strategies like Layer Normalization to improve performance. Addressing these issues will advance the
development of more resilient, generic, and reliable VQA systems [11,12].

Moreover, VQA is receiving a great amount of focus in both the academic and the practical
environments. With an image and an input question, VQA can determine a textual response. These
answers are associated with a particular object, color, and collection of characteristics that are present
in that image. The extraction of the keywords of queries that are associated with the visual content of
photographs is a simple process when done manually. To make an accurate prediction of a particular
answer, this information of keywords and visual aspects is helpful. Due to unfortunate circumstances,
the process that encompasses the extraction of features, the integration of relationships, and the
prediction of answers ought to be accomplished automatically. As a result, the VQA is opposed to
the idea of utilizing and combining both textual and visual characteristics in order to discover the
answer [13].

In recent times, earlier methodologies have regarded the answer as a collection of possible words
and sentences. The size of the vocabulary is a crucial factor in determining the success of the system’s
performance. As humans, we anticipate a system that can proficiently respond to all categories of
inquiries. Unfortunately, no one can possess complete knowledge. Thus, it is impractical to construct a
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system with an infinite vocabulary for providing answers. It is unrealistic to anticipate a system that can
provide answers to every type of question. Given these rationales, we suggest refining this assignment
by focusing on a certain sort of query. More precisely, we exclusively concentrate on Yes/No inquiries
in a variety of our projects [14]. Typically, the VQA task datasets consist of questions that fall into
three categories: Yes/No, Number, and Other. In an image retrieval system, a common query is to
determine the presence of images and objects. It demonstrates that Yes/No questions are of interest in
both research and application.

Vision Transformers represent a shift from traditional Convolutional Neural Networks (CNNs)
to transformer-based architectures for image processing. Instead of using convolutions to extract
features, ViTs break an image into patches, treat these patches as a sequence (like words in a sentence),
and process them using the transformer architecture. Many research endeavors have effectively utilized
Vision Transformers in the field of VQA [15–17], frequently integrating them with sophisticated
language models and attention processes to develop cutting-edge VQA systems. These models have
demonstrated encouraging outcomes, especially in situations that need comprehension of intricate
settings and subtle inquiries.

This article’s contributions are as follows: (1) We investigate “Fusion” Models, which integrate
information from the text encoder and picture encoder to carry out the visual question-answering
task effectively. The text encoder can consist of a transformer model that operates on text, such as
BERT, RoBERTa, and others. On the other hand, the image encoder can be a transformer model
specifically designed for processing images, such as ViT, Deit, BeIT, and others. (2) We modified the
reasoning module and added layer normalization to improve the performance result of VQA. (3) We
conducted a thorough analysis and evaluation of the outcomes of our studies.

The remainder of this paper is arranged as follows. Section 2 examines the related works. Section 3
summarizes the methodology. Section 4 discusses and describes the experiments and results obtained
for the VQA. Section 5 discusses the conclusions of the research paper and future research.

2 Related Works
2.1 Vision Transformer

Vision Transformers represent a shift from traditional Convolutional Neural Networks (CNNs)
to transformer-based architectures for image processing. Instead of using convolutions to extract
features, ViTs break an image into patches, treat these patches as a sequence (like words in a sentence),
and process them using the transformer architecture.

Text-based transformer models, such as Bidirectional Encoder Representations from Transform-
ers (BERT) [18–20], Robustly Optimized BERT Pretraining Approach (RoBERTa) [21], and others,
have revolutionized the field of Natural Language Processing (NLP) by providing state-of-the-art
performance on a wide range of language tasks. The transformer architecture forms the foundation of
models like BERT and RoBERTa. It relies on the self-attention mechanism, which allows the model to
weigh the importance of different words in a sentence when encoding their meaning. BERT was one
of the first models to apply the transformer architecture in a bidirectional way, meaning it considers
both the left and right context of a word simultaneously during training. RoBERTa is an optimized
version of BERT that improves its training process and effectiveness [22]. Text-based transformer
models like BERT and RoBERTa have set new benchmarks in NLP by providing deep contextual
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understanding of language. Their ability to be pre-trained on massive amounts of data and then fine-
tuned for specific tasks makes them versatile and powerful tools across various applications in natural
language processing.

A transformer model that is specifically created to process images can serve as the image encoder
in a multimodal model, such as the one that is utilized for Visual Question Answering (VQA). The
Vision Transformer (ViT) [23], the Data-efficient Image Transformer (DeiT) [24], and the Bidirectional
Encoder representation from Image Transformers (BEiT) are three of the most well-known image
encoders that are generated using transformers [25].

2.2 Visual Questions Answering (VQA) and Layer Normalization

In recent years, there has been a growing interest in VQA in the general domain due to the success
of deep learning. Significant advancements have been achieved, primarily through the utilization of
deep Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) pipelines. Many
works utilize various recurrent neural networks (RNNs), including LSTM [26], word2vec [27], and
GloVe [28], to embed text. These RNNs are employed to record word relationships and extract textual
characteristics. CNN architectures, including VGG16 [29], ResNet [30], and Faster R-CNN [31], were
utilized to extract both low- and high-level visual signals. Subsequently, the feature representations
were effectively merged to respond to the query question utilizing sophisticated attention techniques
as stacking attention networks (SANs) [32].

Conventional VQA methods involve the integration of recurrent and convolutional neural net-
works. Typically, many methods employ a recurrent network, such as Long Short-term Memory
(LSTM) [33] or Gated Recurrent Unit (GRU), to extract the textual properties. Furthermore, con-
volution neural networks are utilized to insert pictures [34]. Ultimately, it employs vector operations
such as element-wise multiplication, concatenation, and other similar techniques to merge textual and
visual characteristics to make predictions about answers [35].

The image encoder is a crucial component of VQA systems. The image encoder is tasked with
extracting visual information from the input image. Historically, Convolutional Neural Networks
(CNNs) such as ResNet or VGG were employed for this objective. However, newer methods utilize
transformer-based models specifically developed for image processing, such as Vision Transformer
(ViT), Data-efficient Image Transformer (DeiT), or BEiT. The image encoder produces a collection
of visual feature representations that capture various elements of the image, including objects, scenes,
and spatial connections. Text Encoder: The question encoder analyzes the natural language question
to extract semantic characteristics. Transformer-based models like as BERT, RoBERTa, or GPT are
frequently employed for text encoding. The encoder converts the question into a vector representation
that accurately captures the semantic and contextual information of the words in the query [36].

Multimodal Fusion refers to the process of combining information from multiple modes or
sources into a unified representation [37]. After extracting the visual and textual components, it is
necessary to integrate them coherently. This process is referred to as multimodal fusion. Various
methodologies can be employed for fusion, including straightforward concatenation, attention pro-
cesses, or more intricate approaches like bilinear pooling. The objective is to combine visual and
textual information to create a unified representation that may be utilized to deduce the solution.
Anticipated response: The combined representation is fed into either a classification layer or a decoder
to provide the answer. The response may consist of a single word, a phrase, or even a complete sentence,
contingent upon the intricacy of the assignment. The model is commonly trained in an end-to-end
manner, where it optimizes for the correct answer by employing a loss function like cross-entropy.
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Layer Normalization, often known as LN, is a method that is intended to stabilize and speed
up the training of deep neural networks. It accomplishes this by normalizing the outputs of each
layer across the features. Layer normalization, in contrast to batch normalization, normalizes across
the batch dimension and the feature dimensions. This makes it particularly well-suited for models
such as BERT and Vision Transformers (ViT), which have input shapes that can vary. The Layer
Normalization technique is an essential component of BERT (Bidirectional Encoder Representations
from Transformers) to ensure the stability of the training of the Transformer layers. These Transformer
layers are made up of multi-head self-attention and feed-forward sub-layers. Both the self-attention
mechanism and the feed-forward network are followed by applying LN. Moreover, LN standardizes
the mean and variance of the aggregated inputs to the neurons within a single layer. In contrast to
BatchNorm, which is contingent upon the dimensions of a mini-batch, LN exhibits fewer constraints.
LN is adaptable to RNN and self-attention-based models. It has been implemented in advanced
frameworks such as Transformer, BERT, and Transformer-X. LN enhances performance and is
indispensable in these systems.

N (x) = x − μ

σ
μ = 1

H

H∑
i=1

xi σ =
√√√√ 1

H

H∑
i=1

(xi − μ)
2 (1)

The Layer Normalization can be calculated in Eq. (1). N is the Normalization function, and
x = (x1, x2, . . . , xH) is the representation of input vector with dimension H. H denotes the number
of hidden units in a layer. μ and σ are the mean and standard deviation of input [38,39].

VQA is a sophisticated computer vision task that entails supplying an algorithm with a natural
language query associated with a picture, necessitating the generation of a natural language response
for the specific question-image pair. Recently, various VQA models have been introduced to tackle this
difficulty. The principal performance metric employed to assess these models is accuracy. The research
community has started to recognize that accuracy alone is an inadequate criterion for evaluating
model performance. Besides accuracy, models must also exhibit robustness, indicating that their output
should be largely unaffected by slight perturbations or noise introduced to the input. This encompasses
substituting words with synonymous terms, phrases, or sentences in input inquiries, or making minor
adjustments to pixel values in the image [40]. Furthermore, an early VQA initiative, the DAQUAR
dataset, innovates the use of soft evaluation for VQA. They employ a variant of the Wu-Palmer
similarity on a lexical database to calculate a soft prediction score. Consequently, a forecast that is
semantically akin to the target answer is no longer deemed false. This facilitates a more nuanced
assessment of performance in VQA. Nevertheless, it is utilized solely for assessment, and this metric
possesses inherent limitations, including its incapacity to differentiate colors [41].

A further instance of study that integrates both metrics based on the researcher [42]. During
the evaluation process, they utilize the accuracy measure, defined as the ratio of properly anticipated
responses to the total number of responses. Since responses are generated using open-ended processes
utilizing LLMs and may exhibit differences, their research does not require a perfect correspondence
between the prediction and the actual outcome. Their work assesses semantic similarity by cosine
similarity in a vector space, with a threshold of 0.70. If two strings exhibit a high degree of semantic
similarity, the prediction is deemed accurate; for instance, recognizing “couch” as valid for the label
“sofa.”
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2.3 Performance Evaluation (Wu & Palmer Similarity)

Performance metrics in Visual Question Answering (VQA) are crucial for evaluating how well
a model understands and responds to questions about images. One such metric is Wu & Palmer
similarity, which is used to assess the semantic similarity between words or phrases. It can be applied
in VQA to evaluate how closely a model’s generated answer aligns with the expected answer in terms
of meaning, rather than just exact word matching. Wu & Palmer similarity is a semantic similarity
measure based on the taxonomy structure of words in a lexical database like WordNet. It calculates
the similarity between two words by considering the depths of the words in the taxonomy and the
depth of their most specific common ancestor (also known as the Least Common Subsumer, LCS).
Eq. (2) explains the Wu & Palmer similarity calculations [43,44].

SimWPXY = 2 × depth (N)/(depth (N1) + depth (N2)) (2)

This means that 0 < SimWPXY <= 1. The score can never be zero because the depth of the LCS is
never zero (the depth of the root of a taxonomy is one). The score is one if the two input concepts are
the same. Where SimWP is Wu & Palmer similarity, N1 and N2 are the number of arcs between the
concepts X, Y and the ontology root R and N is the number of arcs between the LCS and the ontology
root R as shown on Fig. 1 [43].

Figure 1: Wu & Palmer’s ontology example

A quantitative metric that was developed expressly for the purpose of determining the degree of
semantic similarity between two given words or sentences is known as the Wu & Palmer similarity.
Because single-word answers are the primary focus of our assignment, the Wu & Palmer similarity
metric is a good choice for evaluating potential solutions. On the other hand, due to the constraints
introduced by its design, it might not be appropriate for phrases or sentences. A variant of the Wu
& Palmer similarity score that is constructed using the WordNet taxonomy is made available by the
Natural Language Toolkit (NLTK).

3 Methodology
3.1 Research Workflow

Fig. 2a shows the VQA architecture default model that consists of several key components:
(1) Image Encoder: Extract relevant features from the input image. Traditional image encoders use
CNNs (e.g., ResNet, VGG) to process the image and extract feature maps. These features capture
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information about objects, scenes, and spatial relationships. More recent approaches use vision
transformers (e.g., ViT, DeiT, BEiT) to process images [45,46]. ViTs divide images into patches, embed
these patches, and use self-attention mechanisms to capture global context and relationships between
patches. (2) Text/Question Encoder used to process and encode the textual question into a vector
representation. Text encoders typically use transformer-based models like BERT, RoBERTa, or GPT
[47]. These models are pre-trained on large text corpora and fine-tuned for the VQA task, allowing
them to capture the semantic meaning and context of the question [48]. (3) Reasoning Module:
Combine the visual and textual features to create a unified representation that incorporates both
modalities. One straightforward method is to concatenate the visual and textual features into a single
vector. This approach may be followed by fully connected layers to learn a joint representation.
More advanced methods use attention mechanisms to align and integrate visual and textual features.
Cross-attention mechanisms allow the model to focus on relevant parts of the image when processing
the question and vice versa. This method helps in effectively merging the information from both
modalities. Some architectures use fusion layers that specifically combine visual and textual features.
Techniques such as bilinear pooling or co-attention networks can be used to enhance the integration
[49]. (4) Answer Decoder will generate the answer based on the combined representation of the visual
and textual features [50,51].

Figure 2: VQA architecture. (a) Default model, and (b) Modified reasoning module

Further, Fig. 2b illustrates our proposed method, which is a modified reasoning module. Addition-
ally, our work includes the addition of layer normalizations to enhance the results of the experiment.
Layer normalization is a technique used to stabilize and accelerate training by normalizing the inputs
of each layer to have zero mean and unit variance. In the context of VQA layer normalization can
be particularly beneficial when used in conjunction with Multilayer Perceptrons (MLPs) for fusion.
Layer normalization helps to standardize the inputs to each MLP layer, which can prevent issues
related to vanishing or exploding gradients. This is crucial in VQA where complex models with multiple
layers and modalities are used. By normalizing the activations, layer normalization ensures that the
distribution of activations remains stable throughout training, leading to more consistent and reliable
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learning. Models with layer normalization often converge faster during training. This is beneficial for
VQA models, which can be large and require significant training time.

The modified reasoning module consists of Layer Normalization added between the Fusion
Method and MLP Layer. The Fusion Method combines visual and textual features into an input
vector representation. Vector xtv represents the concatenated features, where xtv = (x1, x2, . . . , xHt+Hv)
∈ R

Ht+Hv . Ht indicates the number of hidden units in the text encoder, such as BERT and RoBERTa,
whereas Hv denotes the image encoder, such as ViT, DeiT, and BeiT. The additional layer normalizes
the combined features using Layer Normalization, similar to Eqs. (3) and (4) [38,39].

N
(
xtv

) = xtv − μtv

σ tv
μtv = 1

Ht + Hv

Ht+Hv∑
i=1

xi σ tv =
√√√√ 1

Ht + Hv

Ht+Hv∑
i=1

(xi − μtv)
2 (3)

htv = g � N
(
xtv

) + b (4)

where htv is the output of the Layer Normalization, with b and g are defined as the bias and gain
parameters of the same dimension as Ht + Hv. � is a dot production operation for multiplication
between two vectors.

3.2 Dataset

3.2.1 PathVQA

PathVQA is a collection of question-answer pairs specifically designed for pathology images.
The purpose of this dataset is to be utilized for training and evaluating Visual Question Answering
(VQA) systems specifically in the field of medical imaging. The dataset includes open-ended and
binary “yes/no” inquiries. The dataset is derived from two publicly accessible pathology textbooks,
namely “Textbook of Pathology” and “Basic Pathology”, as well as a publicly accessible digital
library called “Pathology Education Informational Resource” (PEIR) [52,53]. The purpose of its
creation was to assess AI models’ proficiency in responding to medical imagery inquiries, namely
pathology slides. The collection comprises medical photos accompanied by associated inquiries and
responses, encompassing many subjects such as disease diagnosis, identification of specific tissue
structures, and others. The dataset at hand comprises a total of 5004 images and 32,795 question-
answer pairings. Among the total of 5004 photographs, 4289 images are associated with a question-
answer pair, while 715 images remain unused. Multiple instances of image-question-answer triplets
appear more than once in the same split (training, validation, test, source: https://huggingface.co/
datasets/flaviagiammarino/path-vqa) (accessed on 31 October 2024). After removing any duplicate
image-question-answer combinations, the dataset consists of 32,632 question-answer pairings related
to 4289 unique photos. Due to the complex nature of medical imaging and the need for specialist
knowledge in the field to provide accurate responses, the PathVQA dataset poses a difficult task. This
can be seen in Fig. 3, which illustrates the situation. Consequently, this attribute renders it a highly
important asset for developing and experimenting with artificial intelligence models in healthcare and
medical research.

3.2.2 VIZWIZ Dataset

The VizWiz dataset is a significant resource in the field of Visual Question Answering (VQA),
particularly designed to address real-world challenges and support the development of assistive
technologies for visually impaired users. The images and questions in the VizWiz dataset were collected

https://huggingface.co/datasets/flaviagiammarino/path-vqa
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from real users who are blind or visually impaired. Users took photos using their smartphones and
asked questions about the content of these images. This makes the dataset unique compared to other
VQA datasets, which are typically curated and consist of high-quality, well-framed images. The dataset
was introduced as part of the VizWiz project, which focuses on helping visually impaired people by
allowing them to ask questions about images they capture in their daily lives (https://vizwiz.org/tasks-
and-datasets/vqa/) (accessed on 31 October 2024). The dataset has 957 train-test images, with 195 of
them labeled as “yes/no”. The VizWiz dataset consists of two classes: “yes” with 553 images and “no”
with 599 images. For this study, we have selected the VizWiz-VQA 2023 edition and categorized it
based on “yes/no” questions and responses [54,55].

Figure 3: PathVQA dataset sample

A realistic and rigorous benchmark for the development of assistive technology is provided by
the VizWiz dataset, which plays an important role in the research and development community of the
VQA. Because of its emphasis on real-world applications and the inclusion of photos and queries from
visually impaired users, it is an extremely significant resource for academics who are working toward
the development of artificial intelligence systems that can have a discernible and beneficial effect on
the lives of individuals. Fig. 4 shows the VizWiz dataset example.

Question: Is it sunny outside? 

Answer: yes

Question: Is it cola?

Answer: no

Question: Can you tell me if

there is anything written 

showing across the screen, 

please?

Answer: yes

Figure 4: VizWiz dataset example

4 Experiment Results and Discussions
4.1 Experiment Results

Our experiment setting parameter can be seen in Table 1. We set the specified initial value for the
random number generator to ensure consistent results when reproducing an experiment. Guarantees

https://vizwiz.org/tasks-and-datasets/vqa/
https://vizwiz.org/tasks-and-datasets/vqa/
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consistent outcomes each time the code is executed, seed=12345. Our experiment will evaluate, log,
and save every 100 steps. We restrict the maximum number of saved checkpoints, allowing only 3 to be
stored. We retain only the most recent checkpoints and remove any older ones. In the context of model
training, using the Wu and Palmer (WUP) Score as a metric involves selecting the best model based
on how well it captures semantic similarity between word pairs according to this measure. When the
evaluation method WUP parameter is set, the training process will evaluate the model’s performance
based on the Wu and Palmer Score. The model that achieves the highest or lowest (depending on the
specific implementation and objective) WUP Score on the validation set during training is considered
the best. In many cases, a higher Wu and Palmer Score indicates better performance, meaning the
model has successfully learned to predict word pairs that are semantically similar according to their
positions in the taxonomy.

Table 1: Experiment setting parameter

Parameters Explanations

seed=12345 Sets the random seed for reproducibility. Ensures that the
results are the same every time the code is run

evaluation_strategy=“epoch” Evaluation strategy: “steps” or “epoch”
eval_steps=100 Evaluate every 100 steps
logging_strategy=“epoch” Logging strategy: “steps” or “epoch”
logging_steps=100 Log every 100 steps
save_strategy=“epoch” Saving strategy: “steps” or “epoch”
save_steps=100 Save every 100 steps
save_total_limit=3 Limits the total number of saved checkpoints to 3, keeping

only the most recent ones and deleting older checkpoints.
metric_for_best_model=“wups” Metric used for determining the best model
per_device_train_batch_size=32 Batch size per GPU for training
per_device_eval_batch_size=32 Batch size per GPU for evaluation
remove_unused_columns=False Whether to remove unused columns in the dataset
num_train_epochs=50 Number of training epochs
fp16=True Enable mixed precision training (float16)
dataloader_num_workers=8 Number of workers for data loading
load_best_model_at_end=True Whether to load the best model at the end of training

Fig. 5 exhibits the training process of Bert Vit 50 Epoch VizWiz dataset. The model is assessed
after each epoch using the assessment approach of “epoch” to monitor its performance. Performance
measures like loss and accuracy are recorded at consistent intervals, such as every epoch, to track the
success of training. The model is stored after every epoch using the “epoch” save approach. Storage
efficiency is ensured by retaining only the most recent three checkpoints. The model with the greatest
WUP score (or the selected measure) on the validation set is picked as the final model after 50 epochs.
The purpose of this training method is to ensure that the BERT-ViT model acquires the ability to
seamlessly incorporate visual and textual information, resulting in precise and contextually suitable
responses within the VizWiz dataset.
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Figure 5: Training bert Vit 50 epoch VizWiz dataset

Table 2 displays the experimental findings using the PathVQA and VizWiz datasets, specifically
with the default model. We utilize the BERT, and RoBERTa, for the text transformation and ViT,
DeiT, and BeiT models for image transformation. Each training session in the experiment consists
of 50 epochs. Based on the experiment results for the PathVQA dataset, BERT and Vit achieved the
highest Wu & Palmer Score of 0.601, Accuracy of 0.595, and 198 M number of trainable parameters.
Similarly, BERT and ViT, after training for 50 epochs, attain a maximum Wu & Palmer Score of 0.695,
an Accuracy of 0.687, and have a total of 196 million trainable parameters for the VizWiz dataset.
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Upon determining the optimal combination of experiment 1 with the default model, we observe that
BERT and ViT exhibit the highest level of performance for both datasets.

Table 2: Experiment results with PathVQA and VizWiz dataset (Default model)

Dataset Text
transformer

Image
transformer

Epoch Wu &
Palmer
Score

Accuracy F1 No. of
trainable
parameters

PathVQA BERT ViT 50 0.601 0.595 0.042 198M
PathVQA BERT DeiT 50 0.591 0.587 0.039 198M
PathVQA BERT BeiT 50 0.584 0.578 0.039 198M
PathVQA RoBERTa ViT 50 0.601 0.595 0.041 213M
PathVQA RoBERTa DeiT 50 0.589 0.583 0.037 213M
PathVQA RoBERTa BEiT 50 0.596 0.588 0.041 213M
VizWiz BERT ViT 50 0.695 0.687 0.68 196M
VizWiz BERT DeiT 50 0.664 0.656 0.636 196M
VizWiz BERT BeiT 50 0.654 0.646 0.644 196M
VizWiz RoBERTa ViT 50 0.664 0.656 0.623 211M
VizWiz RoBERTa DeiT 50 0.634 0.626 0.611 211M
VizWiz RoBERTa BEiT 50 0.604 0.595 0.593 211M

We are currently implementing our proposed model by modifying the reasoning module to include
the normalization layers mentioned in Table 3. The model we propose can enhance the performance
of both datasets in the experiments. The Wu & Palmer Score for the PathVQA dataset increased
from 0.601 to 0.609, while accuracy improved from 0.595 to 0.604. In addition, the VizWiz dataset
experienced an enhancement in Wu & Palmer Score, increasing from 0.695 to 0.70, as well as an
improvement in accuracy, rising from 0.687 to 0.692.

Table 3: Experiment results with PathVQA and VizWiz dataset (Modified reasoning module)

Dataset Text
transformer

Image
transformer

Epoch Wu &
Palmer
Score

Accuracy F1 No. of
trainable
parameters

PathVQA BERT ViT 50 0.609 0.604 0.048 198M
PathVQA BERT DeiT 50 0.603 0.596 0.046 198M
PathVQA BERT BeiT 50 0.589 0.583 0.040 198M
PathVQA RoBERTa ViT 50 0.620 0.614 0.051 213M
PathVQA RoBERTa DeiT 50 0.613 0.606 0.045 213M
PathVQA RoBERTa BEiT 50 0.597 0.590 0.045 213M
VizWiz BERT ViT 50 0.700 0.692 0.686 196M
VizWiz BERT DeiT 50 0.659 0.651 0.646 196M
VizWiz BERT BeiT 50 0.654 0.646 0.644 196M

(Continued)
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Table 3 (continued)

Dataset Text
transformer

Image
transformer

Epoch Wu &
Palmer
Score

Accuracy F1 No. of
trainable
parameters

VizWiz RoBERTa ViT 50 0.659 0.651 0.646 211M
VizWiz RoBERTa DeiT 50 0.644 0.636 0.606 211M
VizWiz RoBERTa BEiT 50 0.644 0.636 0.623 211M

4.2 Discussions

Layer normalization is an essential approach in the training of deep learning models, especially
for tasks such as Visual Question Answering (VQA). The following are the primary advantages of
implementing layer normalization in VQA training: (1) Layer normalization aids in stabilizing the
training process by mitigating the internal covariate shift, which refers to the alteration of input
distribution to each layer during training. This stabilization results in a higher degree of consistency
in learning, enabling the model to converge more rapidly and consistently. (2) By normalizing the
inputs of each layer, it helps in maintaining gradients within a reasonable range, preventing issues like
exploding or vanishing gradients that can otherwise hinder learning. (3) Layer normalization can act as
a form of regularization, reducing the risk of overfitting. This is particularly beneficial in VQA, where
models must generalize well to unseen image-question pairs. (4) Layer normalization is particularly
beneficial in deep architectures like transformers used in VQA, where the model depth can lead to
unstable training. It ensures that the activations in deeper layers remain well-behaved, leading to better
overall performance.

Table 4 shows the PathVQA dataset testing result, as we can see our proposed model BERT+ViT
(Modified Reasoning Module) can improve the predicted answer from the default models and improve
the similarity score. In Table 4, image number 1, the default model predicted response number “no”
with a similarity score of 0.2105. However, our proposed model accurately predicted answer number
“yes” with a similarity value of 1.0. Image number 4 was associated with the anticipated response
“endocrine” with a similarity score of 0.285. On the other hand, our proposed model predicted the
answer “joints” with a similarity score of 1.1.

Table 4: PathVQA dataset testing result

No. Images BERT+ViT (Default model) BERT+ViT (Modified
reasoning module)

1 Question: Is the heart heavier? Question: Is the heart heavier?
Answer: yes (Label: 4089) Answer: yes (Label: 4089)
Predicted answer: no Predicted answer: yes
Similarity:
0.21052631578947367

Similarity: 1.0

(Continued)
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Table 4 (continued)

No. Images BERT+ViT (Default model) BERT+ViT (Modified
reasoning module)

2 Question: Is a nucleolar
pattern typical of antibodies
against nucleolar proteins?

Question: Is a nucleolar
pattern typical of antibodies
against nucleolar proteins?

Answer: yes (Label: 4089) Answer: yes (Label: 4089)
Predicted answer: no Predicted answer: yes
Similarity:
0.21052631578947367

Similarity: 1.0

3 Question: What is present? Question: What is present?
Answer: lung (Label: 2096) Answer: lung (Label: 2096)
Predicted answer:
cardiovascular

Predicted answer: joints

Similarity: 0.0 Similarity: 0.667

4 Question: What is composed
of epithelioid cells with sparse
langhans’ giant cells and
lymphocytes?

Question: What is composed
of epithelioid cells with sparse
langhans’ giant cells and
lymphocytes?

Answer: granuloma (Label:
1589)

Answer: granuloma (Label:
1589)

Predicted answer: epithelial Predicted answer: strictures
Similarity: 0.0 Similarity: 0.728

5 Question: How many small
pulmonary arterioles are
packed with laminated swirls
of fetal squamous cells?

Question: How many small
pulmonary arterioles are
packed with laminated swirls
of fetal squamous cells?

Answer: two (Label: 3647) Answer: two (Label: 3647)
Predicted answer: testicular
teratomas

Predicted answer: two

Similarity: 0 Similarity: 1.0

(Continued)
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Table 4 (continued)

No. Images BERT+ViT (Default model) BERT+ViT (Modified
reasoning module)

6 Question: What shows whorls
of smooth muscle cells which
are spindle-shaped, having
abundant cytoplasm and oval
nuclei?

Question: What shows whorls
of smooth muscle cells which
are spindle-shaped, having
abundant cytoplasm and oval
nuclei?

Answer: microscopy (Label:
2248)

Answer: microscopy (Label:
2248)

Predicted answer: stroma Predicted answer: microscopy
Similarity: 0.111 Similarity: 1.0

7 Question: What is present? Question: What is present?
Answer: joints (Label: 1922) Answer: joints (Label: 1922)
Predicted answer: endocrine Predicted answer: joints
Similarity: 0.285 Similarity: 1.0

The testing results of the VizWiz dataset are displayed in Table 5. In image number 1 and 2,
both the default model and our suggested model achieve perfect accuracy, correctly predicting all
the answers with a similarity score of 1.0. For the third image, the default models predicted a negative
answer with a similarity score of 0.2105. However, our proposed method accurately detected a positive
answer with a similarity score of 1.0.

Table 5: VizWiz dataset testing result

No. Images BERT+ViT (Default model) BERT+ViT (Modified
reasoning module)

1 Question: Is it sunny outside? Question: Is it sunny outside?
Answer: yes (Label:1) Answer: yes (Label:1)
Predicted answer: yes Predicted answer: yes
Similarity: 1.0 Similarity: 1.0

(Continued)
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Table 5 (continued)

No. Images BERT+ViT (Default model) BERT+ViT (Modified
reasoning module)

2 Question: It’s it cola? Question: It’s it cola?
Answer: no (Label: 0) Answer: no (Label: 0)
Predicted answer: no Predicted answer: no
Similarity: 1.0 Similarity: 1.0

3 Question: Can you tell me if
there is anything written
showing across the screen
please?

Question: Can you tell me if
there is anything written
showing across the screen
please?

Answer: yes (Label:1) Answer: yes (Label:1)
Predicted answer: no Predicted answer: yes
Similarity:
0.21052631578947367

Similarity: 1.0

4 Question: this is a picture of a
home i’m planning to buy,
does it look like its in a safe
neighborhood?

Question: this is a picture of a
home i’m planning to buy,
does it look like its in a safe
neighborhood?

Answer: yes (Label:1) Answer: yes (Label:1)
Predicted answer: no Predicted answer: yes
Similarity:
0.21052631578947367

Similarity: 1.0

(Continued)
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Table 5 (continued)

No. Images BERT+ViT (Default model) BERT+ViT (Modified
reasoning module)

5 Question: Can you see
anything about these articles
of clothing that does not
match?

Question: Can you see
anything about these articles
of clothing that does not
match?

Answer: no (Label: 0) Answer: no (Label: 0)
Predicted answer: yes Predicted answer: no
Similarity: 0.210 Similarity: 1.0

6 Question: Does Buddy’s face
look cute or not?

Question: Does Buddy’s face
look cute or not?

Answer: yes (Label: 1) Answer: yes (Label: 1)
Predicted answer: no Predicted answer: yes
Similarity: 0.210 Similarity: 1.0

7 Question: Does this need to be
refrigerated?

Question: Does this need to be
refrigerated?

Answer: no (Label: 0) Answer: no (Label: 0)
Predicted answer: yes Predicted answer: no
Similarity: 0.210 Similarity: 1.0

Tables 6 and 7 present a performance comparison between the VQA and past study findings.
Our proposed method demonstrates a significant enhancement in performance compared to earlier
research results, achieving a 60.4% improvement with the PathVQA Dataset and a 69.2% improvement
with the VizWiz datasets. BioMedLM [56] is a language model based on GPT2 that has been
specifically trained on collections of biological texts. They demonstrate exceptional performance
compared to their general counterparts in specialized biological language tasks, such as question
answering or relation extraction. Their experiment attains a mere 57.2% accuracy when applied to
PathVQA datasets. Furthermore, the Up Down [57] the technique achieved just 59.6% accuracy when
applied to the VizWiz dataset.
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Table 6: Performance comparison with previous research results with path VQA dataset

Method Dataset Accuracy (%)

MEVF [58] PathVQA 44.8
MMQ [59] PathVQA 47.1
VQAMix [60] PathVQA 48.6
AMAM [61] PathVQA 50.4
BioGPT LoRa [56] PathVQA 47.9
BioMedLM LoRa [56] PathVQA 57.2
Proposed method PathVQA 60.4

Table 7: Performance comparison with previous research results with VizWiz dataset

Method Dataset Accuracy (%)

CNN+LSTM [62] VizWiz 54
FT+VQA [63] VizWiz 68.1
Up Down [57] VizWiz 59.6
Proposed method VizWiz 69.2

5 Conclusions

This paper examines “Fusion” Models, which use information from both the text encoder and
picture encoder to efficiently perform the visual question-answering task. A text encoder typically
comprises a transformer model, such as BERT, RoBERTa, or similar architectures, which processes
textual data. Alternatively, the image encoder can be a transformer model that is explicitly tailored for
image processing, such as ViT, Deit, BeIT, and other similar models. To enhance the performance result
of VQA, we made modifications to the reasoning module and implemented layer normalization. To
thoroughly analyze and evaluate the results of our studies, we carried out a comprehensive study. The
findings of our experiments indicate that a modified reasoning module has the potential to improve
the performance outcomes associated with both the PathVQA and VizWiz datasets.

By normalizing the inputs inside each layer, layer normalization makes it possible for the model to
converge more quickly, which in turn reduces the amount of time required for training overall. During
the process of training huge models on enormous datasets, such as PathVQA and VizWiz, this is
especially useful. The stabilization of learning, the enhancement of generalization, and the facilitation
of the integration of multimodal data are all areas in which layer normalization plays a crucial role
in the transformation of the training process for VQA models. These advantages result in models that
are more robust and efficient, which, in the end, leads to an improvement in the performance of VQA
systems on tasks that are similar to those found in both datasets. Our proposed method indicates a
significant performance improvement when compared to the findings of past research. Specifically, we
achieved a 60.4% improvement with the PathVQA Dataset and a 69.2% improvement with the VizWiz
datasets.

A fresh opportunity to explore the practical side of research to create and improve VQA models
that are more suited and compact in the future has been opened up as a result of this success. We will
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explore other VQA datasets, combine them with Explainable Artificial Intelligence in our future study,
and develop more effective techniques to create joint embedding spaces that seamlessly integrate visual
and textual information.
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