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ABSTRACT

The applications of machine learning (ML) in the medical domain are often hindered by the limited availability
of high-quality data. To address this challenge, we explore the synthetic generation of echocardiography images
(echoCG) using state-of-the-art generative models. We conduct a comprehensive evaluation of three prominent
methods: Cycle-consistent generative adversarial network (CycleGAN), Contrastive Unpaired Translation (CUT),
and Stable Diffusion 1.5 with Low-Rank Adaptation (LoRA). Our research presents the data generation methodol-
ogy, image samples, and evaluation strategy, followed by an extensive user study involving licensed cardiologists and
surgeons who assess the perceived quality and medical soundness of the generated images. Our findings indicate
that Stable Diffusion outperforms both CycleGAN and CUT in generating images that are nearly indistinguishable
from real echoCG images, making it a promising tool for augmenting medical datasets. However, we also identify
limitations in the synthetic images generated by CycleGAN and CUT, which are easily distinguishable as non-
realistic by medical professionals. This study highlights the potential of diffusion models in medical imaging and
their applicability in addressing data scarcity, while also outlining the areas for future improvement.
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1 Introduction

Machine learning models involving deep neural networks have proven to be a key in unlocking
data-driven, patient-centered diagnostic and treatment capabilities. These models can analyze vast
amounts of medical data with unprecedented accuracy, identifying patterns and correlations that may
be imperceptible to human clinicians, or predicting and discovering new drug interactions targeting the
underlying health conditions. The ability of these models to continuously learn from new data ensures
that healthcare providers can deliver increasingly personalized and effective treatments, ultimately
improving patient outcomes and advancing the field of precision medicine. These advancements in
ML models heavily rely on computational resources, efficient software frameworks, and availability
of large amounts of high-quality data. The focus on the latter issue, as data availability remains a
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severe limiting factor across ML problems, particularly in the medical domain, despite the ever-growing
efforts in electronic record keeping and digitization.

Upon close inspection of data scarcity in medical ML, we can broadly identify the following
challenges preventing the widespread usage of in-house data collected by medical and healthcare
organizations:

• Privacy concerns. Sharing medical imaging and data exposes patients to risks such as misuse,
data leaks, de-anonymization, and health-related profiling which in turn can expose organiza-
tions to potential litigation. Therefore, data providers must heavily invest in privacy and security
measures.

• Regulatory burden. Health-related and patient-related data in many jurisdictions require special
and more rigorous handling. This necessitates a larger staff to manage the additional regulatory
paperwork and compliance processes, thereby increasing operational costs and complexity.

• Data quality and quantity. The collected data may lack diversity compared to the general
population, leading to significant biases in machine learning models. Additionally, there may
be insufficient samples to apply proper anonymization techniques, further limiting the utility
of the data.

• Data annotation and standardization. Hospitals and branches within the same organization
may impose different annotation and record-keeping requirements. This lack of uniformity
results in incompatible data across branches and departments, complicating the integration and
utilization of the collected data.

Given the inherent limitations of readily available high-quality labeled and annotated medical
data, combined with recent advancements in generative machine learning (genML/genAI), it is crucial
to explore the potential of synthetic generation for medical applications. Synthetically generated
images offer several advantages for medical ML, with first and foremost being that they mitigate the
issues related to patient privacy and data security, as synthetic data has no real patient information.
Additionally, if proper control of generation is established, the synthetic generation would allow for
the creation of large-scale datasets without the need for extensive manual annotation, saving time and
resources while still ensuring high-quality training material.

While synthetic data generation can be applied to various aspects of medical data—including
charts, post-visit summaries, medical histories, lab work, and other imaging and screening tech-
niques—our focus is on echocardiograms (echoCG). An echocardiogram is a heart ultrasound image
used for screening and diagnosing structural and congenital heart conditions, and the leading method
in detecting heart-related illnesses. Despite being a relatively inexpensive type of screening, compared
to, for instance, magnetic resonance imaging (MRI), acquiring large amounts of echoCG images of
high quality is not a trivial task, as such, it is an ideal candidate for controllable synthetic generation.

Our primary objectives are to address the following research questions: Is it feasible to produce
high-quality heart echocardiograms that are indistinguishable from real data?, What are the current
limitations of synthetically generated heart echocardiograms?, and How controllable is the synthetic
generation of echoCG? Importantly, we aim to thoroughly assess the quality of generated images by
conducting a multidisciplinary study involving licensed medical professionals, radiologists, surgeons,
and cardiologists to provide expert evaluation. Addressing these questions and limitations is essential
for advancing the practical utility of synthetic echoCG—and synthetic data in general—in medical
practice, with the potential to enhance diagnostic accuracy and patient outcomes while addressing
challenges related to data privacy and availability.
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Paper Organization and Contributions

In Section 2, we perform an extensive survey of current art and identify three leading and,
thus, most-promising image generation methods that are suitable for synthetic echoCG generation
(CycleGAN, CUT, Stable Diffusion). In Section 3, we give a technical overview of these methods:
CycleGAN (Section 3.2), CUT (Section 3.3), and of our procedure in adapting Stable Diffusion via
LoRA (Section 3.4). In Section 4, we discuss the training details of our selected models and subsequent
image generation process. In Section 5, we proceed to discuss the design of our human-subject study
across medical professionals to assess perceived image quality, and also describe our survey application
we developed (Section 5.2). We dedicate Section 6 to discuss our results and conclude our paper in
Section 7 with our final thoughts. To summarize, we make the following contributions:

• We independently replicate the results of CycleGAN and CUT-based heart echocardiogram
generation and identify the shortcomings of these methods with respect to image quality.

• We apply LoRA adaption to Stable Diffusion 1.5 to adapt the model to generate heart
echocaridograms and demonstrate its utility as image generation tool.

• We conduct, first to our knowledge, a comprehensive multi-disciplinary evaluation of generated
echocardiograms among cardiologists, radiologists, and heart surgeons.

2 Related Work

The field of synthetic data generation, particularly as it pertains to medical imaging, has emerged
as a dynamic and complex research area that integrates state-of-the-art methods. Here we provide an
overview of the various studies, research approaches, and discoveries that have combined to influence
the present understanding of the field.

2.1 Generative Adversarial Networks

The use of GANs in medical imaging has seen a significant surge in popularity within the machine
learning community over the last few years. GANs have been used in the generation of a motion
model from a single preoperative magnetic resonance imaging (MRI) scan [1], the upsampling of a
low-resolution fundus pictures [2], the generation of synthetic computed tomography (CT) scans from
brain MRIs, and the synthesis of T2-weight MRI from T1-weighted MRI (and vice versa). We give an
overview of the mathematical basis behind GANs in Section 3.1.

The work of Wang et al. [3] offers a review of various image analysis methods, including generative
algorithms. Their analysis contends that generative algorithms, as a subtype of analytical algorithms,
have a significant distance to cover in terms of functionality, as their capabilities extend beyond
replicating visual cortex functionalities. This perspective frames our understanding of the evolving
landscape of generative algorithms, particularly in the context of medical imaging [4]. The work
of Singh et al. [5] critically reviews methods for generating medical images. Their critique suggests
that state-of-the-art image generation techniques may not currently serve as reliable sources for data
saturation and preprocessing in the medical domain. Such a perspective highlights the challenges and
caution required when applying generative techniques to medical image synthesis.

The work of Gilbert et al. [6] explores the generation of synthetic labeled data using slices of
3D echoCG images and actual echoCG images (EchoNET images) in unpaired fashion. The study
suggested that the generated images received approval from medical professionals in the ultrasound
imaging field. Additionally, GANs have been explored in paired settings as well. For example,
Tiago et al. [7] used a variation of the Pix2Pix [8] network to generate two-chamber-sliced images (left
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ventricle and left atrium). In our study, we chose to independently replicate the work of Gilbert et al.,
as we believe that unpaired image translation aligns more closely with our research goals. Critically,
our study differs from both of these works in two key ways: (1) we conduct a user study involving
medical professionals, whereas the works of Gilbert et al. [6] and Tiago et al. [7] lack thorough medical
evaluation, and (2) we compare multiple generation methods (CycleGAN, CUT, Stable Diffusion),
whereas previous studies focus on a single chosen approach.

2.2 Diffusion Models

Diffusion-based models have recently established the state of the art in generating realistic and
artistic images [9–11], videos [12], and other high-dimensional data. These methods work by iteratively
refining a noisy image into a less noisy variant via a conditional (text, image, or other signal)
or unconditional denoising network, and have deep connections to thermodynamic diffusion [13],
stochastic ordinary differential equations [14], and Markov processes [15]. We provide a technical
overview of diffusion models (DMs) in the context of the stable diffusion in Section 3.4.

The application of diffusion models in medical imaging is an emerging area of research; con-
sequently, the existing body of related work remains relatively limited. Kim et al. [16] proposed
augmenting diffusion models with a deformation module to better handle the dynamics of heart
MRI, allowing for the generation of realistic deformations and interpolated frames. Perhaps closest
to our work is the study by Özbey et al. [17], which combines pixel-level diffusion models with
generative adversarial networks to enable unpaired domain translation between domains (e.g., MRI
to CT), which they used to generate brain CT images. Implementation-wise, the diffusion process is
guided by a source domain image (e.g., MRI) to denoise it into the target domain. Once an image is
generated, cycle-consistent adversarial loss is applied, and the models are jointly trained. Similarly,
Tiago et al. [18] proposed using a pixel-level diffusion process combined with adversarial loss to
generate heart echoCG images. However, in contrast to Özbey et al. [17], they used a paired dataset to
train and guide the generation process.

Our work differs significantly from these two approaches in the following ways: (1) we use an
off-the-shelf latent diffusion model (Stable Diffusion 1.5) and fine-tune it using low-rank adaptation,
which significantly reduces the training time (hours vs. days); (2) we conduct a thorough image quality
assessment involving medical professionals, whereas the works of Tiago et al. [18] and Özbey et al. [17]
lack such an evaluation; and (3) we use text guidance during the diffusion process, whereas previous
methods used image guidance.

2.3 Quality Assessment of Synthetic Images

In image processing, various metrics such as MSE, PSNR, SSIM [19], and more recently, DNN-
based metrics like LPIPS [20], have been developed for image quality assessment. However, these
methods are full-reference metrics, requiring a reference image for evaluation. In the context of
synthetic image generation, where a reference image often does not exist, alternative approaches are
necessary.

For unpaired data generation, where no one-to-one correspondence between images can be
established, two specific metrics have been developed: Inception Score (IS) [21] and Frèchet Inception
Distance (FID) [22]. Both metrics assess the distance between the distribution of generated and
real images in the feature space of a deep neural network, typically an Inception network. Among
them, FID is considered more reliable as it accounts for both image quality and diversity. However,
despite the widespread use of these metrics, human-subject evaluations remain the gold standard for
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assessing image generation quality, with more sophisticated methods often relying solely on human
evaluation [10,11].

3 Methods

Based on our literature review, we selected the following models for our study, each chosen for its
proven capability in medical imaging tasks:

• Cycle-consistent generative adversarial networks (CycleGANs). CycleGAN is particularly
suited for medical image processing due to its ability to perform unpaired image-to-image
translation, making it effective for transforming medical images between different modalities
(e.g., sketch to echoCG) without the need for paired datasets. For the particular recipy we
following the work of Zhu et al. [23].

• Contrastive Unpaired Translation model (CUT). CUT enhances the capabilities of models
like CycleGAN by incorporating contrastive learning, which improves image quality and
consistency. This is especially relevant in medical imaging, where accuracy and reliability are
critical. We train CUT model following the work of Park et al. [24].

• Stable Diffusion. Stable Diffusion represents an advanced diffusion-based approach that excels
in generating high-resolution, detailed images, making it highly applicable for medical scenarios
that require fine-grained visual information, such as echocardiography. For our study we
implement a low-rank adapted version of Stable Diffuion 1.5 model.

3.1 GAN

Generative adversarial network (GAN) is a method of generating images and consists of two
models: a generative model G, the main purpose of which is to generate images based on the initial data
distribution and discriminative model D, the main purpose of which is to appraise the likelihood of
the image coming from the expected distribution. A typical GAN model optimizes the following min-
max objective via the alternation of generator step and discriminator step using stochastic gradient
descent:

min
G

max
D

V(D, G) = Ex∼pdata (x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

3.2 CycleGAN

CycleGAN [23] is a deep learning framework that learns to translate images from a source domain
X to a target domain Y , and vice versa, without the need of a paired dataset. This image translation
is achieved by learning two generators and two discriminators trained simultaneously to optimize a
cycle-consistency loss function.

Given domains X and Y , the cycle consistency is achieved by the introduction of a loss function
encouraging the generator GA to map a sample in X to a sample in Y , and then back to the domain
of X via another generator GB. Formally, the training objective can be written as follows:

Lcyc(GA, GB) = Ex∼X

[‖GB(GA(x)) − x‖1

] + Ey∼Y

[‖GA(GB(y)) − y‖1

]
, (2)

where x and y are individual images in domains X and Y , respectively, and generators GA: X → Y
and GB: Y → X are the neural networks that translate images from one domain to the other.

In addition to the cycle consistency loss, CycleGAN uses an adversarial loss function to ensure
that the generated samples are indistinguishable from real samples in both domains. This is achieved by
introducing a discriminator network, D, which tries to distinguish between real and generated samples.
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The adversarial loss function is defined as

Ladv(GA, DB) = Ey∼Y

[
log(DB(y)

] + Ex∼X

[
log(1 − DB(GA(x)))

]
, (3)

where DA : X → [0, 1] and DB : Y → [0, 1] are the discriminators producing the probability of image
being real (or not).

The overall loss function for the CycleGAN is a weighted sum of the adversarial loss and cycle
consistency loss:

L(GA, GB, DA, DB) = Ladv(GA, DB) + Ladv(GB, DA) + λcLcyc(GA, GB) (4)

where λc is a hyperparameter that controls the importance of the cycle consistency.

The training of CycleGAN involves minimizing the total loss function using stochastic gradient
descent (SGD) or a variant thereof. The generators and discriminators are updated alternately, with the
generators being updated to minimize the total loss and the discriminators being updated to maximize
the adversarial loss.

3.3 CUT

Contrastive Learning for Unpaired Image-to-Image Translation [24], also known as Contrastive
Unpaired Translation or CUT, is a methodology for image-to-image translation tasks without paired
data. CUT is a self-supervised learning approach that leverages contrastive learning to learn a
translation function between two domains without paired data. The key idea is to learn a shared
representation space where the translated images from both domains are close to each other, while
being far apart from the original images.

Contrastive Learning involves learning a representation by contrasting positive and negative
samples. In the context of image-to-image translation, positive samples are images from the same
domain, while negative samples are images from different domains. The CUT model’s goal is to find
matching input-output pairs at a specific location. To achieve this, Park et al. [24] used the other parts
within the input image as negative examples. They call this approach PatchNCE loss.

LPatchNCE(G, H, X) = Ex∼X

L∑

l=1

Sl∑

s=1

�
(
ẑs

l , zs
l , zS\s

l

)
(5)

The final loss function is a domain-specific version of the identity loss that uses PatchNCE loss
LPatchNCE(G, H, Y) on images from domain Y to prevent the generator from making unnecessary
changes:

LGAN(G, D, X , Y) + λXLPatchNCE(G, H, X) + λYLPatchNCE(G, H, Y). (6)

3.4 Stable Diffusion

Stable Diffusion models [10,11] are a variant of text-conditioned diffusion models operating in a
semantically compressed latent space. The architecture consists of a variational autoencoder that maps
images from pixel space to latent space, a text encoder to compute embeddings of text conditions, and
a U-Net network used to predict a denoised version of a noisy image (latent).

The networks in the pipeline are typically trained separately to optimize different losses. In the
Stable Diffution 1.5, which we use for our experiments, the text-encoder is obtained using contrastive
language-image pretraining (CLIP) on a large corpus of unpaired image-text corpus, and corresponds
to CLIP ViT-L/14 of Radford et al. [25]. The variational autoencoder is trained on ImageNet-1k [26]
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dataset to encode image x into latent space via encoder E and decode it back via decoder D :

Lvae = Ex∼X

[‖D(E (x)) − x‖], (7)

where norm ‖·‖ is metric norm or divergence (i.e., KL divergence).

The denoiser εθ parametrized by a U-Net architecture [27] is trained to predict noise-free version
of noised latent xt at time t ∈ [0, . . . , 999] via minimizing:

LLDM = Ex∼X ,ε∼N (0, 1)

[‖ε − εθ(E (x), t)‖2
2

]
. (8)

3.4.1 Low Rank Adaptation

Despite diffusion models’ shown promise in generating realistic images, fine-tuning these models
for specific tasks and datasets remains a challenging task. In this study, we use a recently proposed
efficient fine-tuning method using low-rank approximation (LoRA).

While several LoRA approaches were presented in the community [28,29], they were all built upon
additive low-rank finetuning. Given a weight matrix W , instead of directly finetuning the whole matrix,
we only finetune some low-rank additive portion W� such that W� = UV T with lower-rank U and V
matrices and keeping W fixed.

4 Data and Model Preparation
4.1 Dataset

The dataset for medical image generation was created from a selection of 256 × 256 images in
JPEG format. The core selection of those images mostly came from the EchoNet dataset benchmark.
EchoNet-Dynamic is a dataset of over 10,000 echocardiograms, or cardiac ultrasound videos from
unique patients at Stanford University Medical Center. Each apical-4-chamber video is labeled by an
estimated ejection fraction, end-systolic volume, end-diastolic volume, and tracings of the left ventricle
performed by an advanced cardiac sonographer and reviewed by an imaging cardiologist.

For Stable Diffusion training we randomly sampled 40 images containing apical four-chamber
view, with the chambers in this case being the left atrium (LA), right atrium (RA), left ventricle (LV)
and right ventricle (RV) from the EchoNet dataset. Each image was labeled by a medical professional
with a text description related to the shape of the heart from the medical standpoint, with the average
number of words in the annotation being 22.95 (Fig. 1). In addition to the annotated data, we created
a regularization dataset consisting of 400 unlabeled images from the EchoNet dataset which were used
to train using a null (i.e., empty) text.

Figure 1: An example of image annotations utilized in the training process of the stable diffusion model
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4.2 CycleGAN and CUT Image Generation

The images were created in accordance to the pipeline created by Gilbert et al. [6] for CycleGAN
and by Park et al. [24] for CUT. The process consisted of two parts:

1. Render 2D slices from 3D anatomical model of the heart with two purposes:
• mark labels of heart chamber segments
• use it as one of the inputs for creating image in specific domain, in this case as an

echocardiographic image
2. Allocate EchoNet images for creating the target domain of echocardiographic images

The training was performed for about 24 h for both CycleGAN and CUT on a single A100 GPU.
We used Adam optimization method with a constant learning rate of 1 × 10−5 for 2000 epochs, with
batch size of 32 for CUT.

For CycleGAN it is also worth noting that the standard encoder-decoder generative network
within model is replaced with U-Net [27] with 8 downsampling levels for increased training speed
with equivalent results [6]. During the training of CycleGAN the network weights were saved every
five epochs.

4.3 Stable Diffusion Generation

To generate images using diffusion models, we applied LoRA finetuning to the Stable Diffusion
1.5 model using our pre-annotated dataset. We used the LoRA weights with a rank of 8 applied to
cross-attention layers on all blocks. We trained our model for 4 epochs with a batch size of 2 using
the Adam optimization method with a learning rate of 9 × 10−4. We ran our training on an Nvidia
RTX 3080 for 10 h. Following standard practice, we did not fine tune the text-encoder nor variational
autoencoder, although we suspect results could be improved if those modules were unfrozen.

4.4 Initial Comparisons

For each of the methods we generated a total of 800 images. We present a randomly selected
subset of those in Fig. 2. We computed the Frèchet Inception Distance (FID) score for these images
against the reference EchoNet dataset. The FID scores were as follows: 75.13 for CycleGAN, 146.99
for CUT, and 168.59 for Stable Diffusion. A lower FID score typically indicates better diversity and
quality, suggesting that all networks are well-trained, with CycleGAN exhibiting superior performance
according to this metric. Upon visual inspection, we observed that CUT-generated images occasionally
exhibit a shift in color towards orange (in less than 3% of the images), which may contribute to the
slightly higher FID score. Such behavior was also noted by designers of CycleGAN and CUT [23] when
generating apple-orange transitional images. In the case of Stable Diffusion, the generated images
appeared less diverse to the untrained eye, which is often associated with a higher FID score. It is
also worth noting that FID score could be biased during the evaluation of finite number of generated
images [30]. In addition, as our user study with medical professionals demonstrates, the FID score
does not necessarily correlate with the perceived quality of the model’s generated images.
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Figure 2: Examples of the generated images for each of the methods

5 User Study: Quality Evaluation

We conducted a user study involving experienced cardiologists and cardiac surgeons to assess
the perceived realism and practical applicability of our selected image generation models: CycleGAN,
CUT, and Stable Diffusion. The study aimed to determine how realistic the synthetically generated
echocardiographic (echoCG) images appear from a medical perspective and whether any of these
generation methods could convincingly replicate authentic medical images to the satisfaction of
medical professionals. Prior to commencing the study, we obtained approval from the ethics committee
responsible for overseeing research involving human subjects.

5.1 Participants

For the study, we recruited seventeen participants, aged between 25 and 55 years (Mean = 37.13,
SD = 9.24). Ten of them identified themselves as male and seven as female. All participants specialized
in echocardiography (EchoCG), and regularly engaged in the interpretation and diagnosis of medical
conditions using echocardiographic imagery. Eight were cardiologists, nine were cardiac surgeons.
On average, they had 10 years of experience (Mean = 10.32, SD = 7.26) in cardiology, including
ultrasound, pediatric and adult cardiac surgery, cardiology diagnostics, and other related fields. On
the right of Fig. 3, we show a volunteer participating in the study.

5.2 Apparatus

We developed a custom application, named CardioQuestionnaire, running on a PC with Windows
OS to collect feedback from our participants. The application comprises several key components: an
application server, a data generation server, and a database server. The application server, accessed by
the client application, serves as the central hub, coordinating interactions with the synthetic data and
the database through its subsystems. On the right of Fig. 3, we show the screenshot of our customized
application (in Russian); full English translation of the pre- and post-study questionnaires are available
in Appendix A.

The software platform utilizes PostgreSQL as the database management system [31], selected
for its reliability, scalability, and extensive feature set. To streamline schema modifications, we
integrated Liquibase, an open-source database migration tool. Liquibase [32] facilitates systematic
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schema management by tracking database states and applying necessary migrations, ensuring seamless
integration with PostgreSQL.

Figure 3: Left: an example of Likert scale questions in the app, right: a participant taking part in the
study

For the backend development, we selected the Java programming language. We utilized the Spring
Boot framework to streamline the creation of production-ready applications, leveraging features like
auto-configuration to minimize development setup time. The CardioQuestionnaire system’s frontend
was designed through multiple iterations to ensure a user-friendly and ergonomic interface for our
target population. Built with the Angular framework [33], it features a component-based structure
that facilitates code reuse and supports the development of complex user interfaces, while a responsive
layout ensures a consistent experience across devices. We present system architecture diagram in Fig. 4.

5.3 Design

In this user study, we employed a within-subjects design with one independent variable: image
source, which had four conditions: real images, CUT-generated images, CycleGAN-generated images,
and Stable Diffusion-generated images. To control for potential order effects, conditions were sys-
tematically counterbalanced. Images were randomly selected from a pool of 400 images per condition.
Each participant assessed images from all four sources and rated their perceived realism using a Likert
scale ranging from 1 (very unlikely to resemble a real image) to 5 (very likely to resemble a real image).

The study was conducted in a single session, where each participant evaluated 40 images, with 10
images drawn from each of the four image source categories. In summary, the study design consisted of:

17 participants × 4 image sources (real, CUT, CycleGAN, Stable Diffusion) × 1 session × 10
random images = 680 rated images in total.

We selected the Likert scale for this study because it provides a straightforward and reliable
method for measuring subjective perceptions, which is essential for evaluating the realism of synthetic
medical images. The survey was designed to capture the participants’ nuanced judgments about the
realism of the images, making the Likert scale an appropriate choice for the task.
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Figure 4: System architecture diagram

5.4 Procedure

The study was conducted in controlled and standardized environments across various medical
facilities. Each participant was accommodated individually. Initially, participants received an extensive
briefing about the study objectives, during which the researcher addressed any questions they had
about the study. Next, they were asked to complete consent forms, followed by a demographic
questionnaire that inquired about age, gender, educational, and medical backgrounds. Subsequently,
the main study commenced, during which the application presented participants with sets of images,
comprising images generated using our selected pre-trained models: CycleGAN, CUT, and Stable
Diffusion-generated images, as well as authentic medical images from the dataset. Participants were
tasked with assessing the realism of each image based on their perceptions, rating each on a scale from
1 being most unrealistic to 5 being very realistic. We collected all data and evaluations, after which
the researcher administered a post-study questionnaire. Additionally, any remaining questions from
participants were addressed, and further comments were recorded during discussions.

5.5 Results and Discussion

A complete study session lasted approximately twenty minutes, encompassing demographic data
collection, the primary study, and post-study discussions. Initially, we conducted a normality test on
the data to assess its distribution, with the consolidated results presented in Table 1. We conducted
four different statistical tests used to determine whether Likert scale assessments follow a normal
distribution for CycleGAN, CUT, and Stable Diffusion. The findings indicated that the residuals did
not follow a normal distribution. Consequently, we employed the Mann-Whitney U test for our data
analysis.
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Table 1: Results of normality tests used to assess Likert scale data for CycleGAN, CUT, and stable
diffusion

CUT CycleGAN Stable diffusion

Statistic p Statistic p Statistic p

Kolmogorov-Smirnov 0.23 <0.001 0.23 <0.001 0.27 <0.001
Kolmogorov-Smirnov (Lilliefors Corr.) 0.23 <0.001 0.24 <0.001 0.27 <0.001
Shapiro-Wilk 0.83 <0.001 0.82 <0.001 0.79 <0.001
Anderson-Darling 10.08 <0.001 10.67 <0.001 13.35 <0.001

The Mann-Whitney U test, used to compare differences between two independent groups,
identified a small effect of image source for the CycleGAN vs. real pair with U = 12,497, Z = −2.22,
p < 0.001. Additionally, the test revealed a significant effect of image source in the CUT-real and
Stable Diffusion-real pairs, with results of U = 11,340.5, Z = −3.54, p < 0.001 and U = 10,166,
Z = −4.91, p < 0.001, respectively. These results are statistically significant at the 5% significance
level. The consolidated results are presented in Table 2.

Table 2: Mann-Whitney U test results for synthetic images vs. real image

U z Asymptotic p Exact p r

CycleGAN vs. real images 12,497 −2.22 0.026 0.031 0.12
CUT vs. real images 11,340.5 −3.54 <0.001 0.001 0.19
Stable diffuion vs. real images 10,166 −4.91 <0.001 0.001 0.27

The results suggest that there is a significant statistical difference between the distributions of
CycleGAN, CUT and Stable Diffusion in comparison to real images. However, for the CycleGAN vs.
real image pair, the results suggest that Likert scores for CycleGAN images tend to be lower, with a
mean of 2.72, a median of 3, and a standard deviation (SD) of 1.59. In contrast, the CUT vs. real and
Stable Diffusion vs. real pairs reveal distinct trends: CUT images are consistently rated as less realistic,
with a mean score of 2.49, a median of 2, and an SD of 4.46, while Stable Diffusion images are rated
as more realistic, with a mean of 3.95, a median of 4, and an SD of 1.24. The consolidated descriptive
statistics are presented in Table 3.

Table 3: Descriptive statistics of Lickert scores for each condition

Mean Median SD

Real images 3.11 3 1.60
CUT images 2.49 2 1.46
CycleGAN images 2.72 3 1.59
Stable diffusion images 3.95 4 1.24
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6 Discussion

Our study suggests that a group of experienced medical professionals can readily distinguish
between CycleGAN- and CUT-generated synthetic images and real ones, with CUT images receiving
slightly higher scores for “realism.” This outcome is somewhat disappointing given that GAN-based
methods have long dominated the computer vision field before the advent of diffusion models.

In contrast, Stable Diffusion-generated images received significantly better assessment scores
(Mean = 3.95, Median = 4, SD = 1.24) compared to CUT (Mean = 2.49, Median = 2, SD =
1.46) and CycleGAN (Mean = 2.72, Median = 3, SD = 1.59), indicating that Stable Diffusion-
based models are more capable of generating authentic medical images of satisfactory quality. Several
factors may explain the superior performance of diffusion models. First, diffusion models refine
images progressively through a denoising process, which enhances the fine details and textures crucial
for accurately representing subtle structures in echocardiographic images. Second, the use of latent
space for diffusion, combined with attention mechanisms in the U-Net architecture, plays a vital
role in preserving the overall structural integrity and intricate details of the heart’s anatomy. In
contrast, CycleGAN and CUT operate directly in pixel space and lack attention mechanisms, which,
given limited training, may hinder their ability to capture medically significant features. Lastly,
Stable Diffusion’s extensive pre-training on billions of realistic images, followed by fine-tuning on
echocardiographic (echoCG) images using LoRA, likely conditioned the model to understand the
intricacies of echoCGs at a fundamental level, further refined by fine-tuning to achieve expert-level
performance.

An additional noteworthy observation is that Stable Diffusion images received a higher overall
rating (Mean = 3.95, Median = 4, SD = 1.24) compared to real images (Mean = 3.11, Median = 3, SD
= 1.6). One plausible explanation for this phenomenon could be the bias introduced by the necessity
of prompt engineering in the Stable Diffusion image generation process. The prompts require certain
patterns to be present, which doctors identify beforehand, thereby making the resulting images clearer
and more analyzable. To further explore whether this phenomenon is influenced by the experience level
of our participants, we plotted the average scores of each participant against their job experience and
the number of weekly echoCG image readings (see Fig. 5). The analysis revealed that real images were
rated as less realistic by both experienced doctors (>15 years) and novices (<8 years) alike. Similarly,
the frequency of weekly echoCG readings did not significantly affect their realism ratings for real
images.

Additionally, we consulted an experienced cardiothoracic surgeon (>15 years) who interprets
more than 100 images per week to annotate images from CUT, CycleGAN, and Stable Diffusion
and to verbally rate their realism (see Appendix B). The surgeon rated Stable Diffusion images as
very realistic, occasionally noting, “excellent image, everything is clearly visible,” whereas the overall
sentiment for CUT and CycleGAN images was, “the image is not realistic; the heart is not visualized.”
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Figure 5: The mean assessment (Lickert) scores of every participants for each generation type,
including real images, compared against their job experience (top) and number of weekly echoCG
readings (bottom). Note that for the bottom row plots the x-axis is presented in logarithmic scale to
account for the data distribution. Error bars represent the 95% confidence interval

7 Conclusion

In this paper, we conducted a comprehensive evaluation of CycleGAN-, CUT-, and Stable
Diffusion-based methods for the synthetic generation of echocardiography (echoCG) images. The
training of CycleGAN and CUT models does not require paired data, which significantly simplifies
their application in medical settings, where large collections of single-modality data (such as MRIs,
X-rays, and echoCGs) are commonly available. Although Stable Diffusion requires pairs of image-text
descriptions, which can be cumbersome to collect, as demonstrated in Section 4, the required data for
such training is minimal; only 40 annotated image-text pairs were sufficient.

Our evaluation with medical professionals (N = 17) revealed that CycleGAN- and CUT-based
image generations produce subpar images, with mean realism scores of 2.72 and 2.49, respectively (out
of 5), which experts can easily distinguish as non-realistic. In contrast, our experiments demonstrate
that the Stable Diffusion model with LoRA tuning generates images with a level of realism comparable
to actual echoCG images, receiving higher realism scores from our evaluators (3.95 for Stable Diffusion
and 3.11 for real images). These results suggest that Stable Diffusion models are highly suitable for
medical image generation, indicating the potential for synthetically generated datasets to address
privacy and legal concerns in the medical field. We encourage the community to explore the application
of these methods to other medical imaging modalities.
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[18] C. Tiago, S. R. Snare, J. Šprem, and K. McLeod, “A domain translation framework with an adversarial
denoising diffusion model to generate synthetic datasets of echocardiography images,” IEEE Access, vol.
11, pp. 17594–17602, 2023. doi: 10.1109/ACCESS.2023.3246762.

[19] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: From error visibil-
ity to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004. doi:
10.1109/TIP.2003.819861.

[20] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep
features as a perceptual metric,” in 2018 IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 586–
595.

[21] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford and X. Chen, “Improved techniques for
training gans,” in Proc. 30th Int. Conf. Neural Inform. Process. Syst., Barcelona, Spain, 2016, pp. 2234–
2242.

[22] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two time-scale
update rule converge to a local nash equilibrium,” in Proc. 31st Int. Conf. Neural Inform. Process. Syst.,
Long Beach, CA, USA, 2017, pp. 6629–6640.

[23] J. -Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent
adversarial networks,” in 2017 IEEE Int. Conf. Comput. Vis. (ICCV), 2017, pp. 2242–2251.

[24] T. Park, A. A. Efros, R. Zhang, and J. Zhu, “Contrastive learning for unpaired image-to-image translation,”
2020, arXiv:2007.1565.

[25] A. Radford et al., “Learning transferable visual models from natural language supervision,” in Int. Conf.
Mach. Learn., PMLR, 2021, pp. 8748–8763.

[26] O. Russakovsky et al., “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis., vol. 115,
pp. 211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[27] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmenta-
tion,” in Med. Image Comput. Comput.-Assist. Interv.–MICCAI 2015: 18th Int. Conf., Munich, Germany,
Springer, 2015, pp. 234–241.

[28] E. J. Hu et al., “LoRA: Low-rank adaptation of large language models,” 2021, arXiv:2106.09685.
[29] S. -Y. Liu et al., “DoRA: Weight-decomposed low-rank adaptation,” 2024, arXiv:2402.09353.
[30] M. J. Chong and D. Forsyth, “Effectively unbiased fid and inception score and where to find them,” in 2020

IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 2020, pp. 6069–6078.

https://doi.org/10.1109/TMI.2023.3290149
https://doi.org/10.1109/ACCESS.2023.3246762
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1007/s11263-015-0816-y


CMC, 2024, vol.81, no.3 4519

[31] T. P. G. D. Group, “PostgreSQL: The world’s most advanced open source relational database,” 2024.
Accessed: Oct. 10, 2024. [Online]. Available: https://www.postgresql.org/

[32] L. Inc., “Liquibase,” 2024. Accessed: Oct. 10, 2024. [Online]. Available: https://www.liquibase.com/
[33] G. LLC, “Angular,” 2024. Accessed: Oct. 10, 2024. [Online]. Available: https://angular.dev/api
[34] D. Ouyang et al., “Video-based AI for beat-to-beat assessment of cardiac function,” Nature, vol. 580, no.

7802, pp. 252–256, Apr. 2020. doi: 10.1038/s41586-020-2145-8.

Appendix A: Details of Questionnaire

Pre-study questionnaire Responses to the pre-study questionnaire were collected using the custom
build application (see Section 5.2), with open text fields or drop-down options provided for partici-
pants to enter their answers. The questions were presented in either Russian or Kazakh, depending on
the user’s choice. Below is an English translation of these questions:

1. Please enter your full name
2. Indicate your gender
3. Indicate your date of birth
4. Enter your qualification
5. Enter your years of work experience in the field of cardiology (e.g., ultrasound, cardiac surgery

(pediatric, adult), cardiodiagnostics, etc.)
6. Enter how many years have passed since you graduated from medical school
7. Enter how many echocardiograms you analyze per week on average (e.g., 20)

Study questionnaire During the study, images were shown in a custom build application (see
Section 5.2) and each numbered image were followed with the following question “Please evaluate
the quality of the image N” in Kazakh or Russian.

Appendix B: Image Samples with Detailed Analysis

CUT images

The image appears realistic. The interatrial septum and interventricular septum are
intact. The valves are intact. There are no wall changes indicative of hypertrophy or
hypotrophy.

The image appears realistic. There is a defect in the interatrial septum. The
interventricular septum is intact. The valves are intact. There are no wall changes
indicative of hypertrophy or hypotrophy. The chambers are not dilated.

(Continued)
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Table A1 (continued)

The image appears unrealistic. The interatrial septum and interventricular septum are
intact. The valves appear fused. There are no wall changes indicative of hypertrophy
or hypotrophy. The chambers are not dilated.

The image appears realistic. There is a defect in the interatrial septum. The
interventricular septum is intact. The valves are intact. There are no wall changes
indicative of hypertrophy or hypotrophy. The right heart chambers are dilated.

The image appears unrealistic. The interatrial septum and interventricular septum are
intact. The heart valves are absent. There are no wall changes indicative of
hypertrophy or hypotrophy. The chambers are dilated.

The image appears unrealistic. The heart is not visualized, making it difficult to
identify cardiac structures.

The image appears unrealistic. The mitral valve is fused. The tricuspid valve is absent.
The interventricular septum appears to be delaminating.

The image appears unrealistic. All cardiac structures are fused.

The image appears realistic. There is a primary defect in the interatrial septum and a
subaortic defect in the perimembranous portion of the interventricular septum. The
valves are intact. There are no wall changes indicative of hypertrophy or hypotrophy.
Both the right and left heart chambers are dilated.

The image appears unrealistic. The mitral valve is fused. The tricuspid valve is absent.
The interventricular septum appears to be delaminating.
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CycleGAN images

The image is realistic. The atrial septum and the ventricular septum are intact.
The valves are intact.

The image is unrealistic. The heart is not visualized, and it is difficult to
identify heart structures.

The image is unrealistic. The heart is not visualized, and it is difficult to
identify heart structures.

The image is unrealistic. The heart is not visualized, and it is difficult to
identify heart structures.

The image is unrealistic. The heart is not visualized, and it is difficult to
identify heart structures.

The image is realistic. The atrial septum and the ventricular septum are intact.
The valves are intact.

The image is realistic. There is a defect in the atrial septum. The ventricular
septum is intact. The valves are intact. There are no changes in the walls in the
form of hypertrophy or hypotrophy. The chambers are not enlarged.

The image is realistic. The atrial septum and the ventricular septum are intact.
The valves are intact.

(Continued)
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Table A2 (continued)

The image is realistic. The atrial septum and the ventricular septum are intact.
The valves are intact.

The image is unrealistic. The heart is not visualized, and it is difficult to
identify heart structures.

Stable Diffusion images

The image appears realistic. The atrial septum and the ventricular septum are
intact. The valves are intact. There are no changes in the walls in the form of
hypertrophy or hypotrophy.

The image appears realistic. The atrial septum and the ventricular septum are
intact. The valves are intact. There are no changes in the walls in the form of
hypertrophy or hypotrophy.

The atrial septum and the ventricular septum are intact. The valves are intact.
There are no changes in the walls in the form of hypertrophy or hypotrophy.

The image appears realistic. The atrial septum and the ventricular septum are
intact. The valves are intact. There are no changes in the walls in the form of
hypertrophy or hypotrophy.

The image appears realistic. The tricuspid valve is poorly visible in the image,
but this is within normal limits. The atrial septum and the ventricular septum
are intact. The valves are intact. There are no changes in the walls in the form
of hypertrophy or hypotrophy.

(Continued)
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Table A3 (continued)

The image appears realistic. Excellent image, everything is clearly visible. The
atrial septum and the ventricular septum are intact. The valves are intact. There
are no changes in the walls in the form of hypertrophy or hypotrophy.

The image appears realistic. The atrial septum and the ventricular septum are
intact. The valves are intact. There are no changes in the walls in the form of
hypertrophy or hypotrophy.

The image appears realistic. The atrial septum and the ventricular septum are
intact. The valves are intact. There are no changes in the walls in the form of
hypertrophy or hypotrophy.

The image appears realistic. Anatomically everything is correct, with
enlargement of the right heart valves, small upper atria, no atrial septal defect,
but there is hypoplasia of the left and right heart chambers.

The image appears realistic. The atrial septum and the ventricular septum are
intact. The valves are intact. There are no changes in the walls in the form of
hypertrophy or hypotrophy.
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