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ABSTRACT

Content delivery networks (CDNs) lead to fast content distribution through content caching at specific CDN servers
near end users. However, existing CDNs based on infrastructure cannot be employed in special cases, such as
military operations. Thus, a temporary CDN without an existing infrastructure is required. To achieve this goal, we
introduce a new CDN for drone-aided ad hoc networks, whereby multiple drones form ad hoc networks and quickly
store specific content according to new caching algorithms. Unlike the typical CDN server, the content-caching
algorithm in the proposed architecture considers the limited storage capacity of the drone. We present three content
distribution algorithms that consider the constraints and mobility of drones. The main contribution of content
caching for drone-aided ad hoc networks is to keep partial segments rather than whole content as well as move the
drone near to area with a high volume of requests. The proposed scheme is evaluated to demonstrate its feasibility in
terms of content acquisition time and utilization in several practical scenarios through simulations. Consequently,
acquisition time in CDN to support drone movement is improved by approximately 50% and 40% rather than one
in the proposed naive greedy approach as a function of content request interval and size, respectively.

KEYWORDS
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1 Introduction

As the demand for content continually increases, CDNs contribute to reducing users’ content
acquisition time by locating the content near them. Typically, the content management subsystem
in a CDN determines where to place the content. Because the content placement algorithm is
vital in determining the acquisition time, it has attracted the interest of many researchers. This
effort has been presented in several comprehensive survey papers that address content placement
schemes in CDN. Specifically, they include general research trends, technical issues, and challenges.
Sahoo et al. [1] presented a method for placing a replica server in a CDN, considering not only
deployment, delivery, and update as cost functions but also network properties represented by
topology, network performance metrics, and available bandwidth. Using well-known theoretical
models for server placement, existing replica server placement algorithms can be classified into the
categories of Quality of Service (QoS), consistency, and energy awareness. Two research groups focused
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on content placement from the aspect of network infrastructure. Jia et al. [2] addressed collaboration
for content delivery and network infrastructure using evolutionary and revolutionary solutions. The
former addresses typical content-delivery solutions, whereas the latter addresses emerging content-
delivery solutions. Salahuddin et al. presented a literature review on cloud-based CDN (CCDN) [3].
In this survey, specific design criteria are derived and discussed for a content placement algorithm in
CCDN. In this survey, access patterns and content popularity are selected for classification.

In addition to these surveys, recent CDN research has focused on two research goals: integration
with edge computing and employing machine learning for content placement. Gao et al. [4] presented
a new infrastructure by building a small-scale cloud infrastructure at the network edge through
centralized and distributed algorithms for the video content placement problem in Multi-access Edge
Computing (MEC). Li et al. presented a specific model for smart cities, content caching, and user-
association policy [5]. They focused on the impact of user mobility in MEC by introducing long-
time scale content caching and short-time scale user association. In MEC, frequent content sharing
incurs operational costs in terms of bandwidth and energy consumption, necessitating a balance of
tradeoffs. Lin et al. [6] proposed content caching and a migration scheme considering user preferences,
thereby developing cost-efficient edge networks. Machine learning-based approaches for CDN have
been steadily proposed. In a comprehensive survey, Nomikos et al. [7] presented reinforcement learning
(RL)-aided mobile edge caching solutions, classifying them in terms of networking architecture and
optimization objectives. As a result, the authors concluded that reinforcement learning-aided caching
schemes cause varying complexities nonetheless outperforming conventional approaches.

A more general discussion of ML in CDN was presented in [8], where the authors review
and discuss state-of-the-art Machine Learning (ML)-based approaches, thereby concluding that
classification/prediction capabilities of ML-based schemes improve network scheduling and parameter
adaptation. In addition to a survey paper, Sadeghi et al. [9] presented a new deep Q-network to handle
large state spaces in a scalable manner. This approach introduces a new Q-function and optimal
caching policy for the parent and leaf nodes. Another RL-based approach was proposed in [10],
the primary technical contribution of which is the development of a new algorithm to determine
the admission of the requested content by extending a large set of features. Performance evaluation
revealed that training in one place can work well for other locations in the same geographic region for
diverse traffic classes.

As described above, many studies have been conducted to reduce content acquisition time by
locating the content near users. However, these approaches can only be implemented over existing
infrastructure; therefore, they cannot be applied to ad hoc networks, where nodes form self-organizing
networks. In contrast to infrastructure-based schemes, these approaches build networks and apply
content caching. Among the diverse types of ad hoc networks, content delivery networks over vehicular
ad hoc networks (VANET) have attracted the interest of several researchers. Research challenges
and open issues were addressed in [11], where the authors proposed named data networking (NDN)
for VANET and content caching in addition to providing an overview of vehicular edge caching
and machine learning-based approaches. Both studies highlight open issues and research challenges.
Accordingly, a specific space-efficient caching algorithm was proposed in [12]. Theoretical and
analytical models were defined and derived to increase cache space utilization. In [13], content delivery
on vehicular clouds (CDVC) was proposed, utilizing the cloud and a named service under a hierarchical
architecture, to enable rapid retrieval of content and request aggregation among vehicles. In these
studies, the operational environments were assumed to cooperate with the existing infrastructure.
Thus, they cannot be applicable to pure ad hoc networks, where no infrastructure is assumed and
prompt network construction is required. Representative examples include content sharing during
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military operations and temporarily crowded areas. In addition, the models and applications for UAV
(Unmanned Aerial Vehicle) caching algorithms in 6G networks were well analyzed in [14].

To satisfy the aforementioned requirements, drone-aided flying ad hoc networks (FANET) were
investigated. This type of network has the benefit of low deployment cost in terms of time and device.
However, to the best of our knowledge, there is only one study [15] that defines drone-aided content
delivery networks, presenting a system model and architecture to request routing and queuing for the
blocked request probabilities of drones. The main goal of this study was to distribute the load and
reduce latency by employing drones as aerial content delivery points. To achieve this, they introduced
different theoretical queuing models for drones and base stations to determine whether loads can
be transferred to the drone. In this way, a drone can cover several base stations for load balancing.
The authors demonstrated that the proposed drone-aided mobile CDN outperforms the original
mobile CDN. However, this architecture has not been fully deployed in drone-aided ad hoc networks.
Therefore, its application is limited to the introduction of drones for content delivery in mobile CDN
networks. This implies that this approach cannot be deployed without infrastructure, as indicated in
previous studies.

To overcome the deployment issues of previous studies, in this paper, we present a new content
delivery network using drones. Unlike the typical servers and vehicles in previous approaches, the
new algorithm for content placement considers the limitations of computing and storage capacity of
drones. A list of acronyms is given in Table 1. The main contributions of this study are as follows:

• Design of system model: To enable the practical deployment of the proposed solution, a system
model was adopted for drone-aided ad hoc networks. This study is the first to describe a system
model and procedure for content placement.

• Content placement: The proposed scheme considers segmented content and automatic content
aging to overcome the storage limitations of each drone using algorithms with features different
from those in previous work.

• Dynamic mobility: Unlike the previous CDN approach, a dynamic topology is built for CDN
by moving some drones toward specific areas. This reduces acquisition time by forming clusters
according to user demand.

• Practical simulation: Practical simulations were conducted for scenarios using Python. A sim-
ulation environment similar to a real monitoring system was built to capture the performance
variations under various network scenarios.

The rest of this paper is organized as follows. At first, the motivation and literature reviews are
explained. Then, our main contributions with three new algorithms are described. The performance
evaluation and analysis are presented. Finally, conclusions and future work are given.

Table 1: A table of acronyms

Abbreviations Definition

CDN Content delivery networks
MEC Multi-access edge computing
RL Reinforcement learning
ML Machine learning
Cloud-based CDN CCDN

(Continued)
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Table 1 (continued)

Abbreviations Definition

Vehicular ad hoc networks VANET
Flying ad hoc networks FANET
Content delivery on vehicular clouds CDVC
Ad hoc on-demand distance vector AODV

2 Methodology for Content Caching in Drone-Aided Ad Hoc Networks

In this section, we present a methodology for content caching in drone-aided ad hoc networks.
First, the fundamental system model and procedures employed in our approach are described with
data structures. Second, details for content caching are presented in pseudo code.

2.1 System Model

The construction of CDNs for drone-aided ad hoc networks entails the following phases: 1) ad
hoc network configuration, 2) content placement, and 3) content replacement. Initially, there are N
drones. Initially, any drone, Di, is located at the center of the ith grid zone and has available capacity
DC

i set to zero. A drone serves and controls all communications from users in a particular region.
This implies that the user can access content through the serving drone. Drone-aided ad hoc networks
consist of N drones employing one of the proactive or reactive routing protocols. A specific node
called a coordinator maintains the drone and content information in a table. SX denotes the size of
content X .

Fig. 1 shows the system model with the physical architecture for logical drone ad hoc networks. As
shown in Fig. 1, a request for content is forwarded to the coordinator through drones. The coordinator
searches the table and replies with drone ID (Identification). If the coordinator fails to search content
requests in a table, it decides the serving drone with the proposed schemes in the following algorithms.
A serving drone requests content to the original CDN server. Thus, the content is then delivered to
the user through serving drones from either drone ad hoc networks or the original CDN server. A
coordinator is accessible from all the drones and collects content information periodically or whenever
a new content update occurs. In this section, we propose three algorithms for content placement in the
coordinator node. A list of symbols for system and algorithm is given in Table 2.

The total delay of content delivery in the proposed scheme consists of delay from the original
CDN server and one from drone-aided ad hoc networks. For the first content request, content should
be delivered and hosted on the specific drone. And then, it is served to a host. So, the total delivery delay
is the sum of transmission time from the original CDN server, drone decision time at the coordinator
node and transmission time between the drone and user. But, as for the second request for the same
hosted content, the delay of content delivery is limited to the same as the delay in transmission time
between drone and users. Thus, the total delay is proportional to the miss rate for all requests that are
not hosted in drone-aided ad hoc networks. On the other hand, total content delivery delay without
the proposed scheme is accumulated by adding each transmission delay from the original CDN server
to a user, repeatedly. Thus, total delay is proportional to the number of requests even though a user
requests the same content.
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Figure 1: Illustration of network architecture

Table 2: A table of symbols

Symbols Brief description

X and X′ An original content X and its partial segment
CT Content management table in coordinator node
Di A drone with ID i
DC

i A capacity of Di

SX Size of content X
TranDelay(i, j) Transmission delay between drone i and j
X .Timer Expiration timer for content X in a drone
FH_Timer User defined expiration timer for a content

2.2 Algorithm 1: Greedy Algorithm

As a simple approach without computational complexity, the greedy algorithm is first applied for
the basic procedures in Algorithm 1. When a coordinator node receives a request for content X , it
searches the content management table and returns the corresponding drone ID. If no content exists
for X , then the coordinator replies with NONE. As shown in Lines (3)–(4), if one of the drones has
content X , content delivery is requested from DNID. Otherwise, the content is transferred from the
original server and recorded in one of the drones.

Algorithm 1: Greedy algorithm for content X
Initialization:

X : Content ID
NID: Drone ID
CT : Content management table
k: Drone serving a requesting user

(Continued)
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Algorithm 1 (continued)
Algorithm:
1: upon Receiving request for X
2: NID ← Search_Table(X)
3: if NID exists in Node_List then
4: Request X to DNID

5: else
6: NID ← k
7: if DC

NID >= SX then
8: Record X in DNID

9: DC
NID ← DC

NID − SX

10: Update CT with NID and X
11: else
12: Call Find_Available_Node (X, NID)
13: end if
14: end if

The procedure that determines the drone to host content X is described in Lines (7)–(12). The first
candidate drone is a serving drone that minimizes content transmission time. However, this depends
on the amount of storage available. If the remaining storage on the serving drone is larger than SX , X
is maintained in the serving node; otherwise, the Find_Available_Node(X , NID) function is executed.
This function searches for drones with an available storage larger than Sx. The search is performed
starting with neighboring drones to distant ones considering transmission time. When no neighboring
drones are found, the search procedure continues for drones within a two-hop neighborhood. If an
available drone is found, X is maintained in that drone.

2.3 Algorithm 2: Timer and Segmented Content

Although Algorithm 1 based on the greedy approach provides basic procedures for CDN drone-
aided ad hoc networks, there are some issues that need to be addressed. First, content replacement in
Algorithm 1 is accomplished only when new content is requested. Second, prolonged content delivery
is inevitable for far nodes. Third, because of the limited storage capacity of a drone, large content
cannot be recorded near the user if other content is already recorded. To address these issues, we
allowed multiple contents in networks, to cover the case that the requested content is located at a
distance. However, because multiple content items are not desirable for drones, each content item is
managed by a dynamic timer set to a value proportional to the request frequency. In addition, we
introduced the concept of segmented content by recording partial content over multiple drones. The
details of the enhanced algorithm are as follows:

In comparing Algorithms 1 and 2, some parts require further explanation. The first part consists of
Lines (5)–(15), which allow duplicate recordings on multiple drones for identical content. In Line (5),
the transmission delay for content X is measured. If this delay is longer than the threshold value, it is
sufficient to allow for multiple records of content X . However, the limited storage requires checking
the available capacity in Line (6). If a drone has sufficient available storage, it is recorded as a serving
drone. Otherwise, partial content is recorded in the drone, as shown in Lines (10)–(14).

However, duplicate content is critical to drones with limited storage; therefore, each piece of
content is dynamically managed by the timer. Unlike Algorithm 1 without a timer, each entry is
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controlled by the timer such that if the timer expires, the content is automatically deleted from the
drone. The timer value is determined by the frequency and source of requests. A higher value is assigned
to nodes with more frequent requests from nearby users.

FH_Timer = Default ×
(

α × Source_Rate × 1
Avg_FS

+

(1 − α) × (1 − Source_Rate) × 1
Avg_FO

)
(1)

As expressed in Eq. (1), the timer value is computed by considering the number of requests received
from the serving users out of the total number of requests, where α is a weighting factor. This is denoted
by Source_Rate. In addition, the average frequency of requests and time between requests, denoted by
Avg_FS and Avg_FO, respectively, are considered by the timer. The former indicates how frequently
users request content, whereas the latter indicates the interval within which to expect other requests.
A weight factor α is used to distinguish requests from either its covering users or users covered by
other drones. Through this factor, we can determine how much weight is given to the requests from its
covering users which leads to reduce transmission delay.

Another outstanding feature is shown in Lines (16)–(24): When the available storage of drones is
insufficient to record content, our algorithm finds the next node searching from neighboring nodes to
distant nodes, which causes a long delivery time, particularly when networks become congested. This
problem can be overcome by recording the content into available segments to shorten the delivery
time. The number of segments is determined based on the storage availability on the drone. This is
represented by Lines (17)–(32). After recording the feasible segments, neighboring nodes that can
accommodate the remaining segments are required. This procedure continues until all the segments
are recorded. If there is no available storage, the search procedure for the entire content begins, as
shown in Line (28). This procedure is the same; however, the parameters for the node searching are
different.

Algorithm 2: Timer and segmented content X
Initialization:

X : Content ID
NID: Drone ID
CT : Content management table.
k: Drone ID to serve the requesting user
Timer: Expiration time for the content
X′: Partial portion of X

Algorithm:
1: upon Receiving request for X
2: NID ← Search_Table (X)
3: if NID exists in Node_List then
4: Request X to DNID

5: if Tran_Delay(NID, k) >= Threshold then
6: if DC

k >= SX then
7: Record X in Dk

8: X .Timer ← FH_Timer
9: Update CT with k and X

(Continued)
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Algorithm 2 (continued)
10: else
11: Record X’ in Dk

12: SX ′ ← SX− DC
k

13: Update CT with k and X’
14: Call Find_Available_Node (X − X ′, k)
15: end if
16: end if
17: else
18: NID ← k
19: if DC

NID >= SX then
20: Record X in DNID

21: DC
NID ← DC

NID − SX

22: Update CT with NID and X
23: else
24: if DC

NID! = 0 then
25: SX ′ ← SX− DC

NID

26: Record X′ in DNID

27: Update CT with NID and X ′

28: Call Find_Available_Node (X − X ′, NID)
29: else
30: Call Find_Available_Node (X, NID)
31: end if
32: end if
33: end if
34:
35: Periodically Call Content_Relocation (X)

Fig. 2 illustrates the different features of the content management table. First, a timer is added
to the case of Algorithm 2. Moreover, in the case of content ID “1”, one entry exists instead of the
three entries in Algorithm 2 for segmentation. Furthermore, for partial segments, the function for the
search operation Search_Table(X) is different from that in Algorithm 1. Multiple drone IDs must be
returned as content. Additionally, if multiple contents exist, a drone ID with a longer timer value is
selected, and the corresponding ID is returned for content delivery.

Figure 2: Example of CT

The last part in Algorithm 2 is for function (Content_Relocation(X)) in Line (35). This is
periodically called to decide which node is the best one to reduce content delivery time. Based on
this decision, content is relocated to the corresponding node. The first step is to measure content



CMC, 2024, vol.81, no.3 4735

delivery time for content X for current user requests. Thus, content delivery time from drone 0 to
drone n is measured. However, since the content is now segmented, this function is to relocate the
largest segmented block rather than the whole content. This can be represented where content X is
assumed to be drone 0. In addition, this computation will continue until drone ID reaches NUMD.

After computing the Delay[i] with above code in Fig. 3, the best candidate drone e is chosen by
Eq. (2) for content X by search total delay from all drones. In addition, if DC

e is not larger than SX ,
content X is moved to drone c. Otherwise, content X is kept on the current drone.

e ← arg min
i

(Delay[i]) (2)

Figure 3: Code for measure delay

2.4 Algorithm 3: Drone Movement

A previously segmented record is a good approach for addressing the limited storage capacity of
a drone. However, this also results in a long delivery time because some segments can be recorded on
distant nodes. To reduce delivery time and locate content near a user, the most efficient scheme is to
move drones to a nearby area, utilizing the mobility of the drone. However, the movement of the drones
leads to holes or voids; therefore, additional drones must be deployed. In this study, two drones were
deployed per grid area, designating one drone as the primary and the other as the secondary. If the
primary drone moves to other areas, the secondary drone covers the corresponding area. Algorithm 3
outlines the detailed procedures used to determine the drone movement.

Algorithm 3: Drone movement for content X
Initialization:

DCX ← Delivery time for content X
NID ← Drone ID with new content X
NUM_D ← Total number of drones
Temp ← 0
TempID ← NID

1: upon Updating CT with X at drone NID
2: call Drone_Movement (X, NID)
3:

Function: Drone_Movement (X, NID)
4: for i ← 0, i < NUM_D do
5: if X is in Di then
6: DCX ← DCX + Tran_Delay(NID, i)
7: if Tran_Delay(NID, i) >= Temp then
8: Temp ← Tran_Delay(NID, i)
9: TempID ← i

10: end if
11: end if

(Continued)
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Algorithm 3 (continued)
12: end for
13: if DCX >= Threshold then
14: Move DTempID to near DNID

15: Secondary node take over DTempID

16: end if

Whenever content X is newly updated in a CT on the drone with NID, the demand for drone
movement is checked by calling a function that determines whether any drone containing X should
move to a nearby drone with NID. Instead of the simultaneous movements of multiple drones, using
only one drone does not incur computational complexity. To accomplish this, whenever content is
recorded in CT, the transmission delay from the recent DNID to any drone with content X is measured,
as shown in Lines (4)–(6), thereby obtaining the total cost of content transmission for content X . From
Lines (7)–(9), the farthest node with content X is determined by comparing the transmission delay with
the existing value. As a result, the total cost and drone ID with the longest transmission are computed
and identified.

If the sum of the transmission delays for content X is greater than the predetermined threshold
value, as indicated in Line (13), the farthest node is moved toward the drone with NID to reduce the
transmission delay. A coordinate node requests a movement from the corresponding node by sending
feasible positional information. Despite drone movement, if the transmission delay still exceeds the
predetermined value, another drone moves toward the drone with NID. This procedure continues until
the transmission delay is lower than the threshold.

3 Performance Evaluation

In this section, we present the comparative performance evaluation results obtained through
simulations. We employed the network simulator NS3 (Network Simulator 3) to build drone-aided
ad hoc networks and control the traffic model. Most of the parameters for the simulation followed
the acceptable scenarios where the default value is determined by the ad hoc on-demand distance
vector (AODV) protocol. For the comparison metric, the content delivery time and drone capacity
utilization were measured under several scenarios, including user request frequency and content size.
For the evaluation, we selected a user and content randomly. It means any specific user was selected for
one of the contents. Without regard to this request, other randomly selected users can request other
content. So, multiple requests by users for different contents are assumed in the simulation. We ran the
simulation for 3600 s. The simulation was conducted 100 times considering a 95% confidence interval.
Because there is no existing scheme for CDN in drone-aided ad networks, performance evaluation
was conducted using the three algorithms presented in this study. Details of simulation paramters are
given in Table 3.

Table 3: Simulation parameters

Parameter Value

Routing protocol in drone networks AODV
Transmission range of drone 200 m
MAC protocol IEEE 802.11b

(Continued)
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Table 3 (continued)

Parameter Value

Number of grid zones 10
Drone storage capacity 32 G
Weight value (α) in Algorithm 1 0.7
Default in Algorithm 1 2 s

3.1 User Request Interval

The first simulation scenario evaluated performance as a function of user request frequency with
a fixed drone storage capacity and content size varying between 1 and 4 GBytes. We assumed that
a randomly selected user could request content of various sizes from a serving drone. The average
delivery delay and capacity utilization were then measured. Figs. 4 and 5 present the comparative
evaluation results. In both figures, Alg1 represents Algorithm 1 and Alg2 and Alg3 represent
Algorithms 2 and 3, respectively.

Figure 4: Content acquisition time as a function of content request interval

As illustrated in Fig. 4, Algorithm 1 has the longest delivery time for content. Usually, because
the user request frequency is low, a longer content acquisition time is required. The long delivery
time is caused by frequent caching misses. In addition, because AODV takes the shortest path for
delivery, frequent content requests make this path congested. Algorithms 2 and 3 exhibit shorter
content acquisition times than Algorithm 1. Multiple contents reduce caching misses near the drone.
Consequently, a low caching miss leads to a short delivery time by providing content that is as close
to the user as possible. Because multiple content placement is dynamically determined by the content
delivery time, this is the main factor that reduces the acquisition time. However, there is the issue of
capacity utilization in Algorithms 2 and 3 because multiple contents may be maintained on the drones.
This implies that the content can be placed at a far node when running out of storage. Despite this
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issue, Algorithm 3 has the best content acquisition time because of drone mobility. As the number of
user requests increases, more drones move to areas near the user, thereby providing a huge storage
capacity for frequent content requests, which drastically reduces content acquisition time.

Figure 5: Capacity utilization as a function of content request interval

As compared to Algorithm 1, there are outstanding features in Algorithm 2. The first is for a
dynamic timer for content that is controlled by how many and how frequently the user requests.
So, the user request interval becomes longer and longer, it is more likely to accommodate new content.
Similarly, multiple content with longer timer can be located near the user, content acquisition time
is reduced as shown in Fig. 4. The content relocation triggered by function Content_Relocation(X) is
affected by the current available storage. If the storage is occupied by other contents, this function
does not contribute to reducing content acquisition time. In other words, if the user request interval
is short, content relocation is rarely conducted. On the other hand, drone movement is not impacted
by the available storage. As a result, it is noticeable that outstanding features in Algorithm 2 do not
ensure short content acquisition time due to limited storage on a drone. Consequently, since a dynamic
timer leads to vacant storage on a drone, it is a very crucial part of Algorithm 2.

The capacity utilization in Fig. 5 indicates the amount of storage required by content near a user.
This is computed by dividing the size of the entire content by the size of the requested content on the
drone. Therefore, a higher value indicates that more content is placed on the serving drone for a user.
Compared with Algorithm 1, Algorithms 2 and 3 show higher capacity utilization because the concept
of segmented content is introduced. In Algorithm 1, if the available capacity cannot accommodate
new content, it remains unoccupied until smaller content that can be accommodated by the remaining
size is requested. Based on this operation, the capacity utilization in Algorithm 1 does not match
those of Algorithms 2 and 3, which address this issue by using segmented content on multiple nodes.
Segmented content leads to higher capacity utilization by accommodating partial content, even though
the remaining storage is not greater than the content size. Specifically, drone movement contributes
to an increase in capacity utilization by forming content clusters. The more drones are moved to a
specific area, the higher the capacity utilization achieved. Generally, capacity utilization increases as
the number of user requests increases, except in Algorithm 1.
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3.2 Content Size

In this evaluation, we measured performance for a fixed user with varying content sizes requested
at intervals of 1 s. For the simulations, the content size was set to a randomly chosen value between
one and the maximum size indicated by the x-axis value. For example, 8 GBytes along the x-axis
in 6 indicates that the content size ranges from 1 to 8 GBytes. Fig. 6 shows the content acquisition
time for content size. As the content size increases, the content acquisition time also increases for all
algorithms. Content acquisition time is affected the most in Algorithm 1 because a large amount of
content can be placed at a distant node with large available storage. Based on these features, a longer
acquisition time is obtained as content size increases. The impact of large-sized content is reduced in
Algorithms 2 and 3 by placing partially segmented content on the drone. However, multiple contents
on drones also cause a long acquisition time, reducing the differences among the algorithms. Among
the proposed schemes, Algorithm 3 has the shortest acquisition time because of drone movements.
Consequently, several drones around a user provide a large content capacity, thereby increasing the
differences between algorithms in the case of large content measurements.

GBytes

Figure 6: Content acquisition time as a function of content size

Similar to the analysis in Fig. 6, Fig. 7 shows the content utilization of the three algorithms. As
mentioned above, the value in Algorithm 3 is the highest and is least affected by content size. In
contrast, the lowest value is observed in Algorithm 1 with content size of 8 GBytes. In this case, content
is rarely placed near a user because other content is likely to be placed according to the order of user
request. However, the accuracy of Algorithm 2 is lower than that of Algorithm 3 and higher than
that of Algorithm 1. First, multiple contents lead to higher values than those in Algorithm 1 in the
networks. However, this content can be removed if the timer expires. Therefore, a new user request
does not arrive before the timer expires, and the content must be delivered from the other node. This
problem is addressed by the drone movement in Algorithm 3.
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GBytes

Figure 7: Capacity utilization as a function of content size

3.3 Drone Storage Capacity

Unlike previous simulation scenarios on content size, drone storage capacity also has an impact.
For this simulation, the content size was set between 1 and 8 GBytes, and the user frequency interval
to 1 s. The drone storage capacity ranged from 16 to 64 GBytes. As shown in Fig. 8, all algorithms
exhibit the shortest content acquisition time when a large storage capacity is assigned to the drone. A
large difference is observed in Algorithm 1 for a small drone storage capacity. However, the difference
between the algorithms decreases for a large capacity, as most of the content is placed near a serving
drone, as shown in Fig. 9. However, the general patterns for content acquisition time and capacity
utilization are the same as those in the previous case.

Figure 8: Content acquisition time as a function of drone storage capacity
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Figure 9: Capacity utilization as a function of drone storage capacity

Furthermore, Algorithm 3 does not differ by much. This is because drone movement has the
same impact as a large drone capacity. As more drones move, the content acquisition time decreases
and capacity utilization increases. This effect is critical in the case of small drone storage capacity.
Capacity utilization is improved as the drone storage capacity increases because of the partially
segmented content in both Algorithms 2 and 3. Furthermore, the improvement in capacity utilization
in Algorithm 1 is drastic as the requested content is placed on the serving drone as much as possible.
This implies that Algorithm 1 is feasible when a drone has sufficient storage capacity without
complicated operations.

4 Conclusions

In this paper, we presented three new content caching algorithms for drone-aided ad hoc networks
where infrastructure is not available for CDN. These three algorithms were designed and developed,
primarily considering the constraints of the drone and its mobility. Simulation results revealed that the
proposed schemes can be implemented in drone-aided ad hoc networks.

In future work, we will design and conduct several simulation cases with practical scenarios, such
as military operations. In addition, the current algorithm will be extended to include the next content
prediction using machine learning algorithms. In addition, there are some issues with the optimization
to minimize the acquisition time for several functions such as Content_Relocation(X) because the
current algorithm is designed by respective content not the whole one.
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