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ABSTRACT

In recent years, task offloading and its scheduling optimization have emerged as widely discussed and signif-
icant topics. The multi-objective optimization problems inherent in this domain, particularly those related to
resource allocation, have been extensively investigated. However, existing studies predominantly focus on matching
suitable computational resources for task offloading requests, often overlooking the optimization of the task
data transmission process. This inefficiency in data transmission leads to delays in the arrival of task data at
computational nodes within the edge network, resulting in increased service times due to elevated network
transmission latencies and idle computational resources. To address this gap, we propose an Asynchronous Data
Transmission Policy (ADTP) for optimizing data transmission for task offloading in edge-computing enabled
ultra-dense IoT. ADTP dynamically generates data transmission scheduling strategies by jointly considering task
offloading decisions and the fluctuating operational states of edge computing-enabled IoT networks. In contrast
to existing methods, the Deep Deterministic Policy Gradient (DDPG) based task data transmission scheduling
module works asynchronously with the Deep Q-Network (DQN) based Virtual Machine (VM) selection module
in ADTP. This significantly reduces the computational space required for the scheduling algorithm. The continuous
dynamic adjustment of data transmission bandwidth ensures timely delivery of task data and optimal utilization
of network bandwidth resources. This reduces the task completion time and minimizes the failure rate caused by
timeouts. Moreover, the VM selection module only performs the next inference step when a new task arrives or
when a task finishes its computation. As a result, the wastage of computational resources is further reduced. The
simulation results indicate that the proposed ADTP reduced average data transmission delay and service time by
7.11% and 8.09%, respectively. Furthermore, the task failure rate due to network congestion decreased by 68.73%.
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1 Introduction

The rapid development of the Internet of Things (IoT) and the continuous complexity of applica-
tion scenarios have indeed led to a significant increase in the computational load on terminal devices
(TDs) [1,2]. This led to the issue of slow response times for application services becoming particularly
pronounced due to the insufficient computational capacity of TDs [3]. Task offloading technology
allows TDs to submit computational tasks to edge-computing networks or cloud platforms, reducing
the computational load on the TDs [4,5].

The most commonly applied task offloading paradigm involves TDs offloading computation-
intensive tasks to cloud platforms or edge-computing networks [6]. TDs submit task offloading
requests to nearby computing networks via wireless access networks and upload the data associated
with the computational tasks [7]. As the number of terminal devices continues to rise, numerous
computation-intensive jobs have begun to compete for resources in the edge network [8]. This
trend has placed immense pressure on the network services at the wireless access layer, leading
to network congestion [9]. Compared to cloud computing, edge-computing systems have relatively
limited bandwidth resources. The coexistence of numerous devices poses challenges for bandwidth
allocation. Additionally, reducing data processing latency is also a pressing issue that needs to be
addressed [10].

Indeed, both computational and transmission delays play a critical role in influencing the overall
efficacy of task offloading [11]. However, existing research has focused extensively on optimizing
computational resource allocation, while considerations for transmission optimization remain rela-
tively limited. Concurrent data uploads can lead to severe wireless network congestion, particularly in
densely populated networks [12]. Therefore, the completion time of tasks increases due to the failure of
task data to arrive at the corresponding virtual machine (VM) promptly. Thus, it is essential to optimize
the data transmission process for task scheduling based on effective network bandwidth allocation
strategies. However, such problems have been proven NP-hard due to their complex optimization
requirements and dynamic environments [13]. This means that it is challenging to find an algorithm
that can guarantee an optimal solution within polynomial time.

The common bandwidth allocation mechanism involves assigning different priorities to the data
streams of tasks [14,15]. However, this can result in low-priority data experiencing significant trans-
mission delays [16]. Some studies [17,18] utilize M/M/1 queues to model task processing. However, this
requires ensuring that the computing nodes have sufficient resources to handle incoming data at all
times. This is challenging to guarantee in edge-computing networks. Additionally, heuristic bandwidth
allocation methods, while providing near-optimal solutions, often lack scalability.

AI-based network resource scheduling methods can effectively handle more complex transmission
demands and environmental constraints, thereby optimizing overall network performance [19,20].
However, existing research in this area primarily focuses on optimizing IoT data transmission and
abstract data communication scheduling. Some AI-based resource scheduling methods aimed at task
offloading take into account the varying transmission demands of task data and the constraints
of available bandwidth. Nonetheless, they all lack efficient mechanisms for scheduling the network
transmission of task data to align with the dynamic allocation of VM resources. To address the
aforementioned issues, we propose an asynchronous data transmission policy for task offloading in
edge-computing-enabled IoT. This policy takes into full account the delay associated with the arrival
of task data at the target VM, thereby reducing resource wastage by dynamically allocating the limited
available network bandwidth. Specifically, our main contributions are listed as follows:
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• Deconstructed the factors influencing task offloading efficiency and focused on the optimiza-
tion of task data transmission in high-density task offloading scenarios. Subsequently, this NP-
hard mixed integer nonlinear programming (MINLP) optimization problem was transformed
into a Markov decision process (MDP) that can be solved using reinforcement learning
techniques. Furthermore, the discrete nature of VM allocation was differentiated from the
continuous characteristics of network bandwidth allocation to adapt to various reinforcement
learning neural networks.

• Proposed an Asynchronous Data Transmission Policy (ADTP) that jointly considers the
matching of tasks with computational resources and network resource constraints to dynam-
ically allocate network bandwidth. Additionally, ADTP incorporates Quality of Experience
(QoE) feedback to refine the bandwidth allocation strategy. Consequently, task data can be
uploaded promptly to the corresponding VMs for processing, while simultaneously reducing
the computational cost of the scheduling algorithm.

• Established a simulation environment and conducted extensive comparative experiments. The
simulation results demonstrate that the proposed Asynchronous Data Transmission Policy
(ADTP) utilizes limited network resources more effectively. Both the success rate of task
execution and response time were enhanced due to the timely upload of task data to the
corresponding virtual computing nodes.

The rest of this paper is organized as follows. Section 2 explained the relevant prior works.
Section 3 describes the system model and formulates the optimization problem of task data trans-
mission. Section 4 presents the proposed data transmission policy for IoT task offloading. The per-
formance evaluation of the proposed policy is presented in Section 5. Finally, we provide conclusions
and future research works in Section 6.

2 Related Work

Data transmission optimization based on network resource allocation has been investigated across
various levels in tandem with the advancement of IoT and task offloading technologies. However, the
majority of existing research fails to adequately address the optimization of data transmission within
the context of task offloading scenarios.

In [21], channel resources are allocated based on the size of the task data to avoid transmission
conflicts among IoT nodes. However, data size alone does not fully represent the multidimensional
requirements for data transmission. In [22], the proposed transmission optimization method prioritizes
data based on task deadlines; however, this prioritized transmission approach does not support parallel
data transfers. In [23], a weighted fair queuing (WFQ) mechanism with delay constraints is employed
to reduce overall latency. Nonetheless, fairness is not the requisite mode for task offloading data
transmission. If resources for either communication or computation are insufficient, tasks must wait
in the queue. Each upstream queue can only process upload tasks sequentially.

Compared to the aforementioned simple data transmission optimization schemes, heuristic and
meta-heuristic algorithms can handle relatively complex data transmission constraints. In [24], an
Index-Based Transmission Scheduling (IBTS) approach is employed to optimize the transmission of
task data after offloading decisions. However, this scheme only considers data size and transmission
rate, neglecting the timing constraints for task data arrival at the server. In [25], the proposed Grey
Wolf Optimization (GWO) meta-heuristic method is utilized to optimize data transmission and reduce
wireless communication energy consumption for terminal devices. Nonetheless, this method suffers
from slow convergence and a tendency to get trapped in local optima.
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AI-based data transmission schemes can manage a vast array of environmental parameters and
task constraints, demonstrating robust capabilities for optimizing task data transmission in complex
scenarios. In [26], an improved K-means algorithm is proposed for the automatic clustering of NB-IoT
terminals, followed by the generation of a prioritized transmission sequence for task data. However,
this method overlooks the impact of the delay in task data arrival at the edge server on task completion
time. In [27], the proposed approach utilizes deep neural networks (DNN) to learn data transmission
characteristics for each time slot and dynamically adjust the allocation of wireless communication
resources. However, this method primarily focuses on optimizing network throughput, latency, and
the conflict rate of data transmissions.

The advancement of deep reinforcement learning (DRL) techniques offers improved solutions for
optimizing task data transmission due to their ability to automatically adapt to dynamic changes in
the network environment. In [28], multiple Deep Q-Learning Networks (DQN) are employed for the
dynamic scheduling of network transmission states and data transmission requirements, optimizing
channel allocation and throughput. Similarly, DDQN has also been applied to dynamically allocate
time slot resources across multiple channels [29]. However, these approaches primarily optimize at the
packet transmission level and lack awareness of the overall structure of task data.

To address such independent optimization challenges, hybrid solutions that integrate multiple
techniques have been proposed. However, existing methods struggle to flexibly coordinate the discrete
nature of the VM selection problem with the continuous nature of the bandwidth allocation issue
[30–32]. Moreover, the expansion of network scale and the proliferation of numerous application
tasks impose constraints on reinforcement learning agents in tackling high-dimensional problems, as
this may give rise to the curse of dimensionality. In [33], a hierarchical DDPG (HDDPG) framework
was proposed, which first optimizes the data communication process and subsequently addresses the
computational resource allocation problem. However, the use of two synchronously operating DDPG
neural networks introduces relatively high computational costs.

To address these challenges, we propose an Asynchronous Data Transmission Policy (ADTP) for
task offloading in edge-computing enabled ultra-dense IoT environment.

3 System Model and Problem Formulation

In this section, an edge-computing enabled IoT task-offloading network architecture is presented.
Additionally, we describe the system model including the task computing model and the data com-
munication model for IoT task offloading. Subsequently, the problem of minimizing task completion
time is formulated as a Markov Decision Process (MDP).

We consider a typical edge-computing enabled IoT network architecture as shown in Fig. 1.
Similar scenario designs are widely adopted [34]. There is a set of TDs communicating with the
edge-computing network via bandwidth-limited wireless connections. The communication between
the edge-computing network and the cloud platform utilizes Wide Area Network (WAN) connections.
Within the edge-computing network, multiple data centers are interconnected through high-speed
networks. The orchestrator in the edge-computing network is responsible for allocating virtual
machine resources and wireless bandwidth to tasks from TDs based on task offloading requests
and the operational state of the network. Consequently, the completion time of a task is equal to
the transmission time of the task data plus the execution time of the task on the virtual machine.
Each Access Point (AP) has the same total available bandwidth. The ADTP dynamically adjusts the
bandwidth allocated for the transmission of each task data in each time slot. Fig. 1 illustrates the
system architecture of task offloading in Multi-access Edge Computing (MEC).
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Figure 1: The system architecture of task offloading in MEC

To describe the problem under investigation, let the system’s operating time be T with time slots t ∈
{1, 2, . . . , T}, where each time slot has a duration of �t. The total number of tasks and virtual machines
are denoted as I ∈ Z

+ and J ∈ Z
+, respectively. Additionally, each task waiting to be offloaded

has multiple attributes defined as τi = (Ci, Di, Si), where Ci represents the computational resources
required by the task (in MIPS), Di denotes the size of the task data (in bytes), and Si indicates the time
sensitivity of the task. Furthermore, each computing node is defined as vj = (

Rj, Sj, Pj, Cutil,j

)
, where

Rj represents the computational resources (in MIPS), Sj denotes the data storage resources (in bytes),
Pj indicates the type of platform where the VM is located (1 for edge, 2 for cloud), and Cutil,j represents
the resource utilization. Thus, the offloading decision variable dij indicates whether the task is assigned
to a virtual machine j, this is a common definition in this type of research [20,22]:

dij =
{

1, if τi is assigned to vj

0, otherwise (1)

Accepted offloaded tasks will be allocated computational resources Rij (t) and network bandwidth
resources Bij (t). However, not all tasks can be completed within the specified time due to various
uncertainties. Therefore, we define the failure state of a task as:

Fi (t) =
{

1, if task i fails
0, otherwise (2)

Consequently, the average task failure rate can be expressed as:

F (t) = 1
N

N∑
i=1

Fi (t) (3)

In this case, the remote server operates in timesharing mode, which means multiple tasks can be
executed in parallel on the server providing computational resources. The computational delay of the
offloaded tasks can be expressed by:
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Dc (i, j) = Ci

Rj ·
(
1 − Cutil,j

) (4)

where Ci represents the computational resource demand of the task, and Cutil,j denotes the resource
utilization for VMj. In addition to the computation time associated with tasks, another significant
delay that contributes to the overall completion time is the transmission delay of task data. In
the context of this study, multiple TDs are competing for the limited bandwidth of the wireless
access network to upload their data to the edge-computing infrastructure. However, the transmission
rate for each data transfer is subject to temporal fluctuations due to device mobility and intricate
contention conflicts. Consequently, it is imperative to dynamically optimize the scheduling of available
communication resources for each task’s data within each time slot. Fig. 2 illustrates the fundamental
principle of bandwidth adjustment for multiple data streams across time slots.

Task data (i)

Task data (i + 1)

Task data (i + n)

Time slot

(t)
Time slot 

(t+1)

Total 

available 

bandwidth

Time slot 

(t+2)
Time slot 

(t+x)

Figure 2: The fundamental principle of bandwidth adjustment for multiple data streams

Here, the downstream network transmission delay is neglected due to the size of the task
computation results being significantly smaller than the size of the uploaded data, and the downstream
bandwidth typically being larger than the upstream bandwidth [35–37]. The delay associated with the
data transmission over the network can be denoted by:

Dt (i) = Di

Bij (t)
+ Dwan (i) (5)

where Dwan (i) = 0 when the task is assigned to the edge server. For cloud computing, where data is
transmitted over the Wide Area Network (WAN), the delay is modeled using an M/M/1 queue system
due to the more complex nature of the transmission [38]. Thus, service delays can be expressed as:

Ds (i, j) = Dc (i, j) + Dt (i) (6)

In high-density IoT networks, the substantial volume of upload data streams from terminal
devices (TDs) competes for the limited available bandwidth of the wireless access network. The data
associated with tasks should be transmitted to the matched computing nodes at appropriate times.
Therefore, the optimization objective for bandwidth resource allocation is to minimize the service
time of tasks while improving resource utilization: min

∑N

i=1 Ds (i, j), while also enhancing the Quality
of Experience (QoE): max U

(
Rj, QoE (t)

)
. Consequently, the objective function can be expressed as:
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minO = w1

N∑
i=1

Ds (i, j) + w2

(
1 − 1

M

M∑
j=1

Uj

)
− w3QoE (t) − w4

N∑
i=1

Si

s.t. C1:
N∑

i=1

dijCi ≤ Rj ·
(
1 − Cutil,j

)∀j

C2: Cutil,j < 1∀j

C3:
∑M

j=1 dij = 1∀i

(7)

where w1, w2, w3, w4 are weighting coefficients and w1 + w2 + w3 + w4 = 1. The allocation of weights
should be optimized according to the requirements of different application scenarios. Constraints C1
and C2 denote that the scheduler will not oversubscribe resources to tasks waiting for offloading.
Constraints C3 specifies that each task can only be offloaded to a single computing node. For clarity,
the main notations are shown in Table 1. It is worth mentioning that the model can be enhanced by
adding more parameters and constraints for different application contexts.

Table 1: List of main notations

Symbol Definition Symbol Definition

I Total number of tasks τi The i-th task
J Total number of VMs t Time slot
Ci Computing resources required vj The j-th VM
Di Size of the task data Si Time sensitivity of the task i
Rj Computing resources of the VM Sj Storage space for VM j
Pj The type of platform Cutil,j Resource utilization of the VM
dij Task offloading decision Fi Failed task
Rij Allocated computing resources Bij Allocated network resources
Dc Task calculation delay Dt Data transmission delay
Dwan Data transmission delay on WAN QoE Quality of experience
st, s′

t State space at, a′
t Action space

r, r′ Reward function w Weight coefficient of the objective

4 Proposed Asynchronous Data Transmission Policy (ADTP) Based on Reinforcement Learning

In this section, we address the optimization problem presented in Section 3. An asynchronous
resource allocation-based data transmission optimization strategy is proposed, which aims to minimize
the average completion time of tasks. This optimization method first utilizes Deep Q-Network (DQN)
to determine the virtual machine to which task offloading requests are assigned. Subsequently, it
employs a Deep Deterministic Policy Gradient (DDPG) approach to dynamically generate bandwidth
allocation decisions for task data transmission. Fig. 3 illustrates the proposed Asynchronous Data
Transmission Protocol (ADTP) logical framework. Furthermore, the VM allocation decisions are
event-driven and are not repeated in every time slot to reduce computational load and energy
consumption. In contrast, adjustments to wireless communication resources occur in every time slot
due to the mobility of the TD and the rapid changes in network conditions.
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Figure 3: The architecture of CRADTP

For VM allocation, we employ the widely recognized DQN-based approach to facilitate offload-
ing decisions [39–41]. The inputs to the DQN encompass the operational state of the edge network, the
resource requirements of the tasks, and the failure rates associated with task offloading. The output
generated by the decision-making algorithm is an allocation vector that delineates the offloading of
tasks to designated VMs. The reward for the algorithm is derived from the weighted sum of the service
time and user satisfaction of the offloaded tasks, thereby incentivizing optimal performance in task
allocation. The state-action space and reward definitions for the reinforcement learning algorithm are
as follows:

State Space: Let S represents the system state space. The current system state space s ∈ S is
expressed as:

st = {
di

j (t) , Rj (t) , F (t) , Ds (i, j) , Cutili,j (t) , Ci, Di

}
(8)

where di
j (t) denotes the distribution of the task on the virtual machine based on ongoing offloading

decisions. Rj (t) is the available MIPS on the server j. F (t) is the average task failure rate. Ds (i, j) is
the service time. Cutili,j (t) denotes the computational resource utilization of VMj. Ci is the Computing
resources required for the task i. Di is the data size of task i.

Action Space: The action space for the DQN algorithm will be the selection of a VM for a
particular task. Thus, the action a ∈ A can be given by:

at = {
dij

}
(9)

where at is the action to allocate task i to VMj.

Reward: The reward function will be designed to encourage the allocation of tasks to the servers
that can minimize the expected completion time.

r (s, a) = − (β1Ds (i, j) + β2vQoE (t)) (10)

where β1 and β2 stand for the weight parameters, which indicate the preferences for service time and
satisfaction. Here, β1, β2 ∈ [0, 1] and β1 + β2 = 1.

Overall, the DQN iteratively learns and generates offloading decisions for the matching of tasks
and VMs. The pseudocode for the algorithm is presented in Algorithm 1.
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Algorithm 1: DQN-based VM allocation for task offloading
Input: Computational resource network state and resource requirements for task offloading:{
di

j (t) , Rj (t) , F (t) , Ds (i, j) , Cutili,j (t) , Ci, Di

}
Output: Matching decisions between the tasks requesting offloading and the virtual machines pro-
viding computational resources:

{
dij

}
1 Initialize DQN with parameters θ randomly and empty replay memory
2 for each time step t do
3 Observe current state s
4 if a new request arrives or task computation is completed then
5 for each task-offloading request τi do
6 Choose an action a based on the Q-value
7 Output decision
8 Observe the reward and next state
9 Store transition in replay memory
10 if length(replay_memory) > batch_size then
11 Sample a batch of data from memory
12 Train the Q-network and update
13 end if
14 end for
15 end if
16 end for

As illustrated in Algorithm 1, the neural network and replay memory are initialized in the first
line. The second line initiates a loop to iteratively execute the core functionalities of the algorithm at
each time step. Lines 3 and 4 evaluate the necessity for offloading decisions and algorithm updates
based on the current state of the edge network. The decision-making component remains inactive when
no new offloading requests are received and no task computations are completed, thereby minimizing
computational resource usage and energy consumption. Lines 6 to 9 execute the generation and output
of resource-matching decisions based on reinforcement learning. Finally, Lines 10 to 12 are devoted to
the periodic updating of the neural network to enhance its adaptability to scheduling optimizations.
The core unit of the algorithm operates based on DQN, allocating VM resources for incoming task
offloading requests in each time slot. Therefore, the algorithm has a time complexity of O(N).

In the context of the scenarios addressed in this study, we adopt the widely recognized DDPG-
based [42–44] approach to dynamically allocate bandwidth in each time slot, capitalizing on its self-
learning capabilities and proficiency in generating continuous values. The state-action space and
reward definitions for the reinforcement learning algorithm are as follows:

State Space: The state space for the DDPG algorithm will represent the current state of the
network regarding bandwidth allocation, which includes:

s
′
t = {

at, Rj (t) , F (t) , Ds (i, j)
}

(11)

where at is the decision made by the DQN for offloading tasks to the VM. Rj (t) denotes the
computational resources of VMj. F (t) represents the average task failure rate. Ds (i, j) is the service
time of the task τi.

Action Space: The action space for the DDPG algorithm will be the bandwidth allocation for each
task in each time slot.
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a
′
t = {

Bij (t)
}

(12)

where a′
t is the bandwidth allocated to task τi in time slot t.

Reward: The reward function for the DDPG algorithm will encourage efficient bandwidth
allocation that minimizes the total transmission time for all tasks.

r′ (s′, a′) = − (δ1Ds (i, j) + δ2vQoE (t) + δ3Cnet (t)) (13)

where δ1, δ2 and δ3 represent the weight parameters, which specify the preferences for service time,
satisfaction and network utilization. Here, δ1, δ2, δ3 ∈ [0, 1] and δ1 + δ2 + δ3 = 1.

The pseudocode for the algorithm is presented in Algorithm 2.

Algorithm 2 : DDPG-based bandwidth allocation
Input: Allocation decisions for computing nodes, the operational condition of the wireless access
network, and the actual completion efficiency of the tasks:

{
at, Rj (t) , F (t) , Ds (i, j)

}
Output: The available bandwidth allocated for the upload data of each approved offloaded task in
each time slot:

{
Bij (t)

}
1 Initialize actor_network and critic_network with parameters θμ and θQ

2 Copy parameters of the main network to target network θμ′ and θQ′

3 Iniyislize replay_memory
4 Set learning_rates, discount_factor, soft_update_factor, batch_size, update_ frequency
5 for each episode do
6 for each time step do
7 for each task do
8 Make an action a′ (t) = θμ (s′ (t)) with the parameter θμ

9 Output the bandwidth allocation decision a′ (t)
10 Obtain the reward r′ and next state s′ (t + 1)

11 Store the transition tuple in experience replay_memory
12 end for
13 if length(replay_memory) > batch_size then
14 Randomly sample from replay_memory
15 Compute target Q-value, loss and perform policy gradient
16 Update Critic network parameters
17 Compute policy gradient and Update Actor parameters
18 end if
19 if t mod update_frequency == 0 then
20 Update the parameters θQ′ , θμ′of the actor’s target network and the critic’s target

network
21 end if
22 end for
23 end for

As illustrated in Algorithm 2, the Actor-Critic networks are created in Lines 1 and 2. Correspond-
ingly, various hyper-parameters and the buffer for experience replay are initialized in Lines 3 and 4.
Lines 5 to 7 establish three nested loops to iterate through each training epoch, each time slot, and each
task. Lines 8 to 11 are dedicated to generating bandwidth allocation decisions and saving the replay
memory records. Lines 13 to 18 conditionally execute model training. Finally, Lines 19 to 21 update
the target networks when the update conditions are met. The time complexity of the DDPG part in
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the algorithm is linear. When the algorithm operates continuously in each time slots, the overall time
complexity is O(N).

5 Performance Evaluation

In this section, we verify the performance of the proposed task data transmission policy through
simulation experiments. We use EdgeCloudSim [34] as the foundational environment for task offload-
ing simulation. Additionally, we extend the network transmission and virtual machine allocation
modules of EdgeCloudSim. Thus, the proposed ADTP and the comparison algorithms can be imple-
mented. The resource allocation module, based on deep neural networks, is implemented in PyTorch
3.8 and provides functional enhancements to EdgeCloudSim via a custom developed interface. The
computer hardware comes with inter I7 CPU, 16 GB RAM to support the operation of the simulation
environment. The detailed parameters of the experiments are shown in Table 2.

Table 2: Simulation parameters

Parameters Value

Iterations 50
Simulation time (minutes) 60
Number of VMs on cloud/edge network 4/28
Core of VM on cloud/edge network 4/2
MIPS of VM on cloud/edge network (MIPS) 10,000/1000
Ram of VM on cloud/edge network (MB) 32,000/2000
Storage of VM on cloud/edge network (Byte) 1,000,000/50,000
Bandwidth of WAN/WLAN/MAN (Mbps) 15/100/1000
Number of TDs 100∼1200
Task length of AR/HA/HCA/IA (MI) 2000/400/3000/750
Data upload of AR/HA/HCA/IA (KB) 2100/1850/3000/725
Data download of AR/HA/HCA/IA (KB) 25/20/250/2500

In the context of task offloading, the most significant factors affecting user experience are delay
and failure rate. Therefore, we concentrated on evaluating task data transmission delay, average service
time, and the effects of various factors on task offloading failure rates to demonstrate the advantages
of ADTP. To visually evaluate the performance of the proposed ADTP, the following benchmark
strategies are simulated for comparison:

• Bandwidth Sharing (BS): This serves as the baseline. In this scheme, all tasks engage in
unrestricted competition for data uploads.

• Relative-execution Deadline First (RDF): In this scheme, the priority of each task’s data flow is
dynamically adjusted based on deadlines when bandwidth resources become scarce [45].

• Double Deep Q-Network (DDQN): In this scheme, the bandwidth resources of the AP are
divided into multiple virtual channels of identical performance. A deep learning network
collects information on data transmission requests and network bandwidth conditions to
dynamically optimize bandwidth allocation [46].

• Asynchronous Data Transmission Policy (ADTP): Proposed dynamic data transmission strategy
based on asynchronous reinforcement learning to facilitate optimized scheduling of task data
flows and enhance the overall performance of task offloading.
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Network latency is the primary focus of this study. Fig. 4 compares the network latency of various
solutions. The baseline free competition scheme exhibits lower performance due to a high incidence of
conflicts during the competition process, resulting in a significant number of data transmission fail-
ures. In contrast, the RDF approach strives to ensure that multiple packets belonging to the same task
are uploaded with priority. Furthermore, the DDQN-based solution is capable of comprehensively
gathering information regarding data transmission requests and network bandwidth conditions to
dynamically optimize bandwidth allocation, thereby demonstrating superior performance. However,
it lacks awareness of task execution processes within the virtual machines (VMs). Additionally, the
fixed-bandwidth allocation of network resources into virtual channels introduces a challenge related
to excessive scheduling granularity. In contrast, the Asynchronous Data Transmission Policy (ADTP)
holistically considers task offloading decisions and network conditions to deliver refined network
resource allocations. Thus, this approach exhibits significantly higher performance.

(a) (b)

(c) (d)

Figure 4: Average data transmission delay for (a) Augmented reality App; (b) Health App; (c)
Infotainment App; (d) Heavy Comp. App
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Additionally, network latency and computational latency together influence the overall service
time for tasks. Fig. 5 presents a comparative analysis of service times for each application, further high-
lighting the relative advantages of the ADTP. This superiority is attributable to the fact that network
transmission latency constitutes a critical component of overall service time. As the duration of task
data transmission diminishes, there is a corresponding reduction in service time. It is noteworthy that
the disparities in service times across the various schemes remain relatively minimal when the number
of mobile devices is limited, as the data flow within the wireless network is not significantly congested.
Conversely, the influence of data transmission scheduling on service time becomes markedly more
pronounced as the number of mobile devices increases.

(a) (b) 

(c) (d) 

Figure 5: Service time for (a) Augmented reality App; (b) Health App; (c) Infotainment App; (d) Heavy
Comp. App
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While many factors can lead to task offloading failures, the primary challenges stem from
inadequate computational resources and limited network transmission capabilities. As shown in Fig. 6,
both data upload conflicts and resource limitations of VMs are equally significant contributors to
task failures when the number of TDs is relatively low. However, as the number of TDs increases,
inefficient mechanisms for network resource allocation give rise to communication-related issues,
which subsequently become the predominant factor leading to task failures. In this context, the
proportion of task failures attributable to computational resource constraints exhibits a consistent
decline. Conversely, the ADTP demonstrates effective data transmission optimization capabilities,
which results in computational blocking becoming the main reason for task failures.

(a) (b) 

(c) (d) 

Figure 6: Failed task due to VM congestion for (a) Augmented reality App; (b) Health App; (c)
Infotainment App; (d) Heavy Comp. App

Fig. 7 illustrates the relationship between data transmission efficiency and task failure rates.
Notably, tasks offloaded to the edge-computing network require data uploads solely through the
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wireless access network. In contrast, tasks directed to the cloud platform necessitate multi-hop
data transmission through both the WAN and the wireless access network. This study concentrates
exclusively on optimizing data transmission within the wireless access network, while the WAN is
configured in a resource-sharing mode. Analysis of Fig. 7 reveals that when the density of task
offloading is low, the influence of various network resource scheduling strategies on task failure rates
is minimal. This phenomenon can be attributed to the capability of task data to reach computing nodes
within an acceptable time frame. Conversely, as the volume of offloaded tasks escalates, the efficient
scheduling facilitated by the ADTP significantly mitigates data transmission delays and failure rates,
thereby resulting in a decreased overall task offloading failure rate.

(a) (b) 

(c) (d)

Figure 7: Failed task due to data upload failure for (a) Augmented reality App; (b) Health App; (c)
Infotainment App; (d) Heavy Comp. App
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In summary, the ADTP effectively monitors the requirements for task data transmission and the
fluctuations in network operating conditions to generate optimized bandwidth resource allocation
strategies. As a result, task data can be transmitted efficiently to VMs, rationally utilizing the available
network bandwidth. Thus, the overall operational performance of the task offloading network is
enhanced.

6 Conclusion

Task offloading technology has developed significantly in this information age. In this paper,
we propose and focus on the optimization of data transmission within task offloading scheduling in
high-density IoT network environments. To address this issue, we consider the dynamic allocation of
available bandwidth for each uploaded task data stream, facilitating the efficient execution of tasks
on virtual machines based on the timely arrival of task data at the virtual computing nodes. We
propose an Asynchronous Data Transmission Policy (ADTP) to jointly consider the matching of tasks
with virtual machines and the congestion status of the wireless access network. ADTP comprises two
asynchronously functioning intelligent agents, each focusing on the discrete VM allocation decisions
and the continuous bandwidth adjustment, aimed at optimizing the overall task offloading data
transmission.

Experimental results indicate that ADTP effectively reduces network latency and improves data
transmission efficiency in resource-constrained networks. Consequently, more tasks can be timely
transferred to VM hosts for execution. This reduces the service time for task offloading and increases
the success rate of task offloading. Notably, as the number of TDs increases, task offloading failures
tend to be primarily driven by insufficient VM resources rather than transmission barriers. This further
demonstrates that ADTP effectively optimizes the transmission process of task data.

The limitation of this study lies in its exclusive focus on optimizing the data uploads of task data
from the terminal device, without addressing the optimization of data transmission from the edge
network to the cloud. In future work, we aim to jointly optimize the data transmission process of task
data within the edge-cloud continuum. Additionally, we will consider incorporating Spiking Neural
Network (SNN) technology to reduce the computational costs and energy consumption of decision
generation.

Acknowledgement: We thank UTM for supporting us during this work.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm their contribution to the paper as follows: Dayong Wang
contributed to conceptualization and writing—original draft preparation, Babangida Isyaku and
Dayong Wang contributed to methodology, Dayong Wang and Liping Lei contributed to integrate the
results from multiple rounds of experiments and analysis, Babangida Isyaku and Kamalrulnizam Bin
Abu Bakar contributed to writing reviews and editing, and Kamalrulnizam Bin Abu Bakar supervised
the process of the research. All authors reviewed the results and approved the final version of the
manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.



CMC, 2024, vol.81, no.3 4481

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
[1] A. Islam, A. Debnath, M. Ghose, and S. Chakraborty, “A survey on task offloading in multi-access edge

computing,” J. Syst. Archit., vol. 118, Sep. 2021, Art. no. 102225. doi: 10.1016/j.sysarc.2021.102225.
[2] B. Isyaku, K. B. A Bakar, N. M. Yusuf, M. Abaker, A. Abdelmaboud and W. Nagmeldin, “Software defined

wireless sensor load balancing routing for internet of things applications: Review of approaches,” Heliyon,
vol. 10, May 2024. doi: 10.1016/j.heliyon.2024.e29965.

[3] N. Kumari, A. Yadav, and P. K. Jana, “Task offloading in fog computing: A survey of algo-
rithms and optimization techniques,” Comput. Netw., vol. 214, Sep. 2022, Art. no. 109137. doi:
10.1016/j.comnet.2022.109137.

[4] S. Dong, Y. Xia, and J. Kamruzzaman, “Quantum particle swarm optimization for task offloading
in mobile edge computing,” IEEE Trans. Ind. Inform., vol. 19, no. 8, pp. 9113–9122, Aug. 2023. doi:
10.1109/TII.2022.3225313.

[5] W. Dayong, K. B. A. Bakar, B. Isyaku, T. A. E. Eisa, and A. Abdelmaboud, “A comprehensive review on
internet of things task offloading in multi-access edge computing,” Heliyon, vol. 10, no. 9, May 2024. doi:
10.1016/j.heliyon.2024.e29916.

[6] A. Javadpour, A. Nafei, F. Ja’fari, P. Pinto, W. Zhang and A. K. Sangaiah, “An intelligent energy-efficient
approach for managing IoE tasks in cloud platforms,” J. Ambient Intell. Humaniz. Comput., vol. 14, no. 4,
pp. 3963–3979, Apr. 2023. doi: 10.1007/s12652-022-04464-x.

[7] C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu and L. Guo, “Computation offloading in mobile edge
computing networks: A survey,” J. Netw. Comput. Appl., vol. 202, Jun. 2022, Art. no. 103366. doi:
10.1016/j.jnca.2022.103366.

[8] A. Javadpour et al., “An energy-optimized embedded load balancing using DVFS computing in cloud data
centers,” Comput. Commun., vol. 197, pp. 255–266, Jan. 2023. doi: 10.1016/j.comcom.2022.10.019.

[9] M. Y. Akhlaqi and Z. B. Mohd Hanapi, “Task offloading paradigm in mobile edge computing-current
issues, adopted approaches, and future directions,” J. Netw. Comput. Appl., vol. 212, Mar. 2023, Art. no.
103568. doi: 10.1016/j.jnca.2022.103568.

[10] J. Zhang et al., “Joint resource allocation for latency-sensitive services over mobile edge comput-
ing networks with caching,” IEEE Internet Things J., vol. 6, no. 3, pp. 4283–4294, Jun. 2019. doi:
10.1109/JIOT.2018.2875917.

[11] M. Z. Khan, O. H. Alhazmi, M. A. Javed, H. Ghandorh, and K. S. Aloufi, “Reliable internet of things:
Challenges and future trends,” Electronics, vol. 10, no. 19, Jan. 2021, Art. no. 19. doi: 10.3390/electron-
ics10192377.

[12] B. Jamil, H. Ijaz, M. Shojafar, K. Munir, and R. Buyya, “Resource allocation and task scheduling in fog
computing and internet of everything environments: A taxonomy, review, and future directions,” ACM
Comput. Surv., vol. 54, no. 11s, pp. 233:1–233:38, Sep. 2022. doi: 10.1145/3513002.

[13] S. Dong et al., “Task offloading strategies for mobile edge computing: A survey,” Comput. Netw., vol. 254,
Dec. 2024, Art. no. 110791. doi: 10.1016/j.comnet.2024.110791.

[14] C. Jong, Y. C. Kim, J. H. So, and K. C. Ri, “QoS and energy-efficiency aware scheduling and resource
allocation scheme in LTE-A uplink systems,” Telecommun. Syst., vol. 82, no. 2, pp. 175–191, Feb. 2023.
doi: 10.1007/s11235-022-00980-5.

[15] B. Isyaku, K. A. Bakar, S. Abdulrahman, M. N. Yusuf, F. B. Muchtar and F. A. Ghaleb, “Mobile
device influence on SDN controller performance in IoT-managed software-defined wireless networks,”
in Advances in Intelligent Computing Techniques and Applications, F. Saeed, F. Mohammed, Y. Fazea, Eds.
Cham: Springer Nature Switzerland, 2024, pp. 62–72. doi: 10.1007/978-3-031-59707-7_6.

[16] B. Isyaku, K. B. A. Bakar, W. Nagmeldin, A. Abdelmaboud, F. Saeed and F. A. Ghaleb, “Reliable failure
restoration with bayesian congestion aware for software defined networks,” Comput. Syst. Sci. Eng., vol.
46, no. 3, 2023. doi: 10.32604/csse.2023.034509.

https://doi.org/10.1016/j.sysarc.2021.102225
https://doi.org/10.1016/j.heliyon.2024.e29965
https://doi.org/10.1016/j.comnet.2022.109137
https://doi.org/10.1109/TII.2022.3225313
https://doi.org/10.1016/j.heliyon.2024.e29916
https://doi.org/10.1007/s12652-022-04464-x
https://doi.org/10.1016/j.jnca.2022.103366
https://doi.org/10.1016/j.comcom.2022.10.019
https://doi.org/10.1016/j.jnca.2022.103568
https://doi.org/10.1109/JIOT.2018.2875917
https://doi.org/10.3390/electronics10192377
https://doi.org/10.1145/3513002
https://doi.org/10.1016/j.comnet.2024.110791
https://doi.org/10.1007/s11235-022-00980-5
https://doi.org/10.1007/978-3-031-59707-7_6
https://doi.org/10.32604/csse.2023.034509


4482 CMC, 2024, vol.81, no.3

[17] X. Dai et al., “Task co-offloading for D2D-assisted mobile edge computing in industrial internet of things,”
IEEE Trans. Ind. Inform., vol. 19, no. 1, pp. 480–490, Jan. 2023. doi: 10.1109/TII.2022.3158974.

[18] C. Tang, C. Zhu, N. Zhang, M. Guizani, and J. J. P. C. Rodrigues, “SDN-assisted mobile edge computing
for collaborative computation offloading in industrial internet of things,” IEEE Internet Things J., vol. 9,
no. 23, pp. 24253–24263, Dec. 2022. doi: 10.1109/JIOT.2022.3190281.

[19] Y. Li and W. Zhang, “Task-offloading strategy of mobile edge computing for WBANs,” Electronics, vol.
13, no. 8, Jan. 2024, Art. no. 8. doi: 10.3390/electronics13081422.

[20] Y. Dai, J. Zhao, J. Zhang, Y. Zhang, and T. Jiang, “Federated deep reinforcement learning for task
offloading in digital twin edge networks,” IEEE Trans. Netw. Sci. Eng., vol. 11, no. 3, pp. 2849–2863, May
2024. doi: 10.1109/TNSE.2024.3350710.

[21] C. -W. Huang, S. -C. Tseng, P. Lin, and Y. Kawamoto, “Radio resource scheduling for narrowband
internet of things systems: A performance study,” IEEE Netw., vol. 33, no. 3, pp. 108–115, May 2019.
doi: 10.1109/MNET.2018.1700386.

[22] S. Pandiyan, T. S. Lawrence, V. Sathiyamoorthi, M. Ramasamy, Q. Xia and Y. Guo, “A performance-aware
dynamic scheduling algorithm for cloud-based IoT applications,”Comput. Commun., vol. 160, pp. 512–520,
Jul. 2020. doi: 10.1016/j.comcom.2020.06.016.

[23] W. K. G. Seah, C. -H. Lee, Y. -D. Lin, and Y. -C. Lai, “Combined communication and computing resource
scheduling in sliced 5G multi-access edge computing systems,” IEEE Trans. Veh. Technol., vol. 71, no. 3,
pp. 3144–3154, Mar. 2022. doi: 10.1109/TVT.2021.3139026.

[24] A. Hazra, P. K. Donta, T. Amgoth, and S. Dustdar, “Cooperative transmission scheduling and computation
offloading with collaboration of fog and cloud for industrial IoT applications,” IEEE Internet Things J.,
2022. doi: 10.1109/JIOT.2022.3150070.

[25] N. Unnisa and M. Tatineni, “Intelligent allocation strategy of mobile users for multi-access edge computing
resources,” presented at 2021 Emerging Trends in Industry 4.0 (ETI 4.0), Raigarh, India, May 2021, pp.
1–7. doi: 10.1109/ETI4.051663.2021.9619420

[26] X. Chen, Z. Li, Y. Chen, and X. Wang, “Performance analysis and uplink scheduling for QoS-aware
NB-IoT networks in mobile computing,” IEEE Access, vol. 7, pp. 44404–44415, 2019. doi: 10.1109/AC-
CESS.2019.2908985.

[27] J. Gao, M. Li, W. Zhuang, X. Shen, and X. Li, “MAC for machine-type communications in industrial
IoT—Part II: Scheduling and numerical results,” IEEE Internet Things J., vol. 8, no. 12, pp. 9958–9969,
Jun. 2021. doi: 10.1109/JIOT.2020.3045831.

[28] N. Jiang, Y. Deng, A. Nallanathan, and J. A. Chambers, “Reinforcement learning for real-time optimization
in NB-IoT networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1424–1440, Jun. 2019. doi:
10.1109/JSAC.2019.2904366.

[29] J. Wu, G. Zhang, J. Nie, Y. Peng, and Y. Zhang, “Deep reinforcement learning for scheduling in an edge
computing-based industrial internet of things,” Wirel Commun. Mob. Comput., vol. 2021, p. e8017334,
2021. doi: 10.1155/2021/8017334.

[30] L. P. Qian, H. Zhang, Q. Wang, Y. Wu, and B. Lin, “Joint multi-domain resource allocation and trajectory
optimization in UAV-assisted maritime IoT networks,” IEEE Internet Things J., vol. 10, no. 1, pp. 539–552,
Jan. 2023. doi: 10.1109/JIOT.2022.3201017.

[31] Y. Gong, H. Yao, J. Wang, M. Li, and S. Guo, “Edge intelligence-driven joint offloading and
resource allocation for future 6G industrial internet of things,” IEEE Trans. Netw. Sci. Eng., 2022. doi:
10.1109/TNSE.2022.3141728.

[32] Y. Hao, Z. Song, Z. Zheng, Q. Zhang, and Z. Miao, “Joint communication, computing, and caching
resource allocation in LEO satellite MEC networks,” IEEE Access, vol. 11, pp. 6708–6716, 2023. doi:
10.1109/ACCESS.2023.3237701.

[33] H. Peng and X. Shen, “Deep reinforcement learning based resource management for multi-access edge
computing in vehicular networks,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 2416–2428, Oct. 2020.
doi: 10.1109/TNSE.2020.2978856.

https://doi.org/10.1109/TII.2022.3158974
https://doi.org/10.1109/JIOT.2022.3190281
https://doi.org/10.3390/electronics13081422
https://doi.org/10.1109/TNSE.2024.3350710
https://doi.org/10.1109/MNET.2018.1700386
https://doi.org/10.1016/j.comcom.2020.06.016
https://doi.org/10.1109/TVT.2021.3139026
https://doi.org/10.1109/JIOT.2022.3150070
https://doi.org/10.1109/ETI4.051663.2021.9619420
https://doi.org/10.1109/ACCESS.2019.2908985
https://doi.org/10.1109/JIOT.2020.3045831
https://doi.org/10.1109/JSAC.2019.2904366
https://doi.org/10.1155/2021/8017334
https://doi.org/10.1109/JIOT.2022.3201017
https://doi.org/10.1109/TNSE.2022.3141728
https://doi.org/10.1109/ACCESS.2023.3237701
https://doi.org/10.1109/TNSE.2020.2978856


CMC, 2024, vol.81, no.3 4483

[34] C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An environment for performance evaluation of
edge computing systems,” Transacti. Emerging Telecommunicati. Technologi, vol. 29, no. 11, 2018, Art. no.
3493. doi: 10.1002/ett.3493.

[35] Y. Chiang et al., “Management and orchestration of edge computing for IoT: A comprehensive survey,”
IEEE Internet Things J., vol. 10, no. 16, pp. 14307–14331, Aug. 2023. doi: 10.1109/JIOT.2023.3245611.

[36] K. Sadatdiynov, L. Cui, L. Zhang, J. Z. Huang, N. N. Xiong and C. Luo, “An intelligent hybrid method:
Multi-objective optimization for MEC-enabled devices of IoE,” J. Parallel Distrib. Comput., vol. 171, pp.
1–13, Jan. 2023. doi: 10.1016/j.jpdc.2022.09.008.

[37] P. Yang, R. Ma, M. Yi, Y. Zhang, B. Li and Z. Bai, “A computation offloading strategy for multi-access
edge computing based on DQUIC protocol,” J. Supercomput., vol. 80, pp. 18285–18318, May 2024. doi:
10.1007/s11227-024-06176-9.

[38] A. Roy, J. L. Pachuau, and A. K. Saha, “An overview of queuing delay and various delay based algorithms
in networks,” Computing, vol. 103, no. 10, pp. 2361–2399, Oct. 2021. doi: 10.1007/s00607-021-00973-3.

[39] K. Moghaddasi, S. Rajabi, F. S. Gharehchopogh, and A. Ghaffari, “An advanced deep reinforcement
learning algorithm for three-layer D2D-edge-cloud computing architecture for efficient task offloading
in the Internet of Things,” Sustain. Comput. Inform. Syst., vol. 43, Sep. 2024, Art. no. 100992. doi:
10.1016/j.suscom.2024.100992.

[40] I. Khan, X. Tao, G. M. S. Rahman, W. U. Rehman, and T. Salam, “Advanced energy-efficient computation
offloading using deep reinforcement learning in MTC edge computing,” IEEE Access, vol. 8, pp. 82867–
82875, 2020. doi: 10.1109/ACCESS.2020.2991057.

[41] L. Ale, N. Zhang, X. Fang, X. Chen, S. Wu and L. Li, “Delay-aware and energy-efficient computation
offloading in mobile-edge computing using deep reinforcement learning,” IEEE Trans. Cogn. Commun.
Netw., vol. 7, no. 3, pp. 881–892, Sep. 2021. doi: 10.1109/TCCN.2021.3066619.

[42] H. Mai Do, T. P. Tran, and M. Yoo, “Deep reinforcement learning-based task offloading and resource
allocation for industrial IoT in MEC federation system,” IEEE Access, vol. 11, pp. 83150–83170, 2023.
doi: 10.1109/ACCESS.2023.3302518.

[43] M. A. Ebrahim, G. A. Ebrahim, H. K. Mohamed, and S. O. Abdellatif, “A deep learning approach for task
offloading in multi-UAV aided mobile edge computing,” IEEE Access, vol. 10, pp. 101716–101731, 2022.
doi: 10.1109/ACCESS.2022.3208584.

[44] D. S. Lakew, A. -T. Tran, N. -N. Dao, and S. Cho, “Intelligent offloading and resource allocation in
heterogeneous aerial access IoT networks,” IEEE Internet Things J., vol. 10, no. 7, pp. 5704–5718, Apr.
2023. doi: 10.1109/JIOT.2022.3161571.

[45] C. Xia, X. Jin, C. Xu, Y. Wang, and P. Zeng, “Real-time scheduling under heterogeneous routing
for industrial internet of things,” Comput. Electr. Eng., vol. 86, Sep. 2020, Art. no. 106740. doi:
10.1016/j.compeleceng.2020.106740.

[46] H. Zhong, R. Sun, F. Mei, Y. Chen, F. Jin and L. Ning, “Deep grid scheduler for 5G NB-IoT uplink
transmission,” Secur. Commun. Netw., vol. 2021, pp. 1–10, Aug. 2021. doi: 10.1155/2021/5263726.

https://doi.org/10.1002/ett.3493
https://doi.org/10.1109/JIOT.2023.3245611
https://doi.org/10.1016/j.jpdc.2022.09.008
https://doi.org/10.1007/s11227-024-06176-9
https://doi.org/10.1007/s00607-021-00973-3
https://doi.org/10.1016/j.suscom.2024.100992
https://doi.org/10.1109/ACCESS.2020.2991057
https://doi.org/10.1109/TCCN.2021.3066619
https://doi.org/10.1109/ACCESS.2023.3302518
https://doi.org/10.1109/ACCESS.2022.3208584
https://doi.org/10.1109/JIOT.2022.3161571
https://doi.org/10.1016/j.compeleceng.2020.106740
https://doi.org/10.1155/2021/5263726

	An Asynchronous Data Transmission Policy for Task Offloading in Edge-Computing Enabled Ultra-Dense IoT
	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	4 Proposed Asynchronous Data Transmission Policy ADTP Based on Reinforcement Learning
	5 Performance Evaluation
	6 Conclusion
	References


