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ABSTRACT

Underwater shipwreck identification technology, as a crucial technique in the field of marine surveying, plays a
significant role in areas such as the search and rescue of maritime disaster shipwrecks. When facing the task of object
detection in shipwreck side-scan sonar images, due to the complex seabed environment, it is difficult to extract
object features, often leading to missed detections of shipwreck images and slow detection speed. To address these
issues, this paper proposes an object detection algorithm, CSC-YOLO (Context Guided Block, Shared Conv_Group
Normalization Detection, Cross Stage Partial with 2 Partial Convolution-You Only Look Once), based on YOLOv8n
for shipwreck side-scan sonar images. Firstly, to tackle the problem of small samples in shipwreck side-scan sonar
images, a new dataset was constructed through offline data augmentation to expand data and intuitively enhance
sample diversity, with the Mosaic algorithm integrated to strengthen the network’s generalization to the dataset.
Subsequently, the Context Guided Block (CGB) module was introduced into the backbone network model to
enhance the network’s ability to learn and express image features. Additionally, by employing Group Normalization
(GN) techniques and shared convolution operations, we constructed the Shared Conv_GN Detection (SCGD) head,
which improves the localization and classification performance of the detection head while significantly reducing
the number of parameters and computational load. Finally, the Partial Convolution (PConv) was introduced and the
Cross Stage Partial with 2 PConv (C2PC) module was constructed to help the network maintain effective extraction
of spatial features while reducing computational complexity. The improved CSC-YOLO model, compared with the
YOLOv8n model on the validation set, mean Average Precision (mAP) increases by 3.1%, Recall (R) increases
by 6.4%, and the F1-measure (F1) increases by 4.7%. Furthermore, in the improved algorithm, the number of
parameters decreases by 20%, the computational complexity decreases by 23.2%, and Frames Per Second (FPS)
increases by 17.6%. In addition, compared with the advanced popular model, the superiority of the proposed model
is proved. The subsequent experiments on real side-scan sonar images of shipwrecks fully demonstrate that the
CSC-YOLO algorithm meets the requirements for actual side-scan sonar detection of underwater shipwrecks.
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1 Introduction

Currently, marine activities are increasingly frequent, and precise underwater object detection and
identification are crucial for many economic and military activities, forming a core part of the strategy
to build a maritime power [1,2]. Particularly, underwater shipwreck identification technology, as one
of the important techniques in the field of marine surveying, plays a significant role in underwater
cultural relic archaeology, detection and rescue of maritime shipwrecks, and the inspection of riverine
obstacles [3–7], directly affecting the progress and effectiveness of these detection tasks. side-scan
sonar, as an acoustic detection device, operates under low visibility conditions and is characterized
by long range and high efficiency. It has become one of the technical means for countries to detect
marine resources and military objects, employing its advantages of low cost and high resolution
to mainly detect underwater objects like shipwrecks, torpedoes, aircraft debris, schools of fish, and
more [8–11].

Object detection in side-scan sonar images typically relies on manual interpretation, which
is a process fraught with many challenges: low operational efficiency, susceptibility to subjective
influences, and various uncertain interference factors. Even more deadly is that in some cases,
such as the underwater automatic mobile platform as a sonar carrier, manual interpretation is not
allowed. To overcome these difficulties, the academic community has actively explored new methods
and technologies for automatic object detection in side-scan sonar images in recent years [12,13].
Specifically, these methods can be divided into the traditional methods and the methods based on
deep learning. The study on the methods based on deep learning is a hot topic in recent years, and
they are divided into one-stage and two-stage object detection algorithms. Representative algorithms
include R-CNN [14], Faster R-CNN [15], DETR [16], and the YOLO series [17]. Currently, the existing
research on object detection in side-scan sonar images based on deep learning methods is mainly
found in References [18–24]. Reference [18] applied R-CNN to the detection of categories such as
soil, sand, and rock, finding that R-CNN performs better than traditional methods for detecting
sonar images. Reference [19] was the first to apply the Faster R-CNN algorithm for side-scan sonar
image detection, achieving high detection precision. However, despite its superiority over R-CNN, the
detection time is too long to meet the real-time requirements for maritime search and rescue. Reference
[20] applied the YOLO algorithm to object detection in forward-looking sonar images. It found that
although YOLO improved detection speed compared to Faster R-CNN, the detection precision was
not ideal. Reference [21] utilized the YOLOv3 algorithm model for underwater object detection in
sonar images. The authors enhanced detection precision through data augmentation; however, they did
not implement any internal model improvements, resulting in unchanged detection speed. Reference
[22] proposed a sonar image object detection algorithm based on YOLOv5, named DETR-YOLO. It
is designed for detecting underwater shipwreck objects. However, due to the large size of the DETR
model, although the DETR-YOLO model improved detection precision, its detection speed decreased
as a result. Reference [23] reorganized the YOLOv7 network and added a small object detection
layer, which improved detection precision, but the increase in detection layers led to higher model
complexity. Reference [24] made improvements to YOLOv5 by incorporating the CBAM [25] attention
mechanism. In comparative experiments, the proposed model achieved the highest precision, but the
model complexity also increased accordingly.

After analyzing the research on traditional methods and deep learning methods, it was found that
in object detection studies involving side-scan sonar images, there is either a low detection precision
or a slow detection speed, and no balanced solution has been proposed between these two issues.
Moreover, no solutions have been proposed for the issue of insufficient sonar image data.
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To address the aforementioned issues, this paper first employs offline data augmentation to
increase the sample size of the dataset and utilizes online data augmentation combined with algorithms
to tackle the small sample problem. Subsequently, this paper proposes a side-scan sonar shipwreck
object detection method based on the CSC-YOLO (Context Guided Block, Shared Conv_Group
Normalization Detection, Cross Stage Partial with 2 Partial Convolution-You Only Look Once)
model, aimed at optimizing the model structure, reducing the number of parameters, and improving
computational efficiency for accurate identification of shipwreck objects. The main improvements are
as follows:

(1) Enhanced Feature Extraction Network: The traditional Convolution (Conv) module in the
backbone is replaced with the Context Guided Block (CGB) module, which strengthens the model’s
ability to capture key information in the images, thereby improving the precision of shipwreck
detection.

(2) Constructing Lightweight Detection Head: To further enhance detection speed and precision,
Group Normalization (GN) techniques are introduced and combined with convolution modules to
form the Conv_GN module. This module is utilized as a shared convolution to design the SCGD
detection head, which helps to simultaneously address the issues of low detection precision and slow
detection response times.

(3) Improved Feature Fusion Network: To further reduce the model’s parameter count and
computational load while increasing detection speed, we introduce the Partial Convolution (PConv)
module to construct the Cross Stage Partial with 2 Partial Convolution (C2PC) module, which
addresses the problem of slow detection response times.

The remainder of this paper is organized as follows: In Section 2, we introduce the source
of the dataset and the methods employed to address the small sample problem. In Section 3, we
provide a detailed description of the improvements made to CSC-YOLO, outlining the enhancements
implemented in each module. In Section 4, we conduct various validation experiments to assess the
performance of the CSC-YOLO model. In Section 5, we summarize the findings of this paper and
engage in a discussion of their implications.

2 Dataset Preparation and Preprocessing

This chapter primarily discusses the source of the dataset, followed by methods for handling small
sample datasets, including both offline and online data augmentation.

2.1 Dataset Source

The side-scan sonar images of shipwrecks are provided by the project “Deep Sea Shipwreck Sonar
Image Segmentation Method Based on Interference-Resistant Two-Dimensional Attribute Histogram
and Snake Model,” as well as collected from the Roboflow open dataset website [26], totaling 485
images, as shown in Fig. 1. The dataset was divided into training and validation sets in an 8:2 ratio,
with the training set containing 388 shipwreck images and the validation set containing 97 shipwreck
images.

2.2 Preprocessing for Small Sample Problems

Deep learning networks require a large amount of training data to effectively learn object features.
However, a small dataset can lead to overfitting and poor generalization of the network. To address
these issues, this paper implements data augmentation.
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Figure 1: Partial images of the dataset

2.2.1 Offline Data Augmentation

Data Augmentation Based on HSV Domain Transformation: The HSV model uses Hue, Satu-
ration, and Value to represent colors, reflecting human color perception intuitively, and is suitable
for the analysis and processing of visual information. Due to the unique nature of side-scan sonar
images, which are primarily generated based on the transducer’s emission and reception of sound
waves, the displayed images vary in different scenarios. In deep sea environments, the sonar signal is
heavily interfered with, often resulting in darker images. Additionally, based on factors such as model
type, side-scan sonar images can be classified into grayscale and pseudocolor images.

Data Augmentation Based on Geometric Transformations: Expanding the dataset by altering
image shapes can improve the generalization ability of the network model. As the transducer array
scans the seabed, the state of shipwrecks is quite random. Therefore, applying random flips, rotations,
and cropping can simulate various potential orientations of shipwrecks on the seabed.

Data Augmentation Based on Cutout Algorithm [27]: In object detection tasks, using random
erasure can simulate scenarios with incomplete image information, such as issues caused by poor
scanning quality of survey ships or damaged objects. This algorithm achieves this by randomly erasing
small areas within images, which not only helps the model learn to recognize objects from incomplete
images but also enhances the model’s capability to handle missing or poor-quality image data in
practical applications.

As shown in Fig. 2, offline data augmentation was used to expand the side-scan sonar shipwreck
images by four times, thereby significantly increasing the sample size of the shipwreck dataset. The
method of splitting the dataset before augmentation was adopted to prevent multiple augmented
images of the same original image from appearing in both the training and validation sets, which
could reduce the model’s generalization ability. After data augmentation, the training set contains
1552 images, and the validation set contains 388 images.
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Figure 2: Offline image data augmentation

From Fig. 3, it can be observed that Fig. 3a shows the positional statistics of the shipwreck objects
within the entire image, indicating that most of the shipwreck objects are located in the central area
of the image. Fig. 3b presents the statistical distribution of the height-to-width ratios of the shipwreck
objects relative to the original image size, from which it can be seen that the height and width ratios
of most shipwreck objects are less than 0.1, thus classifying them as small objects [28]. Since small
objects are prone to being missed in detection, it can be concluded that detecting shipwrecks poses a
significant challenge.

Figure 3: Distribution and size diagram of shipwreck objects. (a) The position distribution of the
shipwreck objects in the image; (b) The size proportion of the shipwreck objects relative to the entire
image
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2.2.2 Online Data Augmentation

The Mosaic data augmentation method enriches the training data and improves model perfor-
mance by randomly cropping and stitching four images into a new one [29]. Specifically, four side-
scan sonar shipwreck images are randomly selected from the dataset, then randomly scaled, cropped,
and cut before being stitched together in a random manner, as shown in Fig. 4. This method not only
increases image diversity but also enhances batch processing efficiency because the composite image
contains information from four images, simulating a larger batch size without increasing the physical
batch size. This strategy effectively improves the model’s generalization ability with a limited dataset
and optimizes the training process efficiency.

Figure 4: Diagram of the Mosaic algorithm

3 Improved YOLOv8 Model

This chapter selects the YOLOv8n [30] model for enhancement and provides a detailed description
of the modifications made to the YOLOv8n model in this paper. Finally, the structure of the improved
network model is presented.

3.1 YOLOv8 Network Improvement Methods

The YOLOv8n model, with its fewer parameters and fast computation speed, is particularly
suitable for deployment on lightweight mobile devices. Therefore, this paper selects the YOLOv8n
version from the YOLOv8 series as the baseline model and develops the CSC-YOLO network based
on this for algorithm improvements.

3.1.1 Introduction of CGB Module

This paper introduces the CGB [31] module, as shown in Fig. 5. This module integrates four
core components: a local feature extractor f loc, a surrounding context extractor fsur, a joint feature
extractor f joi, and a global feature extractor fglo, mimicking the way human vision relies on contextual
information to interpret scenes.

In the initial stage, the module reduces the dimensionality of input features through 1 × 1
convolutions, simplifying subsequent processing steps and improving computational efficiency. The
downscaled feature maps are then processed separately by the local feature extractor f loc and the
surrounding context extractor fsur, each focusing on the image’s local details and surrounding context
information, thereby enhancing the module’s ability to analyze different regions of the image.

Next, the joint feature extractor f joi merges the local and environmental context feature maps
at the channel level, creating a fused feature representation. This representation combines local and
contextual information, enhancing feature depth. The merged features are further enhanced through
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batch normalization and activation function adjustments, boosting feature expressiveness and the
model’s robustness against interference.

Figure 5: CGB module structure

Finally, the global feature extractor fglo deeply refines the fused feature representation by reducing
dimensions and remapping to optimize features, eliminating unnecessary information and strength-
ening useful features. By integrating the extraction and refinement of local, contextual, and global
features, the CGB module effectively leverages extensive contextual information within images,
significantly enhancing feature representation and overall model performance.

In this paper, we extract the CGB module from CGNet [31] and improve it into a downsampling
module to replace traditional convolutional modules, utilizing the CGB module in the feature extrac-
tion phase of deep convolutional neural networks. This approach aims to leverage a context-guided
mechanism to enhance the network’s ability to learn and represent image features. By integrating
the CGB module, we can enhance information integration, improving the overall performance and
accuracy in handling complex visual tasks.

3.1.2 Design of SCGD Head

An ideal object detection head should meet the following criteria: efficiency, meaning it can
accurately complete the detection task in a short time; precision, maintaining high recognition rates
even with fast detection; and low miss rates, effectively identifying small objects to prevent missed
detections. To achieve these performance metrics, this paper introduces the Group Normalization
(GN) technique [32] and combines it with traditional Conv layers to form the Conv_GN module,
as shown in Fig. 6. This module uses shared convolution, with group normalization independently
standardizing within groups, effectively reducing parameters and computational load while enhancing
detection speed and precision.

Figure 6: Conv_GN module structure
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Based on the understanding of Reference [32], the GN calculation formula is summarized in
Eqs. (1)–(3).⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̂i = 1
σG

(xi − μG) ,

yi = γ x̂i + β,

yi = γ
xi − uG

σG

+ β,

(1)

μG = G
C

∑G

i=1
xi, (2)

σG =
√

G
C

∑G

i=1
(xi − uG)2. (3)

In the formula: i ∈ [1, G], C and G are the number of channels and groups, respectively, μG and σ G

are the mean and standard deviation of the input within the corresponding group, γ and β are learnable
parameters used to adjust the normalized output yi. This setup allows the model to independently
adjust the data distribution within each group, making network training more stable and efficient.

The paper posits that using GN significantly enhances the performance of detection heads
in object localization and classification tasks. Based on this, the paper replaces the regular Conv
modules in the detection head with Conv_GN modules to further improve precision in localization
and classification. Initially, a single Conv_GN convolutional module is used to enhance detection
performance. Subsequently, configuring two Conv_GN modules to perform shared convolution
significantly reduces the model’s parameter count and computational demands. Additionally, to
accommodate the varying object scales detected by different detection heads, a Scale layer is introduced
on top of the shared convolution to appropriately scale features. The structure of the entire SCGD
network is shown in Fig. 7.

Figure 7: SCGD head
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3.1.3 Construction of C2PC Module

In practical applications of shipwreck detection, algorithm models often need to be deployed on
platforms with limited computing capabilities. However, traditional algorithms frequently fail to meet
the performance requirements of these low computing power platforms. Based on PConv technology
[33], we designed a new structure, C2PC, to replace the C2f module in the Neck network. PConv is
a form of convolution designed for high-speed inference, aimed at enhancing detection speed while
reducing the model’s parameter count and computational load.

The core principle of PConv is to utilize the redundant parts of the input feature maps, applying
convolution operations only on a subset of input channels to extract spatial features without altering
the other channels. This approach significantly reduces the number of floating-point operations com-
pared to traditional full convolution operations, thereby increasing computational efficiency, reducing
the computational load, and lowering memory access frequency. By this means, PConv effectively
captures spatial features while reducing computational and memory demands. The schematic diagram
of PConv’s convolutional structure is shown in Fig. 8. This innovative structure makes the model
more suitable for operation in resource-limited environments, especially in scenarios where rapid and
efficient detection of shipwrecks is required.

Figure 8: PConv structure

Using the PConv convolutional design module can reduce the model’s parameter count and
computational load, minimize information loss, and enhance the model’s expressive capabilities. The
formula for its calculated volume is shown in Eqs. (4) and (5).

FPConv = h × w × k2 × c2
p, (4)

r = c
cp

. (5)

In the formula: h and w are the height and width of the feature map; k is the size of the convolution
kernel; cp is the number of channels participating in the convolution; r is the convolution participation
rate, typically set at 1/4 in practical applications, meaning the computational cost of PConv is 1/16 that
of a regular convolution; c is the number of input channels.

The memory access of PConv is calculated as shown in Eq. (6).

VPConv = h × w × 2cp + k2 × c2
p ≈ h × w × 2cp. (6)

During the convolution process, memory usage is low, and the memory access required for
PConv convolution is far less than that for standard Conv convolution. This paper utilizes PConv
to design the C2PC module to replace the C2f module in the Neck network, as shown in Fig. 9.



10 CMC, 2024

This allows for increased detection speed and further enhances detection precision. The introduction
of PConv convolution effectively streamlines the network model structure while significantly saving
computational resources and improving detection precision.

Figure 9: C2PC module structure

As can be seen from the figure above, the initial convolution block extracts the basic features
of the input image. Multiple PConv modules further refine and enhance these features, while the
computational load of the PConv modules themselves is low. Next, a Concat block fuses the directly
passed feature maps with the processed feature maps, allowing the model to effectively utilize multi-
scale and multi-level information. The final feature map is generated through the last convolution
block, providing rich features for subsequent detection tasks.

3.2 Improved Network Model

To enhance the network’s detection precision, address issues of missed detections, and reduce
computational resource consumption to increase detection speed, this paper implements the following
steps to improve the original YOLOv8n model: First, by replacing the traditional Conv modules in
the backbone with CGB modules, the model’s ability to capture critical information in images is
enhanced; secondly, to further increase detection speed and precision, a Conv_GN shared convolution
module design SCGD detection head is introduced, which helps address both missed detections and
slow detection response; finally, to reduce the model’s parameter count and computational load, and
to improve detection speed, we introduced the PConv convolution module and designed the C2PC
structure. Through this series of structural optimizations and technological innovations, an improved
CSC-YOLO network was constructed. This network significantly enhances processing speed and
efficiency while maintaining high precision, greatly reducing the computational burden. The improved
network structure, as shown in Fig. 10, effectively addresses the challenges faced by the original model
in practical applications.
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Figure 10: CSC-YOLO network structure

4 Experiments and Analysis

This chapter primarily outlines the experimental environment for both software and hardware,
introduces the precision evaluation metrics required for preparation, and then proceeds with the
experiments and analysis of the results.

4.1 Experimental Environment and Relevant Parameters

The experimental environment in this paper is a Linux system, with an AMD EPYC 7742 CPU,
an NVIDIA GeForce RTX 3090 GPU, and 32 GB of RAM. The selected compiled version of Python
is Python 3.8.10. The YOLOv8 model needs to be trained under the PyTorch framework, with a batch
size of 16 and a total of 300 training epochs in this experimental configuration. This is detailed in
Table 1 below.

Table 1: Experimental environment and relevant parameters

Name Parameter details

Operating system Linux
CPU AMD EPYC 7742
GPU NVIDIA GeForce RTX 3090
RAM 32 GB
Programming language Python 3.8.10
Development environment Pycharm 2023.3.4 (Professional edition)
Deep learning framework PyTorch+CUDA11.6

(Continued)
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Table 1 (continued)

Name Parameter details

Batch size 16
Training epochs 300
Initial learning rate 0.01
Momentum 0.937
Weight decay 0.0005

4.2 Precision Assessment Metrics

This paper verifies the performance of the improved YOLOv8n network in recognizing underwater
shipwrecks using the following evaluation metrics: Precision (P), Recall (R), mean Average Precision
(mAP), F1-measure (F1), floating point operations per second (FLOPs), number of Parameters
(Params), frames per second (FPS), and Intersection over Union (IOU) [34,35]. The formulas are
summarized from References [34,35].

In classification problems, the prediction outcomes of positive and negative samples in the network
are usually divided into True Positives (TP), False Positives (FP), True Negatives (TN), and False
Negatives (FN). TP denotes cases where positive samples are correctly identified as positive. FP
denotes cases where negative samples are incorrectly identified as positive. TN denotes cases where
negative samples are correctly identified as negative. FN denotes cases where positive samples are
incorrectly identified as negative.

Precision represents the ratio of all correctly predicted positive cases to all cases identified as
positive, as shown in Eq. (7).

Precision = TP
TP + FP

. (7)

Recall represents the ratio of all correctly predicted positive cases among the positive samples to
all positive cases in the sample, as shown in Eq. (8).

Recall = TP
TP + FN

. (8)

In practical testing, Precision and Recall do not increase simultaneously; if one is high, the other
tends to be low. For example, high precision often corresponds to low Recall. Therefore, these metrics
do not clearly reflect the overall detection performance of the network. To balance Precision and
Recall, the F1 can be used for a comprehensive evaluation, better balancing these precision metrics.
The formula for the F1 is shown in Eq. (9).

F1 = 2PR
P + R

. (9)

Using Precision as the y-axis and Recall as the x-axis, a Precision-Recall (P-R) curve can be drawn.
The P-R curve clearly displays the overall situation of Precision and Recall in the network’s sample set.
The area under the P-R curve is known as Average Precision (AP). The calculation formula is shown
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in Eq. (10). A higher AP value indicates better detection performance of the network.

AP =
∫ 1

0

P(R)dR. (10)

In situations with multiple categories, the mean of the AP values for each category is known as
mAP, as shown in Eq. (11). In this study, the object is the single category of shipwrecks, so AP and
mAP are equal. mAP@0.5 means the IOU threshold is 0.5; a detection box is considered correct if
the overlap area with the true box exceeds 50%. mAP@0.5:0.95 represents the average of mAP at IOU
intervals from 0.5 to 0.95, with steps of 0.05.

mAP = 1
n

∑k=n

k=1
APk. (11)

FPS is a metric used to measure the speed of image processing or model inference, commonly
used to evaluate the performance of computer vision applications. FPS indicates the number of image
frames processed per second. The calculation formula is shown in Eq. (12).

FPS = 1000
preprocess + inference + postprocess

. (12)

In the formula, “preprocess” is the preprocessing time, “inference” is the inference time, and
“postprocess” is the postprocessing time.

4.3 Analysis of Experimental Results

Based on the content described in Section 4.2, this section evaluates the experiments using
performance metrics such as P, R, mAP, F1, FLOPs, Params, and FPS. P represents Precision,
reflecting the accuracy of the algorithm. R represents Recall, which reflects the algorithm’s rate
of missed detections. F1 serves as a balanced metric between P and R. mAP, as the mean average
precision, is a crucial metric that better reflects the algorithm’s performance. FLOPs and Params
indicate the complexity of the algorithm. FPS reflects the detection speed of the algorithm. For each
subsection, this paper selected the appropriate evaluation metrics for assessment.

To thoroughly evaluate the performance of the CSC-YOLO algorithm, we conducted several
experiments, including data augmentation, CGB module verification and addition, ablation studies
of various modules, comparisons with classic advanced algorithms, model generalization tests, speed
comparison on low computing power platforms, and heatmap analysis. The description of the
experiments is shown in Table 2.

Table 2: Experimental description

Number Experiment name Objectives or purposes

4.3.1 Dataset augmentation
experiment

A quantitative augmentation of the dataset is
implemented to initially address the issue of
overfitting.

4.3.2 Data augmentation
experimental analysis

A combination of offline and online data
augmentation is done with the aim of fully
addressing the issue of overfitting.

(Continued)
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Table 2 (continued)

Number Experiment name Objectives or purposes

4.3.3 Validation experiment for the
effectiveness of the CGB
module

Ablation experiments on the four components of
the CGB module are conducted to validate the
effectiveness of each component.

4.3.4 Addition and analysis of the
CGB module

The improvement locations of the CGB module
are analyzed and the optimal improvement plan
is selected.

4.3.5 Ablation experiment results
analysis

The ablation experiments of the internal
modules of the CSC-YOLO network are
presented, and the effectiveness of each
improved module is analyzed.

4.3.6 Comparative experiments of
different detection models

The CSC-YOLO algorithm is compared and
analyzed with different detection algorithms to
demonstrate its superiority.

4.3.7 Model generalization
experiment

The generalization capability of the CSC-YOLO
algorithm is analyzed by selecting two datasets
of ship classes to experimentally verify the
model’s generalization performance.

4.3.8 Detection speed comparison
experiment

The detection speed of the CSC-YOLO
algorithm is analyzed by comparing it with the
original YOLOv8 algorithm to verify the
detection speed improvement of the CSC-YOLO
algorithm.

4.3.9 Real detection effect
comparison experiment

Both the original and improved algorithms are
utilized for real sonar image detection,
comparing the detection results of the models to
validate the effectiveness of the improvements
made.

4.3.10 Detection heatmap analysis The models before and after improvement are
analyzed by plotting heatmap to visualize the
superiority of the CSC-YOLO algorithm.

4.3.1 Dataset Augmentation Experiment

Overfitting refers to a model performing better on the training set than on the validation set [36].
To determine whether the dataset is large enough to avoid overfitting, this paper adopts a systematic
approach: Based on the definition of overfitting, this study begins experiments with a dataset of
1000 images, then increases the dataset by 200 images at a time, repeating the experiments until the
performance on the training set is equal to that on the validation set. This critical point indicates
that the model has learned sufficient generalized features without overfitting the training data. The
experimental results are presented in Table 3.
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Table 3: Experiments on dataset size

Dataset
size

Training set mAP/% Validation set mAP/%

@0.5 @0.5:0.95 @0.5 @0.5:0.95

1000 76.8 44.2 75.6 43.8
1200 76.7 45.1 75.9 44.6
1400 77.1 45.7 76.4 45.2
1600 77.8 46.3 77.2 45.5
1800 79.0 47.2 78.8 46.9
1900 80.2 47.8 80.1 47.6
1940 80.2 47.9 80.2 47.9

As shown in Table 3, it can be observed that data augmentation reduces the issue of overfitting. As
the size of the dataset increases, the difference between the training set and the validation set gradually
decreases. When the dataset was increased to 1800 images, the mAP difference between the training
set and the validation set was minimal. Therefore, we increased the dataset for the experiment from
1800 to 1900 images, but we found that there was still a slight difference between the training set and
the validation set. To address this issue, we reduced the number of images added, specifically adding
10 images at a time. When the total reached 1940 images, we found that the mAP values of the training
set and the validation set were consistent. Therefore, we conclude that the dataset of 1940 images is
the optimal dataset.

4.3.2 Data Augmentation Experimental Analysis

To address the small sample problem, this paper employs offline data augmentation techniques
to expand the dataset. Specific methods include adding noise, adjusting brightness, random exposure,
rotating images, flipping images, converting to grayscale, and random erasing to reconstruct the
dataset. Additionally, online data augmentation using the Mosaic technique is applied to further
enhance its generalization ability. These techniques are used to augment shipwreck images, increasing
the number of shipwreck samples in the side-scan sonar images and improving the dataset’s general-
ization ability.

Through these augmentation methods, we have significantly enhanced the diversity and coverage
of the dataset, thereby aiding the network in better learning and generalizing features under various
conditions. To validate the effects of image enhancement, we conducted a series of experimental
comparisons before and after data augmentation. Through these experiments, we have been able
to clearly determine the specific impact of data augmentation techniques on model performance.
The results and comparisons of the experiment are shown in Fig. 11, where Data Augmentation-1
represents offline data augmentation, and Data Augmentation-2 combines offline and online data
augmentation. It demonstrates the differences in model performance before and after enhancement
and verifies the effectiveness of data augmentation in improving model generalizability.

The experimental results indicate that after data augmentation, there was a significant improve-
ment in model performance. Precision increases by 13.7%, Recall by 5.1%, F1 by 8.9%, mAP@0.5 by
10.7%, and mAP@0.5:0.95 by 4.3%. The experimental results demonstrate that data augmentation
enhances data diversity, allowing the network to learn a broader range of features more effectively,
significantly boosting network precision and preventing overfitting due to a small dataset.
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Figure 11: Before and after data augmentation comparison

4.3.3 Validation Experiment for the Effectiveness of the CGB Module

As shown in Fig. 5, this paper conducts ablation experiments on four components of the CGB
module to verify the effectiveness of the local feature extractor f loc, the surrounding context extractor
fsur, the joint feature extractor f joi, and the global context extractor fglo. The effectiveness of each
component is demonstrated by comparing the results after removing each part with those of the
original CGB module. It is important to note that because the joint feature extractor f joi has the
function of concatenation, removing it prevents f loc and fsur from being concatenated, allowing them to
be used only individually. Therefore, when f joi is removed, we also separately remove either the f loc or
fsur module for the experiments. Here, ‘w’ indicates that this component is used, while ‘w/o’ indicates
that this component is removed. We use mAP, Params, and FLOPs as evaluation metrics, and the
experimental results are presented in the Table 4.

Table 4: Ablation experiments within the CGB module

f loc f sur f joi fglo mAP/% Params/M FLOPs/G

@0.5 @0.5:0.95

w/o w w w 86.7 51.4 3.11 8.3
w w/o w w 87.2 50.1 3.11 8.3
w/o w w/o w 86.9 51.3 3.10 8.3
w w/o w/o w 86.5 50.6 3.11 8.3
w w w w/o 86.1 49.5 3.19 8.6
w w w w 87.4 51.8 3.20 8.6

Through the ablation experiments of each component, it can be observed that removing the local
feature extractor f loc, the surrounding context extractor fsur, the joint feature extractor f joi, and the
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global context extractor fglo leads to varying degrees of accuracy degradation, indicating that these
four components are essential for the CGB module.

4.3.4 Addition and Analysis of the CGB Module

This paper explores the optimal improvement method by utilizing the CGB module in different
positions. YOLOv8n-CGB employs the CGB module as a Downsampling module and enhances the
Conv module to establish connections between local and global contexts, thereby accurately classifying
each pixel in the image. YOLOv8n-C2f_CGB replaces the Bottleneck module in C2f with the CGB
module, thereby reducing the number of parameters and computational load. Experiments were
conducted on these two improvements, as shown in Table 5.

Table 5: CGB module addition

Model P/% R/% mAP/% F1/% Params/M FLOPs/G

@0.5 @0.5:0.95

YOLOv8n-CGB 90.1 79.8 87.4 51.8 84.6 3.2 8.6
YOLOv8n-C2f_CGB 86.1 80.7 85.1 48.6 83.3 2.5 6.7

As shown in the table above, while the YOLO-C2f_CGB module can reduce the complexity of the
model, its precision is less than satisfactory. The YOLOv8n-CGB outperforms YOLOv8-C2f_CGB in
precision metrics. Therefore, this paper selects the YOLOv8n-CGB improvement method.

4.3.5 Ablation Experiment Results Analysis

To confirm the effectiveness of each improvement, this paper has designed a series of ablation
experiments. The specific experimental setup is as follows: A represents the original YOLOv8n model;
B represents the introduction of the CGB module into the model; C represents the use of the detection
head SCGD; D represents the introduction of the C2PC module. The experiments are divided into
eight groups, with detailed configurations and results listed in Table 6. This approach allows us to
analyze in detail the specific impact of each improvement on model performance.

Table 6: Ablation experiments for each module

Groups A B C D P/% R/% mAP/% F1/% Params/M FLOPs/G

@0.5 @0.5:0.95

1 √ 88.5 76.5 85.6 51.4 82.0 3.0 8.2
2 √ √ 90.1 79.8 87.4 51.8 84.6 3.2 8.6
3 √ √ 89.9 82.2 87.9 49.4 85.7 2.3 6.5
4 √ √ 85.6 80.0 86.3 50.1 82.7 2.7 7.4
5 √ √ √ 90.2 83.3 88.3 51.9 86.6 2.6 7.0
6 √ √ √ 89.1 81.1 88.4 52.2 84.9 3.1 7.9
7 √ √ √ 87.5 73.7 82.6 48.0 80.0 2.3 5.9
8 √ √ √ √ 91.0 82.9 88.7 52.6 86.7 2.4 6.3
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These eight ablation experiments demonstrate that combinations of different modules have
improved performance to varying degrees, fully proving the effectiveness of this research method in
enhancing the performance of side-scan sonar shipwreck image object detection. A detailed analysis
of several representative experimental results follows:

Experiment 2: After introducing the CGB module, the model’s Precision increases by 1.6%, Recall
by 3.3%, F1 by 2.6%, mAP@0.5 by 1.8%, and mAP@0.5:0.95 by 0.4%. The experimental results
indicate that the CGB module enhances feature representation and model performance, allowing the
network to learn richer feature information. However, this also leads an increasement in Parameters
by 0.2 M and FLOPs by 0.4 G, which may reduce detection speed.

Experiment 5: Introducing the SCGD detection head on top of the CGB module further improves
precision metrics, with Precision increasing by 0.1%, Recall by 3.5%, F1 by 2%, mAP@0.5 by 0.9%,
and mAP@0.5:0.95 by 0.1%. Additionally, Parameters and FLOPs decreased by 0.6 M and 1.6 G,
respectively. The experimental results indicate that Group Normalization and shared convolution
operations not only enhanced the detection head’s localization and classification performance but
also significantly reduced parameters and computation, increasing detection speed.

Experiment 8: Further introducing the C2PC module on top of the CGB module and SCGD
detection head results in further reductions in parameters and computation. Precision increases by
0.8%, Recall slightly decreases by 0.4%, F1 increases by 0.1%, mAP@0.5 by 0.4%, and mAP@0.5:0.95
by 0.7%. Parameters decrease to 2.4 M, and FLOPs decrease to 6.3 G. The experimental results indicate
that the C2PC module effectively reduces computational complexity while still efficiently extracting
spatial features, enhancing the model’s overall performance.

These experimental results highlight the importance of the improvements in enhancing shipwreck
detection performance and also demonstrate the potential for optimizing computational resource
usage. To visually display the effects of the improvement modules in Experiments 2, 5, and 8, we
performed result visualization, as shown in Fig. 12. The figure illustrates the changes in three key
metrics—Loss, mAP@0.5, and mAP@0.5:0.95—during the training process.

Figure 12: Ablation experiment training comparison. (a) Loss training change curve; (b) mAP@0.5
training change curve; (c) mAP@0.5:0.95 training change curve

As seen in Fig. 12, both the original YOLOv8n model and the improved models show a gradual
decrease in loss values with increasing training steps, stabilizing around 300 steps, indicating that the
models have reached a good fit. Additionally, by comparing the mAP@0.5 and mAP@0.5:0.95 curves,
it is evident that the improved models exhibit faster training convergence than the original model.
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Comprehensive analysis of these results shows that the improved CSC-YOLO model achieved
an overall increasement of 6.4% in Recall, 3.1% in mAP@0.5, and 4.7% in F1. These data strongly
demonstrate that the proposed improvements significantly enhance the model’s performance in
shipwreck detection, validating the effectiveness of the improvements. These enhancements not only
improve the model’s performance but also optimize the training process, making the model more
suitable for practical application scenarios.

4.3.6 Comparative Experiments of Different Detection Models

To further validate the superiority of the algorithm, a comparative experiment was conducted
using the same dataset under identical experimental conditions. Several classical algorithms and
mainstream object detection algorithms were selected for comparative experiments. The specific
algorithms chosen include two-stage algorithms such as Faster-RCNN and Cascade-RCNN [37],
as well as one-stage algorithms like TOOD [38], YOLOv5n [39], YOLOX-Tiny [40], YOLOv8n,
YOLOv9c [41], YOLOv9t, YOLOv9s, YOLOv10 [42], RT-DETR [43], and the CSC-YOLO designed
in this paper. Through systematic training and evaluation of these models, the comparative results are
summarized in Table 7, providing a clear demonstration of the performance and efficiency differences
of each algorithm when processing this dataset.

Table 7: Comparative experiment results

Model mAP@0.5 mAP@0.5:0.95 Params/M FLOPs/G

Faster-RCNN 84.3 47.9 41.39 208
Cascade-RCNN 83.6 48.0 69.3 236
TOOD 85.8 51.7 32.1 199
YOLOv5n 86.4 48.7 2.5 7.1
YOLOX-Tiny 86.7 44.2 5.1 7.6
YOLOv8n 85.6 51.4 3.0 8.2
YOLOv9c 86.7 51.3 25.3 102.3
YOLOv9t 84.7 49.8 2.0 7.6
YOLOv9s 87.4 52.3 7.3 27.4
YOLOv10n 83.9 49.3 2.3 6.5
RT-DETR 85.0 52.1 19.8 56.9
CSC-YOLO 88.7 52.9 2.4 6.3

As shown in Table 7, it can be inferred that the algorithm proposed in this study exhibits excellent
performance compared to other mainstream object detection algorithms. Notably, high-parameter
models such as Faster RCNN, Cascade-RCNN, and TOOD show limited adaptability to this dataset,
resulting in relatively low detection precision. Although YOLO series algorithms and the RT-DETR
algorithm have advantages in terms of parameter count and computational load, their detection
precision remains relatively low. In contrast, the CSC-YOLO algorithm achieves the highest detection
precision while maintaining low parameter counts and computational load. Considering all factors,
CSC-YOLO is a high-performance and efficient object detection algorithm that is well-suited for
modern industrial applications.
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4.3.7 Model Generalization Experiment

To verify the generalization capability of the CSC-YOLO algorithm, this paper selects two
different types of ship datasets: one is a Synthetic Aperture Radar (SAR) dataset, and the other is an
optical satellite imagery dataset. Although both are ship datasets, the image types differ significantly
from the datasets used in this paper. Therefore, these two datasets are used to validate the algorithm
presented in this paper.

The SAR ship dataset selected is the SAR Ship Detection Dataset (SSDD) [44]. The SSDD dataset
is a single-category ship dataset with a total of 1160 images and 2456 ships, averaging 2.12 ships per
image, with a high proportion of small objects, making detection challenging. The detection results
are shown in Table 8: Precision increases by 0.5%, Recall by 1.8%, F1 by 0.4%, mAP@0.5 by 1.2%,
and mAP@0.5:0.95 by 0.6%. The data indicate that the algorithm has a certain level of generalization
capability.

Table 8: Detection results comparison on SSDD dataset

Model P/% R/% mAP/% F1/% Params/M FLOPs/G

@0.5 @0.5:0.95

YOLOv8n 96.5 93.3 97.1 71.3 94.8 3.0 8.2
CSC-YOLO 97.0 95.1 98.3 71.9 95.2 2.4 6.3

The ShipRSImageNet dataset [45] was selected for optical satellite image data. The ShipRSIm-
ageNet is an optical remote sensing image dataset for ship detection and classification. It comprises
3435 images, each approximately 930 × 930 pixels, categorized into a total of 50 object classes. The
recognition task was conducted using the CSC-YOLO algorithm. The detection results are presented
in Table 9, with Precision increasing by 1.4%, Recall by 1.2%, F1 by 1.4%, mAP@0.5 by 1.6%, and
mAP@0.5:0.95 by 0.7%. It is evident that the CSC-YOLO algorithm shows a significant improvement
over the YOLOv8n algorithm in the context of optical satellite imagery.

Table 9: Detection results comparison on ShipRSImageNet dataset

Model P/% R/% mAP/% F1/% Params/M FLOPs/G

@0.5 @0.5:0.95

YOLOv8n 58.8 58.3 61.2 50.9 58.5 3.0 8.2
CSC-YOLO 60.2 59.5 62.8 51.6 59.9 2.4 6.3

4.3.8 Detection Speed Comparison Experiment

To verify whether the module’s lightweight processing has improved, a speed validation experiment
was conducted on a resource-limited device platform, using an NVIDIA GeForce RTX 3050Ti mobile
device. The results are listed in Table 10.



CMC, 2024 21

Table 10: Comparison of lightweight degree before and after improvement

Model Params/M FLOPs/G FPS

YOLOv8 3.0 8.2 85
CSC-YOLO 2.4 6.3 100

By applying Eq. (12), we obtained the FPS value. As shown in the results table, compared to
the original YOLOv8n model, the CSC-YOLO model reduces the number of parameters by 20% and
the computational load by 23.2%, while increasing the FPS value by 17.6%. These indicate that the
detection network constructed in this paper can achieve real-time detection on a low computing power
mobile GPU, effectively enhancing detection efficiency and speed.

The GPU used in this experiment is the GeForce RTX 3050 Ti mobile graphics card, which has
a power consumption of 80W and a computing speed of 7.2 TFLOPs. Devices such as unmanned
ships and AUVs typically can only accommodate low-power devices. For example, the NVIDIA Jetson
TX2 embedded edge computing device can achieve a computing speed of 1.33 TFLOPs at a power
consumption of 7.5W [46], which is about one-fifth of the computing speed of the 3050 Ti. If the
detection model constructed in this paper is deployed on such a device, even with one-fifth of the
detection speed, it can still meet the requirements for real-time detection.

4.3.9 Real Detection Effect Comparison Experiment

Three challenging side-scan sonar shipwreck images were selected for the detection task. Fig. 13
shows the comparison of shipwreck object detection results before and after the improvements, from
top to bottom: the original image, the annotated image, the detection result of the YOLOv8n model,
and the detection result of the CSC-YOLO model. This intuitive comparison clearly demonstrates
the performance differences between the two models in shipwreck object detection. Such visual
representation helps evaluate and understand the specific effects of the improvements, highlighting
the advantages of the CSC-YOLO model, especially in scenarios that are challenging for the original
model.

From the analysis of Fig. 13, the original YOLOv8n model tends to miss small objects, especially in
complex underwater environments where it struggles to accurately identify shipwreck objects, leading
to frequent false detections. Although it can detect overlapping objects, its localization precision and
confidence are not at an ideal level. Compared to the original model, the proposed CSC-YOLO model
shows significant improvements in both localization precision and confidence. In the first and third sets
of experiments, it effectively mitigated the issue of missed detections. In the second set of experiments,
it significantly reduced false detections, making the model’s shipwreck detection more accurate and
detailed, with detection boxes better fitting the object contours.

4.3.10 Detection Heatmap Analysis

During the training process of network models, the semantic information of lower-level feature
maps is often not easily visualized. To gain deeper insights into the model’s focus on features during
detection, this paper employs Gradient-weighted Class Activation Mapping (Grad-CAM) technology
[47]. This technique generates heatmaps by calculating gradients on feature maps, thereby visualizing
the model’s attention points during the recognition process.
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Figure 13: Comparison of model detection results before and after improvement. (a) Original image;
(b) Annotated imaged; (c) YOLOv8n detection image; (d) CSC-YOLO detection image

The heatmaps generated before and after the model improvements are shown in Fig. 14. In these
heatmaps, red areas indicate the highest attention of the model, yellow areas indicate high attention,
and blue areas represent regions with minimal impact on the model’s recognition process, often
considered redundant information. By comparing the heatmaps before and after the improvements,
one can visually observe the changes in the model’s focus on features and assess the effectiveness of
the optimizations.

From the Grad-CAM generated heatmaps, it can be seen that the original YOLOv8 model has a
relatively scattered focus on shipwreck objects, with almost no significant attention on small objects.
In complex environments, the focus areas are overly dispersed, leading to erroneous detections. This
indicates that the original model may have difficulties handling complex or small objects.

In contrast, the CSC-YOLO model’s main focus areas are concentrated on the object locations,
showing better focusing capability. This concentration of attention helps avoid interference from
environmental factors, effectively preventing false detections and missed detections. By optimizing the
attention points, CSC-YOLO improves detection precision and reliability, especially in cases where
the objects are small or the background is complex. These improvements make CSC-YOLO an ideal
choice for handling challenging detection tasks.
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Figure 14: Heatmap comparison before and after improvement. (a) Original image; (b) YOLOv8n; (c)
CSC-YOLO

5 Conclusion

In the task of detecting shipwrecks in side-scan sonar images, the complex underwater environ-
ment poses significant limitations, leading to low detection precision and slow detection speeds. In this
study, to address the small sample problem, this paper performs offline data augmentation based on
the imaging characteristics of side-scan sonar shipwreck images, thereby expanding the dataset and
increasing sample diversity. And this method enhances the model’s generalization capability through
the integrated Mosaic algorithm. Furthermore, we address the issues of low detection precision and
low detection speeds in side-scan sonar shipwreck image detection by proposing an improved YOLOv8
network-based method. By introducing the CGB module into the backbone network, the method
enhances the network’s ability to learn and express image features, improving feature extraction and
making shipwreck images easier to detect. Additionally, by using Group Normalization technology
and shared convolution operations, we designed the SCGD detection head, which significantly reduces
parameters and computational load while improving localization and classification performance.
Using the C2f structure and PConv convolution, we constructed the C2PC module, which helps the
network maintain effective spatial feature extraction while reducing computational complexity. The
improvements mentioned above have led to the following enhancements in the CSC-YOLO model:
Precision increases by 2.5%, Recall increases by 6.4%, mAP@50 increases by 3.1%, mAP@50:95
increases by 1.2%, and F1 rises by 4.7. Additionally, the computational load decreases by 20%, the
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parameter count reduces by 23.2%, and FPS increases by 17.6%. This model achieves a good balance
between detection precision, detection speed, and model structure, meeting the demand for model
light-weighting in engineering deployments. This model can be applied to searching shipwrecks in
complex sea areas.
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