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ABSTRACT

The rapid proliferation of electric vehicle (EV) charging infrastructure introduces critical cybersecurity vulnera-
bilities to power grids system. This study presents an innovative anomaly detection framework for EV charging
stations, addressing the unique challenges posed by third-party aggregation platforms. Our approach integrates
node equations-based on the parameter identification with a novel deep learning model, xDeepCIN, to detect
abnormal data reporting indicative of aggregation attacks. We employ a graph-theoretic approach to model EV
charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation. The
xDeepCIN model, incorporating a Compressed Interaction Network, has the ability to capture complex feature
interactions in sparse, high-dimensional charging data. Experimental results on both proprietary and public
datasets demonstrate significant improvements in anomaly detection performance, with F1-scores increasing by
up to 32.3% for specific anomaly types compared to traditional methods, such as wide & deep and DeepFM
(Factorization-Machine). Our framework exhibits robust scalability, effectively handling networks ranging from
8 to 85 charging points. Furthermore, we achieve real-time monitoring capabilities, with parameter identification
completing within seconds for networks up to 1000 nodes. This research contributes to enhancing the security
and reliability of renewable energy systems against evolving cyber threats, offering a comprehensive solution for
safeguarding the rapidly expanding EV charging infrastructure.
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Glossary/Nomenclature/Abbreviations

EV Electric Vehicle
Agg-plat Aggregation platform
MCMC Markov Chain Monte Carlo
CIN Compressed Interaction Network

1 Introduction

The global energy sector is experiencing a significant shift, propelled by the increasing adoption
of renewable energy sources in industrial development [1]. Electric vehicles (EVs) play a pivotal role
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in this transformation, with their sales growth paralleling the expansion of the lithium battery market
[2,3]. The rapid increase in EV adoption has spurred substantial growth in the charging service market.
In China, for instance, public charging consumption is expected to surpass 338 billion kilowatt-
hours by 2030 [4,5]. The charging infrastructure has expanded rapidly, with the recent addition of
millions of new charging units [6,7]. Government policies have supported this growth, leading to the
proliferation of third-party Agg-plat serving over 87% of EV users [8,9]. The rapid proliferation of EV
charging infrastructure poses significant challenges to power grid operations. The intermittent and
high-power nature of EV charging can lead to voltage fluctuations, harmonic distortions, and potential
overloading of distribution transformers. Studies have shown that uncoordinated EV charging can
increase peak load by up to 30%, potentially compromising grid stability and power quality. Moreover,
the geographic concentration of charging stations in urban areas may exacerbate local grid congestion,
necessitating costly infrastructure upgrades.

Although these platforms improve user experience through wireless technologies, they simul-
taneously introduce critical vulnerabilities to the power grid [10,11]. The rapid market expansion,
coupled with inadequate security measures, has left these platforms susceptible to aggregation attacks
[12], such as: 1) unusual power consumption patterns; 2) inconsistencies between reported and
actual charging states; 3) Unexpected changes in charging duration or frequency. These malicious
activities can exploit vulnerabilities in terminal devices, potentially leading to power anomalies,
voltage fluctuations, and grid stability threats [13]. Consequently, the development of robust anomaly
detection mechanisms for third-party Agg-plat is critical [14]. Beyond cybersecurity concerns, these
Agg-plat also impact grid stability and power quality. Their ability to control large numbers of charging
stations simultaneously can lead to sudden load changes, potentially triggering frequency deviations
and voltage sags. Furthermore, the complex interactions between multiple aggregators and the grid
can introduce unforeseen dynamics, complicating traditional power system control and optimization
strategies. The primary purposes of anomaly detection for EV charging stations are multifaceted:

1. Cybersecurity: To protect against malicious attacks that could compromise the integrity of the
charging infrastructure or the power grid [15].

2. Operational Efficiency: To identify malfunctioning equipment or inefficient charging patterns
that could lead to increased operational costs [16].

3. Grid Stability: To detect unusual charging behaviors that might destabilize the local power
distribution network [17].

These motivations are increasingly critical as the EV charging infrastructure expands and becomes
more integrated with smart grid technologies.

Recent studies have investigated diverse methods to tackle this challenge, encompassing both
unsupervised and supervised learning approaches. Mestav et al. introduced a GAN-based framework
for detecting anomalies in power system measurements [18]. Miraftabzadeh et al. developed an
advanced density-based spatial clustering algorithm for power grid anomaly detection [19]. Supervised
anomaly detection techniques have gained traction due to their ability to leverage labeled datasets [20].
Haldorai et al. proposed an ensemble framework combining multiple machine learning algorithms for
detecting anomalies in EV charging data [21]. Tang et al. introduced a deep neural network archi-
tecture incorporating attention mechanisms [22]. Deep cross-network models have shown promise
in capturing complex feature interactions in sparse, high-dimensional data. Badr et al. adapted the
Wide & Deep architecture for anomaly detection in smart meter data [23], while Wu et al. utilized a
modified DeepFM architecture to detect fraudulent charging behaviors. Considering these challenges,
there is a pressing need for advanced monitoring and control systems that can ensure grid stability
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and power quality while accommodating the growing EV charging load. Our proposed anomaly
detection framework not only addresses cybersecurity threats but also contributes to improved grid
management. By accurately identifying abnormal charging behaviors, this approach enables system
operators to swiftly respond to potential disturbances, optimize power flow, and maintain grid stability
under varying EV charging scenarios.

This study introduces an innovative anomaly detection framework for EV charging stations,
addressing the critical security challenges faced by third-party Agg-plat. Our approach integrates
node equation-based parameter identification with a novel deep learning model, xDeepCIN, to
detect abnormal data reporting indicative of aggregation attacks. The xDeepCIN model, a deep
cross-network architecture incorporating a Compressed Interaction Network, is designed to capture
complex feature interactions in sparse, high-dimensional data typical of charging infrastructure. Our
research contributes to ensuring the security and reliability of renewable energy systems against
evolving cyber threats. By addressing the unique challenges of third-party charging platforms, this
framework represents a substantial advancement in cybersecurity for smart vehicle ecosystems,
offering enhanced protection for the rapidly expanding EV charging infrastructure. By integrating
node equation-based parameter identification with deep learning techniques, our framework provides
a comprehensive solution for enhancing both the security and operational efficiency of EV charging
infrastructure. This approach not only detects potential cyber threats but also offers valuable insights
for grid operators, enabling more effective load balancing, improved power quality management,
and optimized utilization of existing grid infrastructure in the face of increasing EV adoption. In
conclusion, our study makes several key contributions to the field:

1. A graph-theoretic approach to rigorously model EV charging networks;
2. A MCMC method to accurately estimate charging terminal parameters from aggregation

platform data;
3. A novel deep cross-network architecture, xDeepCIN, incorporating a Compressed Interaction

Network, designed to capture complex feature interactions in sparse, high-dimensional charg-
ing data.

4. Demonstrating the effectiveness of our framework through extensive experiments on both
proprietary and public datasets, showing significant improvements in anomaly detection
performance compared to existing methods.

2 Methodology
2.1 Power System Modeling

To rigorously model the EV charging network within the power distribution system, we employ
a graph-theoretic approach. Let G = (V , E) represent the distribution network, where V is the set of
nodes (buses) and E is the set of edges (lines). Each EV charging station is modeled as a node vi ∈
V with time-varying power injection Pi(t) + jQi(t). The power flow equations for the network can be
expressed as:

Pi + jQi = Vi

∑
k∈Ni

Yik
V

exp(jθik)

k , (1)

where Vi is the voltage magnitude at node i, Yik is the admittance between nodes i and k, θik is the
voltage angle difference, and Ni is the set of nodes adjacent to i.
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For the EV charging stations, we model the power injection as a function of the charging rate ri (t)
and the battery state of charge SOCi (t):

Pi (t) + jQi (t) = f (ri (t) , SOCi (t)) , (2)

where f (·) is a nonlinear function capturing the characteristics of the charging process.

2.2 Node Equation in Distributed Charging Terminal

Fig. 1a illustrates the architecture of a typical charging distributed terminal, comprising both the
power system and the third-party Agg-plat. Solid black lines show device data flow within the power
system, while dashed green lines represent data flow in third-party platforms like Tesla Superchargers.
Data transmission occurs wirelessly via 4G/5G networks, which, despite their efficiency, introduce
vulnerabilities to aggregation attacks (illustrated by red dotted lines). To improve anomaly detection
in Agg-plat, we employed node voltage equations to inversely solve terminal device parameters. Based
on the node equation theory, all topology’s structures in the power distribution network (PDN) can
be simplified as three typical forms, �-type, T-type, and Π-type equivalents. Among these types, �-
type equivalent is applied to describe the terminal part in PDN, such as the charging distributed
terminal. We simplified the charging topology to a �-type equivalent circuit and assumed a balanced
three-phase system for computational efficiency. The balanced three-phase system assumption satisfies
the most of the application occasions and simplifies calculations and is often reasonable for well-
designed distribution networks. However, this may not hold in some special scenarios, particularly in
networks with significant single-phase loads or unbalanced conditions. Fig. 1b illustrates our power-
flow calculation methodology. Due to the short distances and low voltage levels in distribution
networks, we modeled lines as short-circuit elements, neglecting charging capacitance.

Figure 1: The diagram of the Agg-plat with charging terminal. (a) The frame diagram of charging
distributed terminal; (b) The frame diagram of charging distributed terminal

Fig. 1b depicts real-time measurements of active power Pd, reactive power Qd, and voltage Ud

at the transformer’s high-voltage side. Other critical parameters, including transformer and line
characteristics, are harder to detect but essential for PDN analysis. We adopted a �-type equivalent
circuit model to balance computational efficiency with accuracy. This simplification assumes negligible
shunt capacitance, which is generally valid for short distribution lines. However, this assumption may
introduce errors for longer lines or in networks with significant capacitive effects. The balanced three-
phase system assumption satisfies the most of the application occasions and simplifies calculations and
is often reasonable for well-designed distribution networks. However, this may not hold in some special
scenarios, particularly in networks with significant single-phase loads or unbalanced conditions. These
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parameters follow a specific mathematical relationship, crucial for understanding network behavior
as Eq. (3).⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pd = PLd + P2
Ld + Q2

Ld

U 2
Ld

RT
d + U 2

LdG2
d

Qd = QLd + P2
Ld + Q2

Ld

U 2
Ld

X T
d + U 2

LdB2
d

Ud =
√(

ULd + ΔUT
d

)2 + (
δUT

d

)2

, (3)

where ΔUT
d is longitudinal value, and δUT

d is the lateral element of impedance voltage drop at bus d as
exhibited in Eq. (4).⎧⎪⎪⎨
⎪⎪⎩

ΔUT
d = PLdRT

d + QLdX T
d

ULd

δUT
d = PLdX T

d + QLdRT
d

ULd

. (4)

At bus c, the voltage Uc, longitudinal value ΔUT
cd and impedance voltage drop δUT

cd are represented
as Eq. (5).⎧⎪⎪⎪⎪⎪⎪⎨
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Uc =
√(

Ud + ΔUT
cd

)2 + (
δUT

cd

)2

ΔUT
cd = PdRT

cd + QdX T
cd

ULd

δUT
cd = PdX T

cd + QdRT
cd

ULd

. (5)

Based on the Eqs. (1) to (5), the voltage at bus c can be regarded as the objective minimal function,

fc (x) =
√(

Ud + ΔUT
cd

)2 + (
δUT

cd

)2 −
√(

ULc + ΔUT
c

)2 + (
δUT

c

)2
. (6)

2.3 Parameter Identification of Charging Devices

We utilize Markov Chain Monte Carlo (MCMC) techniques to determine charging terminal line
and equipment parameters from aggregation platform data [24,25]. MCMC updates the Bayesian
posterior probability distribution using Markov process transition probabilities. It then generates
random values for power distribution network parameters, stabilizing the Markov process. This
process postulates that an object’s state is solely dependent on its immediately preceding state,
as illustrated in Eq. (5). This approach enables efficient parameter space exploration and robust
identification within the search space.

πn = π0pn
ij, pij = P (Xn+1 = j|Xn = i) , i, j ∈ S. (7)

In this model, πi represents the object’s state at a given moment, with π0 as the initial parameter
value. In a discrete-time Markov chain, the transition probability P represents the likelihood of
transitioning from state i to state j. We normalize the loss function J to the range [0, 1] and utilize it
as the transition probability. The optimal solution is achieved through N iterations. Eq. (6) expresses
the J .
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J =
T∑

k=1

(JL + JC) , (8)

where the JL and JC are list as Eq. (9).

JL = |ûk − uk| + ∣∣̂ik − ik

∣∣ − |pk + jQk| +
∣∣∣∣∣
�̂uk

�̂ik

∣∣∣∣∣ , JC =
∣∣∣ûk × îk − √

P2
k + Q2

k

∣∣∣ + |ûk − uk × n| , (9)

where initial distributions include short-circuit loss (pk), voltage percentage (uk%), and no-load current
percentage (ik%). These distributions account for the nonlinear nature of the probability space. Monte
Carlo simulations generate parameter values aligned with these initial distributions, which are then
combined with actual feeder line data for power flow calculations. The resulting loss function informs
a Markov chain process that updates the parameter distributions. This iterative process continues, with
Monte Carlo methods generating new parameter values based on updated distributions, followed by
power flow calculations to determine low-voltage side voltages and new loss functions.

The convergence of our MCMC-based parameter estimation method can be analyzed using
the theory of Markov chain convergence to stationary distributions. Let π be the target posterior
distribution of the parameters θ . We prove that our Markov chain θ t converges to π in total variation
distance,

lim
t→∞

∥∥�t (θ 0, ·) − π (·)∥∥
TV

= 0, (10)

where P
t is the t-step transition kernel of the Markov chain. To establish this convergence, we

demonstrate that our Markov chain satisfies the conditions of irreducibility, aperiodicity, and Harris
recurrence.

2.4 Deep Cross-Network Equipped with a CIN

We developed an advanced CIN architecture to improve the detection of complex feature
interactions while preserving vector-level processing efficiency. This method structures input features
and hidden layers as matrices, X 0 and X k, where X k ∈ R

Hk∗D denotes the input of the kth layer. Each
CIN neuron is derived from the previous hidden layer and original feature vectors, as illustrated in
Fig. 2.

For the kth layer, the work flow is expressed as:

xk
h,∗ =

Hk−1∑
i=1

m∑
j=1

Wk,h
ij

(
xk−1

i,∗ � x0
j,∗
)

, (11)

where xk
h,∗ ∈ R

1∗D and Wk,h ∈ R
Hk−1∗m are the weight, � denotes the Hadamard product. This

formulation allows for efficient pre-computation of pairwise vector interactions as 〈a1, a2, a3〉 ◦
〈b1, b2, b3〉 = 〈a1b1, a2b2, a3b3〉 , Vectors within a layer are primarily differentiated by their summation
weight matrices W , allowing for efficient pre-computation of Hadamard products between vector
pairs. Fig. 3 illustrates this process: (a) We generate intermediate results, represented by tensor Zk+1.
(b) We apply weight matrix W k,i ∈ R

Hk∗m along the tensor’s D dimension, performing element-wise
multiplication and summation layer by layer. This yields the ith vector for the (k+1)th layer. This
methodical approach captures complex feature interactions across layers, improving the model’s ability
to detect subtle anomalies.



CMC, 2025, vol.82, no.1 433

Figure 2: The basic structure of CIN

Figure 3: The work-flow of CIN. (a) An example of a tensor; (b) The calculation process of a tensor

Our model effectively processes high-dimensional, sparse data typical of EV charging systems,
enhancing anomaly detection accuracy. The CIN offers key advantages: increasing depth of feature
interactions with network layers, capturing multi-order interaction patterns through pooling connec-
tions, and maintaining layer-specific parameters with fixed input X 0. By integrating CIN with linear
regression (LR) and fully connected neural networks, we developed xDeepCIN, a comprehensive
model leveraging both explicit and implicit high-order feature interactions. In Fig. 4, this hybrid
approach combines memorization and generalization strengths, enabling more nuanced anomaly
detection in complex EV charging data.
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Figure 4: The structure of xDeepCIN

The xDeepCIN model demonstrates superior performance compared to traditional methods for
several reasons: 1) Feature Interaction Modeling: xDeepCIN’s CIN component effectively captures
complex, high-order feature interactions. This is particularly beneficial for EV charging data, where
relationships between features are often non-linear and interdependent; 2) Hybrid Architecture: By
combining linear and deep components, xDeepCIN leverages both memorization and generalization
capabilities. This allows it to capture both low-order and high-order feature interactions effectively;
3) Adaptive Feature Learning: The model’s deep neural network components enable adaptive feature
learning, allowing it to automatically extract relevant features from high-dimensional, sparse data.
The xDeepCIN enhances capturing intricate relationships in sparse, high-dimensional EV charging
datasets. This improved feature interaction modeling enables more accurate identification of subtle
anomalies, potentially indicating security threats or system malfunctions.

3 Results and Discussions
3.1 Results and Discussions of MCMC for Charging Node Equation

To reduce result variability, we emphasize parameter standard precision in our analysis. We deem
randomness insignificant when parameter updates in subsequent iterations fall below the standard
precision threshold. Table 1 displays the static parameters of the standard 10 kV feeder network used
in this study.

Table 1: The static parameters of the real data-set

Rcd(Ω/km) X cd(Ω/km) X d(Ω/km) Rd(Ω/km) Gd(S) Bd(S)

Static value 0.1263 0.1665 10.000 2.825 5.7e−6 3.2e−5

Precisions 1e−4 1e−4 1e−3 1e−3 1e−6 1e−5

Convergence 1e−5 1e−5 1e−4 1e−4 1e−7 1e−6

To validate the generalizability of our approach, we examined charging pile data collected on 01
January 2024, using a supervisory control system with 15-min sampling intervals. Fig. 5 illustrates:
(a) high-voltage side three-phase first section voltage, (b) low-voltage side three-phase voltage, (c)
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low-voltage side three-phase active power, and (d) low-voltage side three-phase reactive power. This
comprehensive dataset al.lows for a thorough evaluation of our method’s performance across various
electrical parameters.

Figure 5: The three-phase first section. (a) High voltage side; (b) Low voltage side; (c) Active power;
(d) Re-active power

To demonstrate our approach’s generalizability, we analyzed charging pile data from 01 January
2024, collected using a supervisory control system with 15-min sampling intervals. Fig. 5 illustrates
three-phase first section: (a) high voltage, (b) low voltage, (c) low-voltage side’s active power, and (d)
low-voltage side’s reactive power. This comprehensive dataset al.lows for a thorough evaluation of our
method’s performance across various electrical parameters.

Fig. 5a demonstrates that the high-voltage side (UC in Fig. 1b) complies with the three-phase
balance principle, satisfying the prerequisites for node equation solving and parameter identification.
Fig. 5b–d reveals consistent trends in active power, reactive power, and low-voltage side parameters
(Pd, Qd, and Ud in Fig. 1b), validating data stability for identification purposes. Fig. 6 presents the
MCMC method’s parameter identification results. It demonstrates remarkable consistency between
high-voltage values derived from our MCMC-based real-time identification method (Umcmc) and actual
measured high-voltage values (Ustd) across 1000 consecutive 15-min sampling periods.

The xDeepCIN exhibits high sensitivity to high-voltage fluctuations, confirming its ability to
accurately estimate terminal device parameters from aggregation platform data. This responsiveness
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to real-time variations is crucial, enhancing the model’s capacity for continuous monitoring and rapid
detection of potential aggregation attacks. It provides a robust framework for detecting anomalies
indicative of malicious activities or system irregularities in EV charging infrastructure by delivering
real-time parameter estimations that accurately reflect actual system behavior. The demonstrated
accuracy and responsiveness of our MCMC-based parameter identification method underscore its
potential as an effective tool for maintaining the security and reliability of charging networks, partic-
ularly against evolving threats. Our results demonstrate the effectiveness of the proposed framework
under the stated assumptions. Future studies could focus on adapting the model to handle unbalanced
systems, incorporating distributed generation effects, and exploring its applicability to different voltage
levels and network topologies.

Figure 6: MCMC method’s parameter identification results

3.2 Results and Discussions of xDeepCIN

The MCMC-based method accurately estimates distributed terminal device parameters through
the aggregation platform, improving real-time monitoring and detection of potential aggregation
attacks in power generation systems. To evaluate xDeepCIN anomaly detection model, we conducted
comprehensive testing using diverse datasets, including our proprietary data and public Adaptive
Charging Network (ACN) datasets.

Table 2 provides an overview of the key characteristics of these datasets. Our proprietary dataset
represents a large-scale industrial charging environment, featuring high-power DC fast charging
stations and vehicle-to-grid (V2G) capabilities. This dataset provides insights into advanced charging
scenarios not captured in the public datasets. The ACN datasets, in contrast, represent a range of
charging environments, from small office settings to larger mixed-use facilities. Table 3 summarizes
the performance metrics.

Table 2: Characteristics of proprietary and public datasets

Dataset Type Point Time Span Labeled Anomaly ratio Interval Unique feature

Proprietary Industrial 85 9 months Yes 2.3% 5 min High-power DC,
V2G capability

CAN Caltech Public 54 2 years Partially 1.8% 1 min Mixed-use (pub-
lic/workplace)

(Continued)
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Table 2 (continued)

Dataset Type Point Time Span Labeled Anomaly ratio Interval Unique feature

CAN JPL Public 52 1.5 years Yes 1.5% 1 min Workplace
charging

CAN Office Public 8 1 years Yes 0.9% 1 min Small-scale
workplace
charging

Table 3: Characteristics of proprietary and public datasets

Dataset AUC F1-score Precision Recall

Proprietary 0.92 0.89 0.91 0.87
ACN Caltech 0.87 0.93 0.94 0.92
ACN JPL 0.90 0.94 0.95 0.93
ACN Office 0.91 0.97 0.98 0.96

These results validate the scalability and robustness of our framework in several ways:

1. Scale Adaptability: The model performs well on both small (ACN Office, 8 charging points)
and large (Proprietary, 85 charging points) datasets, indicating good scalability.

2. Environment Flexibility: Consistent performance across different charging environments
(public, workplace, industrial) suggests the model’s adaptability to various use cases.

3. Feature Handling: The model effectively manages the unique features of each dataset, such
as the V2G capabilities in the proprietary data, demonstrating its ability to handle complex,
real-world scenarios.

We evaluated xDeepCIN’s performance using representative anomalous data samples, comparing
it to two established cross-network models: the first-order Wide and Deep model [26] (WAD) and
the second-order DeepFM model [27] (DFM). Table 4 summarizes extensive testing and comparative
analysis, providing a quantitative evaluation of xDeepCIN, WAD, and DFM models in detecting
anomalies across various charging scenarios. These results offer valuable insights into the models’
relative strengths and performances, highlighting xDeepCIN’s advancements in anomaly detection
for EV charging infrastructure.

Table 4: Comparisons among different deep-cross models

Model Caltech JPL Office

AUC F1 AUC F1 AUC F1

WAD [26] 0.84 0.87 0.85 0.88 0.84 0.90
DFM [27] 0.83 0.87 0.86 0.89 0.88 0.91
xDeepCIN 0.87 0.93 0.90 0.94 0.91 0.97
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We deconstructed the xDeepCIN model to evaluate various combinations of the Compressed
Interaction Network (CIN) with other modules. Table 5 demonstrates CIN’s significant impact on
performance.

Table 5: Ablation experiment of xDeepCIN

Model Caltech JPL Office

AUC F1 AUC F1 AUC F1

LR 0.52 0.61 0.53 0.57 0.58 0.63
MLP 0.79 0.82 0.77 0.82 0.73 0.81
CIN 0.61 0.60 0.59 0.63 0.66 0.66
CIN + LR 0.62 0.66 0.70 0.71 0.74 0.75
CIN + MLP 0.71 0.74 0.78 0.86 0.81 0.88
xDeepCIN 0.87 0.93 0.90 0.94 0.91 0.97

The ablation study reveals that the Compressed Interaction Network (CIN) component con-
tributes most significantly to the enhancement of anomaly detection performance. When integrated
with Linear Regression (LR), CIN shows an average improvement of 12.7% in AUC and 11.6%
in F1-score across all datasets. This substantial improvement can be attributed to CIN’s ability to
capture complex, high-order feature interactions efficiently. To further illustrate the impact of CIN,
we analyzed its contribution to detecting different types of anomalies in Table 6, the metric is F1-score.

Table 6: CIN’s contribution to different anomaly types

Anomaly type LR CIN + LR Improvement

Unusual consumption patterns 0.69 0.88 + 27.5%
Voltage/current spikes 0.74 0.90 + 21.6%
Charging state inconsistencies 0.65 0.86 + 32.3%
Abnormal charging durations 0.71 0.88 + 23.9%

Table 6 presents a more focused view of CIN’s contribution to anomaly detection across different
types of anomalies, using F1-score as the primary metric. F1-score is particularly suitable for eval-
uating anomaly detection performance in imbalanced datasets, as it provides a balanced measure of
precision and recall. The consistent and substantial improvement in F1-scores across all anomaly types
underscores CIN’s versatility and effectiveness. By significantly boosting F1-scores, CIN demonstrates
its value in creating a more robust and reliable anomaly detection system, capable of handling the
diverse challenges presented by modern EV charging infrastructure. The balanced nature of the F1-
score ensures that these improvements reflect both a reduction in false positives (improved precision)
and false negatives (improved recall), which is crucial for practical application in real-world EV
charging systems where both missed anomalies and false alarms can have significant operational and
security implications. It should be noted that the data types and distribution characteristics of charging
piles in different places are different. If the topology or data type can be approximateely simplied as a
two-dimensional matrix, the convolutional neural network and transformer also can be added to the
CIN structure [28].
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The xDeepCIN model, incorporating all components, achieved the highest performance, validat-
ing our approach’s efficacy in anomaly detection for EV charging systems. While implementing the
competing models, we encountered several challenges:

1. WAD Model: This model’s performance was limited by its inability to capture complex,
high-order feature interactions effectively. Its linear component primarily captures low-order
interactions, which may not fully represent the complexity of EV charging anomalies;

2. DFM Model: While DeepFM improves upon WAD by introducing factorization machines
for second-order feature interactions, it still struggles with higher-order interactions. This
limitation becomes apparent in complex anomaly detection scenarios.

3.3 Computational Performance and Scalability

The real-time applicability of our framework, particularly the MCMC-based parameter identi-
fication process, is a crucial aspect of its practical implementation. To evaluate its computational
performance and scalability, we conducted a series of experiments on networks of varying sizes and
complexities ((Intel Core i7-10700K, 32 GB RAM, NVIDIA 4080 Super). Table 7 summarizes the
average processing times for different network sizes.

Table 7: Comparisons among different deep-cross models

Network size 100 500 1000 5000 10,000

MCMC parameter identification (s) 0.52 2.75 5.83 31.46 68.92
xDeepCIN anomaly detection (ms) 15 42 78 215 412

The MCMC parameter identification process, while more computationally intensive, still operates
within acceptable timeframes for real-time monitoring. For networks up to 1000 nodes, the process
completes within seconds, allowing for frequent updates of network parameters. This result reveals
that the MCMC parameter identification time scales approximately linearly with the number of nodes,
while the xDeepCIN anomaly detection time exhibits sub-linear scaling.

4 Conclusions

This research introduces an innovative anomaly detection method for EV charging stations
by integrating node equation-based parameter identification with the xDeepCIN deep learning
model. By leveraging MCMC for parameter space identification, our approach demonstrates superior
performance in detecting subtle anomalies compared to traditional methods. Experimental results
validate the framework’s effectiveness, with xDeepCIN showing significant improvements in AUC and
F1-score across our collected dataset and three public adaptive charging network datasets. Our results
underscore the potential of integrating node equation-based parameter estimation with advanced
deep learning architectures to bolster the security and reliability of EV charging infrastructure.
Although our findings are promising, additional research is necessary to investigate the scalability
and generalizability of our approach across diverse charging environments and various cyber-attack
scenarios. Future work should focus on integrating our framework with real-time monitoring systems
and developing proactive defense mechanisms.
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This study contributes to advancing cybersecurity in smart vehicle ecosystems by addressing
unique challenges faced by third-party charging aggregation platforms. Ongoing research and cross-
disciplinary collaboration are essential to safeguard the security and reliability of the rapidly expanding
EV charging infrastructure against emerging cyber threats.
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