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ABSTRACT

Iced transmission line galloping poses a significant threat to the safety and reliability of power systems, leading
directly to line tripping, disconnections, and power outages. Existing early warning methods of iced transmission
line galloping suffer from issues such as reliance on a single data source, neglect of irregular time series, and
lack of attention-based closed-loop feedback, resulting in high rates of missed and false alarms. To address these
challenges, we propose an Internet of Things (IoT) empowered early warning method of transmission line galloping
that integrates time series data from optical fiber sensing and weather forecast. Initially, the method applies a
primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast
data, followed by a secondary fusion based on a Back Propagation (BP) neural network, and uses the K-medoids
algorithm for clustering the fused data. Furthermore, an adaptive irregular time series perception adjustment
module is introduced into the traditional Gated Recurrent Unit (GRU) network, and closed-loop feedback based
on attention mechanism is employed to update network parameters through gradient feedback of the loss function,
enabling closed-loop training and time series data prediction of the GRU network model. Subsequently, considering
various types of prediction data and the duration of icing, an iced transmission line galloping risk coefficient is
established, and warnings are categorized based on this coefficient. Finally, using an IoT-driven realistic dataset of
iced transmission line galloping, the effectiveness of the proposed method is validated through multi-dimensional
simulation scenarios.
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1 Introduction

Transmission lines, as the largest components within power systems, play a critical role in the
transmission of electrical energy [1]. Under normal operation conditions, transmission lines are
susceptible to environmental influences such as low temperatures, strong winds, and heavy rains,
leading to galloping incidents that can cause line tripping, disconnections, and power outages, thereby
significantly affecting grid safety [2–4]. The early warning system for iced transmission line galloping
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leverages closely related time series data such as wind velocity, humidity, and temperature. By analyzing
vertical correlations within the same dataset and horizontal correlations among different datasets, the
system categorizes the risk levels of line galloping. Based on these risk levels, early warnings are issued,
and preventative measures such as deploying spacer dampers and manual deicing are taken to mitigate
the impacts of iced transmission line galloping [5–7].

The Internet of things (IoT) is a network based on the Internet, traditional telecommunication
network and other information carriers, which enables all ordinary physical objects that can be
independently addressed to achieve interconnection [8]. The IoT connects any object to the network
through information sensing devices according to the licensed protocol, so that objects can share
information and perform coordinated decision-making. The IoT technology, known for its ease of
deployment, high accuracy in real-time monitoring, and remote surveillance capabilities, has been
extensively applied to the early warning systems for iced transmission line galloping. By deploying
IoT devices across multiple data sources, precise collection of time series data such as wind velocity,
humidity, and temperature is achieved [9,10]. These sources include data from optical fiber sensors
and weather forecasts. Optical fiber sensing technology uses fiber optic sensors to assess changes
in conductor temperatures and stresses to monitor icing conditions on transmission lines. In [11],
Tan et al. introduced a method for monitoring transmission line dynamics using Fiber Bragg
Grating (FBG) sensors, which has been validated through video monitoring techniques, capable of
measuring line tension, galloping patterns, and amplitudes both horizontally and vertically. In [12],
Ji et al. developed a novel integrated sensor based on FBG principles that monitors both the axial
tension of conductors and the tilt angles of suspension insulators, thereby enhancing the precision
of early warnings for iced transmission line galloping. The above researches only considered the
optical fiber monitoring data, and could not measure the impact of the external environment on
the line icing galloping, resulting in poor accuracy of the final warning results. Weather forecasting
technology predicts future environmental conditions such as temperature, humidity, and wind velocity
by analyzing meteorological data, thereby assessing the probability of icing on transmission lines. In
[13], Gao et al. devised a monitoring system that uses both meteorological and actual measurement
data to construct and refine a predictive model for the operation safety of transmission lines. In [14],
Zheng et al. analyzed external meteorological factors affecting line dynamics, using wind direction,
induced wind line angles, relative humidity, and ambient temperature as input vectors to predict the
probability of galloping based on conditions conducive to such events. However, existing researches
only use optical fiber monitoring or weather data as a single data source for prediction, without
considering the interrelationships between multi-source data. The single data source cannot accurately
reflect the line galloping state, resulting in the low accuracy of early galloping warning.

Several studies have attempted to integrate and cluster multi-source data such as optical fiber
sensing data and weather forecast data. Various fusion methods are used including Bayesian inference,
Dempster-Shafer evidence theory, and artificial intelligence, along with common clustering techniques
like the K-means algorithm, Clustering Using Representatives (CURE), and graph-based clustering
methods. In [15], Jin et al. utilized a fully connected neural network to fuse multi-source monitoring
data, extracting data features that were verified through simulation to be more accurate and reliable.
In [16], Jiang et al. investigated the optimal weighted fusion of multi-sensor monitoring data and
proposed a new method using random weighted estimation to establish a theoretical framework
for data fusion based on optimal weight distribution. In [17], Liang proposed an incomplete high-
dimensional big data clustering algorithm based on feature selection and partial distance strategy,
which showed superior clustering accuracy compared to existing methods. However, these studies
overlook the issue of temporal irregularities due to data fusion and clustering. Specifically, the irregular
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time distance between data points after clustering, it will be difficult for the neural network to converge
when the subsequent input neural network is used for learning.

Current methods for time series data prediction can be categorized into those based on smoothing
techniques, statistical models, machine learning, and time series decomposition [18–20]. In [21],
Wang et al. introduced a time series prediction model utilizing a stacked Long Short-term Memory
(LSTM) network, which addresses the slow convergence issue inherent in single LSTM network
structures and validates the method’s prediction accuracy using a dataset. The performance of
traditional LSTM network is poor in facing temporal irregularities. Directly using the LSTM network
for prediction will lead to a decline in the accuracy of the final result. In [22], Pelech-Pilichowski
proposed a time series interpolation data processing method aimed at addressing inconsistent and
non-stationary data, and developed an enhanced prediction algorithm to improve accuracy. In [23],
Wang et al. improved the traditional Back Propagation (BP) neural network by integrating a new
sparse searching algorithm to optimize the thresholds and weights of the neural network topology,
thereby enhancing the robustness of network predictions. However, these studies do not consider the
irregularity in time intervals of the input data, which leads to poor convergence of the algorithms.
Additionally, due to the lack of attention to feedback loops in the prediction processes, they fail to
filter and learn from critical data effectively, thus lowering the overall prediction accuracy.

Although significant progress has been made in the field of iced transmission line galloping,
there remain several challenges. Firstly, traditional early warning methods for line galloping lack
deep integration of multi-source data. They typically rely on a single data source and only use basic
level fusion for wind velocity, temperature, and humidity data, which makes it difficult to capture the
temporal features within the data. Additionally, these methods do not consider vertical and horizontal
clustering of data from different time periods and types, overlooking the complex interactions and
correlations within time series data, which leads to poor early warning performance. Secondly, the
temporal irregularity in the clustering of multi-source data poses a problem. Traditional methods often
use clustering for data fusion based on Euclidean distances, resulting in irregular interval changes
after clustering. This causes horizontal temporal irregularities among single data types and vertical
temporal irregularities in the clustering of multiple data types. Directly inputting these subsets into a
time series neural network can lead to errors in determining temporal intervals, making it difficult to
capture the temporal patterns of the data, resulting in convergence difficulties, inaccurate predictions,
and other issues. Furthermore, traditional Gated Recurrent Unit (GRU) networks lack a feedback
loop in their attention mechanisms, which means network parameters are not updated timely, and
model training may converge to local optima, reducing the accuracy of line galloping early warnings
and making it difficult to achieve rapid and accurate predictions. Finally, the simulation of galloping
warnings lacks the use of realistic data and multi-dimensional scenarios for validation, compromising
the reliability of simulation verifications and failing to validate multi-dimensional indicators such as
environmental data prediction accuracy, galloping risk coefficient errors, early warning accuracy, miss
rates, and false alarm rates.

In response to the aforementioned challenges, we propose an early warning method for transmis-
sion line galloping that integrates optical fiber monitoring with weather forecast time series data. The
research goal of this paper is to establish an early warning method for transmission line galloping based
on the integration of optical fiber sensing and weather forecast time series data, and effectively improve
the accuracy of line galloping early warning. Firstly, multi-source data are collected, and deep fusion
of multi-source time-series data are performed based on adaptive weighted learning, with clustering of
the fused data utilizing the K-mediods algorithm. Subsequently, we analyze the principle of temporal
irregularity in clustered multi-source data and propose an early warning method for iced transmission
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line galloping based on the perception of irregular time series and closed-loop attention mechanism.
This involves introducing an adaptive adjustment module for irregular time series perception and
constructing a data prediction network based on closed-loop attention mechanism, utilizing predicted
data and galloping risk coefficients for early warning of line galloping. Finally, the effectiveness of
the proposed method is validated through simulation experiments by comparing it with traditional
algorithms. Key contributions are elaborated as follows:

• Deep Fusion and Clustering of Multi-Source Data Based on Adaptive Weighted Learning: In this
paper, the relationship between multi-source data is comprehensively considered. We involve
an initial adaptive weighting of real-time optical fiber monitoring data and weather forecast
data based on IoT, followed by the application of a secondary BP neural network to learn
and capture latent temporal patterns within the data, thereby achieving deep fusion of multi-
source data. Subsequently, the K-mediods algorithm is employed for clustering the fused data,
utilizing vertical clustering to identify typical patterns of change across different time periods
and horizontal clustering to explore complex interactions and correlations between different
data sequences. This method effectively identifies the risks associated with iced transmission
line galloping.

• An Early Warning Method for Iced Transmission Line Galloping Based on Irregular Time Series
Perception and Closed-Loop Attention: Initially, an adaptive module for irregular time distance
perception is integrated into the traditional GRU network. This module adjusts the perception
of time distance both vertically and horizontally for single and multiple data types, aiding the
GRU network in adaptively capturing temporal patterns. Subsequently, closed-loop feedback
is introduced on top of the attention mechanism. The loss function is calculated based on the
comparison between the final prediction outcomes and actual values. The gradient of the loss
function is then fed back into the network to update parameters, facilitating closed-loop training
of the GRU network model. This approach progressively reduces the loss during training,
thereby enhancing the accuracy of predictions. Finally, the obtained prediction data are used
for early warning of line galloping, with the galloping risk coefficient serving as the feature to
output the risk level of iced transmission line galloping, thus improving the precision of the
early warnings.

• Multi-Dimensional Scenario Simulation Validation for Galloping Early Warning Based on Real-
istic Dataset: By collecting a vast amount of realistic data from iced transmission line gal-
loping, a comprehensive dataset is established. Each data point includes input factors such
as temperature, humidity, and wind velocity data obtained from optical fiber monitoring and
meteorological stations, with output factors including manually determined galloping condi-
tions. Utilizing this realistic dataset, multi-dimensional scenarios are constructed to simulate
and validate multiple indices, including environmental data prediction accuracy, galloping risk
coefficient errors, early warning accuracy, miss rates, and false alarm rates. Scenario 1 simulates
the prediction errors of galloping under various data sources and clustering parameters to
determine the optimal number of clusters for each parameter. These optimal parameters are
then inputted into Scenario 2, where the network is trained and learned using the realistic
dataset and optimal parameters, thereby enhancing the accuracy of the galloping early warning
simulation validation.

2 Multi-Source Time Series Data Fusion and Clustering

Transmission line galloping often relies on single time series data sources like optical fiber sensing
or weather forecast, which may not accurately reflect the actual galloping state and potential risks
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of the lines [11,24]. The principle of multi-source time series data fusion and clustering is shown in
Fig. 1. Fusion and clustering of multi-source time series data related to transmission line galloping can
significantly enhance the monitoring and early warning capabilities of transmission lines. Multi-source
time series data for transmission lines include weather forecast data and optical fiber sensing data.
Weather forecast data reflect external environmental conditions such as temperature, humidity, and
wind velocity, while optical fiber sensing data also capture the physical states of transmission lines such
as temperature and humidity in real-time. By fusing and clustering these multi-source time series data,
it is possible to better capture the nonlinear relationships within the data, uncover characteristics that
vary over time, identify potential line anomalies, and achieve more precise early warnings of galloping
on iced transmission lines.

Figure 1: Multi-source time series data fusion and clustering

2.1 Deep Fusion of Multi-Source Time Series Data Based on Adaptive Weighted Learning

Through the adaptive weighted fusion of IoT driven real-time optical fiber sensing data and
weather forecast data, precise assessments of the galloping state on iced transmission lines can be
achieved. This section introduces a method for deep fusion of multi-source time series data based on
adaptive weighted learning, providing a foundation for early warning of transmission line galloping.
Initially, multi-source time series data such as temperature, humidity, and wind velocity collected
by IoT driven optical fiber monitoring devices and ground meteorological stations are fused using
primary adaptive weighting, with the criterion of minimizing mean square error to synthesize global
environmental information at each sampling time of the transmission line. On this basis, to enhance
the temporal relationships of the fused data, time series information is further extracted using a BP
neural network, thus improving the quality of the fused data.
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(1) Primary Data Fusion Based on Adaptive Weighting

Data types related to galloping on iced transmission lines and sensed by optical fiber sensors
include temperature, humidity, and wind velocity. Taking temperature data of the transmission line as
an example, suppose there are N optical fiber temperature sensors along the transmission line, each
sensor collects temperature data at a fixed time interval τ . Similarly, suppose there are M ground
meteorological stations that predict the temperature of the transmission line at the same interval,
resulting in M sets of weather forecast data. The multi-source temperature dataset at the t-th sampling
time, which combines optical fiber sensing and weather forecast, is represented as

Xte (t) = {
Xte, 1 (t) , · · · , Xte, i (t) , · · · , Xte, N (t) , · · · , Xte, N+M (t)

}
(1)

where Xte, i (t) , i = 1, 2, · · · , N represents the temperature data sensed by the i-th optical fiber
temperature sensor at the t-th sampling time, providing an unbiased estimate of the true temperature
X real

te (t), with sensing errors due to equipment aging. Each measurement is independent. Xte, i (t) , i =
N + 1, N + 2, · · · , N + M corresponds to the temperature prediction data from the i-th ground
meteorological station, offering a biased estimate of the true temperature X real

te (t), with each prediction
also being independent. The variances of the temperature data errors relative to their true values
are denoted by δ2

te, 1, · · · , δ2
te, N, δ2

te, N+1, · · · , δ2
te, N+M . Therefore, the total mean square error of the

temperature data at time t is represented as

δ2
te (t) = E

[(
x − x̂

)2
]

= E

[
N+M∑

i=1

wi

(
Xte (t) − Xte, i (t)

)2

]
=

N+M∑
i=1

wiδ
2
te, i (2)

where w1, · · · , wN, wN+1, · · · , wN+M represents the adaptive weighting coefficients for each optical fiber

sensing data and weather forecast data, and it is established that
N+M∑

i=1

wi = 1. δ2
te (t) is a multivariate

quadratic function of these adaptive weights. According to the principle of extremum determination

for multivariate functions, the minimum mean square error is achieved when δ2
te (t) = 1/

N+M∑
i=1

1
δte, i

, which

represents the lower bound of the error.

The primary fusion process of adaptive weighted multi-source time series data maximizes the
inherent correlations among the temperature data sensed by different sensors. The fusion result, which
minimizes the mean square error, serves as the final outcome for the multi-dimensional temperature
data fusion. The adaptive weighted primary fusion results of the optical fiber sensing data and weather
forecast data at the t-th sampling instance can be expressed as

X fu
te (t) =

N+M∑
i=1

wiXte, i (t) , i = 1, . . . , N, N + 1, . . . , N + M (3)

Following the aforementioned steps, the fused time series dataset of transmission line temper-
atures can be obtained as Xfu

te = {
X fu

te (1) , X fu
te (2) , · · · , X fu

te (T)
}
. Similarly, the adaptive weighted

primary fusion time series sequences for humidity and wind velocity data can be obtained as Xfu
hu ={

X fu
hu (1) , X fu

hu (2) , · · · , X fu
hu (T)

}
and Xfu

vc = {
X fu

vc (1) , X fu
vc (2) , · · · , X fu

vc (T)
}
.

(2) Secondary Data Fusion Based on BP Neural Network

While the primary adaptive weighted fusion of multi-source optical fiber sensing data and
weather forecast data can enhance the accuracy of early galloping warnings, the temporal and spatial
differences between fiber optic sensors and ground meteorological stations mean that adapting weights
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based on sampling instances may not fully preserve the temporal characteristics of the galloping data.
Therefore, this section proposes a secondary data fusion method based on the BP neural network.
The temperature, humidity, and wind velocity data from the transmission lines, fused via adaptive
weighting, are used as input to the BP neural network to learn and capture latent temporal patterns.
The output is the secondary fused data at each sampling instance, effectively reducing data noise and
irregularities. Taking the primary fusion time series sequence of temperature Xfu

te as an example, the
dataset is divided into a training set and a test set at a ratio of 3:1, and the steps to train the secondary
data fusion BP neural network are as follows:

Step 1: Initialize network weights �te and bias b;

Step 2: Input the temperature time series sequence Xfu
te , derived from primary adaptive weighted

fusion, as the training sample for forward network training;

Step 3: Compute the loss function as

LFu = 1
t

|XFu
te |∑

q=1

t∑
p=1

(
X Fu

te, q (p) − X̂ Fu
te, q (p)

)2

(4)

where
∣∣XFu

te

∣∣ is the number of fused time series samples, X̂ Fu
te, q (p) represents the fused value, and X Fu

te, q (p)

is the actual value, which is obtained through field measurements. The loss function LFu is used to
assess the error in the secondary data fusion by the BP neural network, facilitating subsequent network
training.

Step 4: Based on the loss function, perform back propagation using gradient descent to update
the network parameters.

Step 5: Re-input the results obtained from the primary fusion into the trained secondary data
fusion BP neural network to achieve the final secondary fusion results.

Based on the above steps, the secondary fusion data for temperature, humidity, and wind velocity
can be obtained as XFu

te = {
X Fu

te (1) , X Fu
te (2) , · · · , X Fu

te (T)
}
, XFu

hu = {
X Fu

hu (1) , X Fu
hu (2) , · · · , X Fu

hu (T)
}
,

and XFu
vc = {

X Fu
vc (1) , X Fu

vc (2) , · · · , X Fu
vc (T)

}
.

2.2 Galloping Fusion Data Clustering Processing of Iced Transmission Lines Based on K-Medoids

After obtaining the fused data, due to the complexity and strong non-linearity of optical fiber
sensing data and weather forecast data, direct prediction of the fused data can lead to non-convergence
of the neural network, thereby affecting the accuracy of data predictions. Therefore, the K-Medoids
algorithm is employed to cluster the high-dimensional fused data, effectively reducing data redundancy
and better mining the nonlinear features of the galloping data on iced transmission lines. Clustering
includes vertical clustering analysis of the data itself and horizontal clustering analysis of various fused
data. Vertical clustering, by analyzing the correlations within the fused data, identifies typical patterns
of variation over different time periods, thereby revealing the periodicity and anomalies of data, and
enhancing data interpretability and the accuracy of prediction models. Horizontal clustering combines
various fused data for a comprehensive analysis. This approach reveals the complex interactions
and correlations between different data sequences. It helps to identify multidimensional interaction
patterns and potential causal relationships, thus enhancing the understanding and prediction of the
risks associated with galloping on iced transmission lines.

K-medoids, an improvement over K-means, select the mean of data samples as the cluster center
point. Choosing actual data points from the fused data samples as cluster centers, it can mitigate the
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impact of outlier values during clustering, thereby addressing the issue of clustering results falling
into local optima. The steps of the K-medoids clustering method include initializing cluster centers,
clustering into clusters, updating the cluster center point, and convergence judgment. Taking the
temperature fusion data XFu

te as an example, the steps are described as follows:

Step 1: Initialize the cluster centers by randomly selecting Kte temperature fusion data samples
from the transmission line as the initial set of center points for vertical clustering.

Step 2: Sequentially calculate the Euclidean distance from all data points in the fused dataset to
each vertical cluster center point, and assign each data point to the cluster whose center point is closest.
The calculation of the Euclidean distance is given by

Δ (kte) =
√√√√ t∑

i=1

(
X Fu

te (i) − X Fu
te (kte)

)2
(5)

where kte is an initial randomly selected cluster center point, and X Fu
te (i) represents the value of the

temperature fusion data at the i-th sample point.

Step 3: After completing the vertical clustering, select each sample point within each cluster to
serve as a new center for vertical clustering. Recalculate the Euclidean distances and select the sample
point that minimizes the total distance within the cluster, designating this point as the new center of
the cluster, represented as

knew
te = argmin

XFu
te (i)∈kte

∑
XFu

te (j)∈kte

‖ X Fu
te (i) − X Fu

te (j) ‖2 (6)

where X Fu
te (i) and X Fu

te (j) are the sample points in the cluster, and kte is the vertical clustering center.

Step 4: When the set of vertical cluster centers remains unchanged, the algorithm terminates
and outputs the final vertical clustering result as XCl

te = {
XFu

te (1) , · · · , XFu
te

(
kl

te

)
, · · · , XFu

te (Kte)
}
, where

XFu
te

(
kl

te

)
is the dataset of the kl

te-th cluster in the vertical fusion of temperature data. Otherwise, update
the cluster centers and repeat Steps 2 to 4 until the set of cluster centers stabilizes.

Using the described method, the vertical clustering results for humidity and wind velocity are
obtained as XCl

hu = {
XFu

hu (1) , · · · , XFu
hu

(
kl

te

)
, · · · , XFu

hu (Khu)
}

and XCl
vc = {

XFu
vc (1) , · · · , XFu

vc

(
kl

te

)
, · · · , XFu

vc

(Kvc)}, where Khu and Kvc are the numbers of clusters for the vertical clustering of humidity fusion
data and wind velocity fusion data, respectively. Furthermore, to analyze the relationships among
different types of data, the three types of fused data are horizontally mixed. The horizontal data
format for a single sample point in the mixed fused data is represented as X Fu

mix(t) = ωteX Fu
te (t) +

ωhuX Fu
hu (t) + ωvcX Fu

vc (t)}, where ωte, ωhu, and ωvc are the normalized weights for the corresponding
fused data. The results of the horizontal clustering of the mixed fused data are expressed as XCl

mix ={
XFu

mix (1) , · · · , XFu
mix

(
kl

te

)
, · · · , XFu

mix (Kmix)
}
, where Kmix is the number of clusters for the mixed fused data.

2.3 Irregular Time Series Analysis of Multi-Source Data

The principle of irregular time series in multi-source data is shown in Fig. 2. The time interval
of time series data is defined as the time difference between traditional adjacent sensing points,
and the time distance is defined as the time difference between historical sensing points and
prediction points. Typically, time-series data such as temperature, humidity, and wind velocity
are collected at fixed time intervals. For instance, temperature fusion data have regular time
interval

[
X Fu

te (t) − X Fu
te (t − 1)

] = [
X Fu

te (t − 1) − X Fu
te (t − 2)

] = τ and regular time distance d =
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{d (t) = τ , d (t − 1) = 2τ , · · · , d (t − n) = [t + 1 − n] τ }. Such regularity allows time series neural
networks to effectively learn these temporal patterns and achieve prediction outcomes. However,
after data clustering, the data points within each subclass are no longer temporally continuous,
and their intervals become irregular, leading to issues of irregular time distance. On one hand,
after clustering similar data, the time distance within each data subset changes irregularly, causing
vertical irregularities in time series among similar data subsets. On the other hand, after clustering
the fused data, the time distance of each fused data subset changes irregularly, resulting in horizontal
irregularities in time series. For example, the vertical irregular time distance for temperature data can
be represented as d = {d (t) = τ + N1τ , d (t − 1) = 2τ + N1τ , · · · , d (t − n) = [t + 1 − n] τ + Nnτ },
leading to irregular time series. Directly inputting these clustered subset data into a time series neural
network for training makes it difficult to capture the temporal patterns, resulting in convergence
performance degradation.

Figure 2: Irregular time series of multi-source data

3 Early Warning Algorithm for Iced Transmission Line Galloping Based on Irregular Time Series
Perception and Closed-Loop Attention Mechanism

To address the issue of irregular time series in multi-source data from the clustering process,
we present an early warning algorithm for iced transmission line galloping based on irregular time
series perception and closed-loop attention mechanism. The principle of the algorithm is illustrated
in Fig. 3. The GRU algorithm was used in this paper to predict galloping motion data. GRU is a
variant of recurrent neural networks, capable of effectively handling sequential data and is a type
of deep learning algorithm. Deep learning is a method of machine learning that aims to mimic the
way the human brain processes information by constructing multi-layered neural networks. It extracts
high-level features from input data through multiple layers of nonlinear transformations. Initially,
multiple GRU networks, which are sensitive to irregular time series, predict temperature, humidity,
wind velocity, and fused data separately. These networks are enhanced with an attention mechanism to
refine traditional GRU network predictions, calculate risk values, and output warning results. Finally,
the loss function is calculated based on the comparison between the final prediction outcomes and
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actual values, facilitating closed-loop training for attention and GRU network parameters. The specific
flow of the algorithm is shown in Algorithm 1.

Figure 3: Early warning algorithm for iced transmission line galloping based on irregular time series
perception and closed-loop attention mechanism

Algorithm 1: Early warning algorithm for Iced transmission line galloping based on irregular time
series perception and closed-loop attention mechanism

Input: XCl
te , XCl

hu, XCl
vc , XCl

mix, XFu
te , XFu

hu , XFu
vc , XFu

mix.
Output: R (t).
Step 1. Adaptive irregular time series perception adjustment
1: Calculate D [dmix] based on (8).
2: For k = 1, 2, · · · , Kte

3: Calculate D [dte (k)] based on (7).
4: Calculate hk

te (t) based on (9).
Step 2. Closed-loop attention mechanism
5: Calculate attention weight αk

te (t) based on (10).
6: Calculate prediction results for cluster k X̃ k

te (t) based on (11).
7: EndFor
8: Calculate the predicted output X̃te (t) by integrating all cluster predictions based on (12).
9: Calculate the loss function Lloss based on (13).
10: Update closed-loop network parameter θ (t + 1) based on (14).
11: Calculate X̃hu (t), X̃vc (t) using the same method.
Step 3. Early warning of transmission line galloping
12: Calculate the galloping risk coefficients P

(
X̃te (t) , X̃wd (t) , X̃hu (t) , Tice

)
based on (15) and (16).

13: Output the galloping warning level R (t) based on (17).
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3.1 Irregular Time Series Perception Based Data Prediction Network

3.1.1 Irregular Time Series Perception Based Adaptive Adjustment

To address the issue of vertical irregular time series in similar fused data, taking multi-source
temperature data fusion as an example. We propose a method for adaptive adjustment of vertical
irregular time series distance, represented as

D [dte (k)] = αte − exp [−βte × dte (k)]
αte + exp [−εte × dte (k)]

(7)

where αte, βte, and εte denote the parameters for adaptive irregular time series perception in temperature
data, which together determine the construction of the time distance function and can adaptively
adjust the time distance function based on data from different subsets. dte (k) represents the original
time distance before adjustment for the k-th subclass in the temperature clustering results. Considering
the irregular time series issues of different data sources, we further implement adaptive adjustment of
horizontal irregular time series distance using mixed data clustering of temperature, wind velocity, and
humidity, represented as

D [dmix] = 1
Kmix

Kmix∑
k=1

αmix (k) − exp [−βmix (k) × dmix (k)]
αmix (k) + exp [−εmix (k) × dmix (k)]

(8)

where αmix, βmix, and εmix represent the parameters for horizontal adaptive irregular time series
perception. dmix = {dmix (1) , dmix (2) , · · · , dmix (k) , · · · , dmix (Kmix)} is the set of horizontal irregular time
distance; dmix (k) indicates the time distance before adjustment for the k-th subclass in the mixed data
clustering results.

3.1.2 Data Prediction Network Based on Closed-Loop Attention Mechanism

We improve the traditional GRU gate structure by enabling the update gate and reset gate to
adaptively learn from irregular time distance information [25–27]. The enhanced time series perception
function is integrated with the traditional GRU structure to update the gate structures as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zk
te (t) = D [dte (k − 1)] D [dmix] σ

(
wz

te × [
xk

te (t) , hk
te (t − 1)

])
rk

te (t) = D [dte (k)] D [dmix] σ
(
wr

te × [
xk

te (t) , hk
te (t − 1)

])
Hk

te (t) = tanh
(
wH

te × [
xk

te (t) , rk
te (t) , hk

te (t − 1)
])

hk
te (t) = [

1 − zk
te (t)

] × hk
te (t − 1) + zk

te (t) × Hk
te (t)

(9)

where xk
te (t) represents the current input unit after interactive updating; hk

te (t − 1) is the output from
the hidden layer after interactive updating; zk

te (t) is the update gate unit that incorporates time distance
information; rk

te (t) is the reset gate unit that incorporates time distance information; Hk
te (t) is the

summation of the input and past hidden layer states; hk
te (t) is the output state of the hidden layer;

wz
te, wr

te, wH
te are the weight parameters.

To rapidly filter out important information from a large volume of data and further enhance
the temporal capture capability of the irregular time series perception based data prediction network,
we use the attention mechanism to swiftly filter a large amount of information by assigning different
weights to the outputs of the hidden layer, thereby strengthening the impact of important information.
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The attention weights are represented as{
ek

te (t) = ue
te tanh

[
we

teh
k
te (t) + be

te

]
αk

te (t) = softmax
[
ek

te (t)
] (10)

where ek
te (t) is the attention probability distribution, αk

te (t) is the normalized attention probability
distribution, ue

te, be
te, and we

te are the attention weight parameters. The hidden layer output corrected
by the attention weights and the final prediction output are given by⎧⎨
⎩Sk

te (t) =
T∑

t=1

αk
te (t) hk

te (t)

X̃ k
te (t) = σ

(
wo

teS
k
te (t) + bo

te

) (11)

where Sk
te (t) is the attention-corrected hidden layer output; X̃ k

te (t) is the prediction output at time t + 1
based on clustering result k; wo

te and bo
te are the output weight parameters. Considering the prediction

data of all clustering results, the final prediction output is expressed as

X̃te (t + 1) = 1
Kte

Kte∑
k=1

ωk
teX̃

k
te (t) (12)

where ωk
te is the prediction weight for the temperature clustering result k.

The goal of the irregular time series perception based data prediction network is to minimize
the error between the predicted data and the actual data. We combine mean absolute error and root
mean square error to train the irregular time series perception based data prediction network. The
gradient of the loss function is used to update the model parameters, thereby gradually reducing the
loss function and improving the accuracy of the model’s early warning predictions. The loss function
and closed-loop attention training method are expressed as

Lloss = αMAE

T

T∑
t=1

|Xte (t) − X̃te (t) | + αRMSE

√√√√ 1
T

T∑
t=1

(
Xte (t) − X̃te (t)

)2

(13)

θ (t + 1) = θ (t) − ρ∇θLloss (14)

where θ (t) = {
ue

te, we
te, be

te, wo
te, bo

te, wz
te, wr

te, wH
te

}
are the network parameters, and ρ is the learning rate.

The prediction method and network training method for wind velocity and humidity data are the same
as those for the temperature irregular time series perception based data prediction network described
above.

3.2 Transmission Line Galloping Early Warning Based on Prediction Data and Galloping Risk
Coefficient

Based on the aforementioned irregular time series perception based data prediction network, the
prediction datasets for temperature, humidity, and wind velocity can be obtained, represented as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X̃ te =
{

X̃te (T + 1) , X̃te (T + 2) , · · · , X̃te (T + N)
}

X̃hu =
{

X̃hu (T + 1) , X̃hu (T + 2) , · · · , X̃hu (T + N)
}

X̃ vc =
{

X̃vc (T + 1) , X̃vc (T + 2) , · · · , X̃vc (T + N)
} (15)
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Iced transmission line galloping is a process where environmental temperature, relative humidity,
and wind velocity collectively accumulate energy, eventually causing the line to gallop. When analyzing
the factors affecting galloping, besides the meteorological parameters such as temperature and
humidity at specific times, physical quantities representing the accumulation process, such as duration,
should also be considered. The four parameters that have the greatest impact on transmission line
galloping under icing conditions are temperature, wind velocity, humidity, and icing duration. The
transmission line galloping risk coefficient is expressed as

P
(

X̃te (t) , X̃wd (t) , X̃hu (t) , Tice

)
=

∑
t∈Tice

k · f (t) · X̃ α

te (t) · X̃ β

wd (t) · X̃ γ

hu (t) (16)

where X̃te (t), X̃wd (t), and X̃hu (t) represent the predicted values of temperature, wind velocity, and
humidity at time t, respectively. Tice is the icing duration, k is the icing galloping intensity coefficient,
and f (t) is the unit time galloping risk factor. The galloping of the transmission line under icing
conditions requires sustained meteorological factors to generate energy accumulation, and the unit
time galloping risk factor decreases over time. According to statistical principles, the unit time
galloping risk factor can be expressed as

f (t) = 1 − 1

2
√

2π

∫ t

e− (τ−6)2
8 dτ (17)

Substituting (17) into (16), the transmission line galloping risk coefficient can be expressed as

P
(

X̃te (t) , X̃wd (t) , X̃hu (t) , Tice

)
=

∑
t∈Tice

(
1 − 1

2
√

2π

∫ t

e− (τ−6)2
8 dτ

)
· X̃ α

te (t) · X̃ β

wd (t) · X̃ γ

hu (t) (18)

Further based on the principles of mathematical statistics and actual data of iced transmission
line galloping, the galloping risk coefficients of different galloping events are classified to derive the
transmission line icing galloping risk levels characterized by the galloping risk coefficient, expressed
as

R (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Level IV P
(

X̃te (t) , X̃wd (t) , X̃hu (t) , Tice

)
> 0.9

Level III 0.8 < P
(

X̃te (t) , X̃wd (t) , X̃hu (t) , Tice

)
� 0.9

Level II 0.6 < P
(

X̃te (t) , X̃wd (t) , X̃hu (t) , Tice

)
� 0.8

LevelI 0.4 < P
(

X̃te (t) , X̃wd (t) , X̃hu (t) , Tice

)
� 0.6

(19)

4 Simulation

To verify the effectiveness of the proposed method, we employ a realistic historical dataset from a
transmission line for case verification. The dataset contains historical data spanning several months,
with the minimum time interval between each raw data point being 5 min. The dataset comprises
20,000 samples, with each sample point including input factors such as temperature, humidity, and
wind velocity data obtained through optical fiber sensing and meteorological stations, and output
factors including manually determined galloping conditions. The dataset is shown in Table 1. The
first 15,000 samples are used as the training set, and the remaining 5000 samples are used as the test
set. The training set data and results are used to train the irregular time series perception based data
prediction network. The meteorological data from the test set are input into the trained network for



1184 CMC, 2025, vol.82, no.1

data prediction and galloping early warning. According to (18), the predicted data are compared with
the actual monitoring data, and the early warning results are compared with the actual records to verify
the effectiveness of the proposed method. Multi-dimensional simulation scenarios are constructed,
where Scenario 1 is used for the analysis of data clustering and fusion results, and Scenario 2 is used
for the analysis of prediction results and early warning results.

Table 1: Partial dataset example

Date Time Wind velocity/(m·s−1) Temperature/(°C) Humidity/(%) Iced trans-
mission
line
galloping

Meteorological
station

Optical
fiber
sensing

Meteorological
station

Optical
fiber
sensing

Meteorological
station

Optical
fiber
sensing

11.7 21:00 8.2 9.7 −3.0 −2.8 82.3 85.3 No
11.7 21:30 10.0 9.8 −3.5 −3.3 84.2 85.2 No
11.7 22:00 9.5 9.1 −4.4 −3.9 83.9 82.5 No
11.7 22:30 10.4 10.8 −3.4 −4.2 77.6 79.3 No
11.7 23:00 9.9 10.9 −4.5 −5.1 83.1 87.2 Yes
11.7 23:30 12.3 10.4 −5.2 −6.5 87.8 89.4 Yes
. . . . . . . . . . . . . . . . . . . . . . . . . . .

In addition, to verify the effectiveness of the proposed irregular time series perception based data
prediction network, two comparison algorithms are selected for analysis. Baseline 1 uses the traditional
GRU algorithm without data clustering fusion and irregular time series perception adjustment [27].
Baseline 2 uses the LSTM algorithm with data clustering but without irregular time series perception
adjustment [28]. The comparison algorithms use the same training set and test set as the proposed
algorithm for simulation. By comparing data prediction accuracy and algorithm convergence speed,
the performance of the proposed algorithm is verified.

4.1 Data Clustering and Fusion Results Analysis

Fig. 4 illustrates the clustering results using temperature data as an example. As seen in the figure,
the number of samples in each subset after clustering is 1908, 2297, 5523, 4915, 3014, and 2343,
respectively. The histogram further illustrates that the average time intervals between different subsets
vary, with mean values of 28, 23, 6, 9, 19, and 22 steps, respectively, and an overall average of 17.83
steps. It is evident that subsets with fewer sample points tend to have longer time intervals. In practical
applications, if the data within a subset is too sparse after clustering, the number of clusters can be
appropriately reduced. The results in the figure reflect the irregular time distance generated by the
clustering algorithm, laying the foundation for subsequent adaptive irregular time series perception
adjustment.
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Figure 4: The clustering results using temperature data

Fig. 5 illustrates the meteorological data prediction errors under different data sources and
clustering parameters using the proposed algorithm. When using fused data from both meteorological
stations and optical fiber sensing, the average prediction error decreases by 32.4% and 12.9%,
respectively, compared to using each data source independently. This improvement is due to the better
capture of nonlinear relationships within multi-source time series data through fusion and clustering,
resulting in more accurate predictions. For different data sources, the number of clusters significantly
affects prediction accuracy. The figure indicates that the minimum prediction error occurs with 5, 5,
and 6 clusters for the three data sources, respectively. This is because the data characteristics become
more complex after fusion, and more clusters can better capture the potential correlations within the
data, enhancing prediction accuracy. However, when the number of clusters continues to increase,
prediction error grows rapidly due to the separation of correlated features, reducing the temporal
correlation within similar data, and leading to decreased prediction accuracy.

Figure 5: The meteorological data prediction errors under different data sources and clustering
parameters using the proposed algorithm
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4.2 Data Prediction Performance Analysis

Figs. 6–8 respectively illustrate the prediction results of temperature, wind velocity, and humidity
for the time period from 17:00 to 23:00 using the proposed algorithm. The figures indicate that the
prediction errors for the three data types are reduced by 69.47% and 14.13%, 55.25% and 22.44%,
and 72.48% and 28.29% compared to the two comparison algorithms, respectively. This is because
the proposed algorithm first performs a secondary deep fusion of multi-source time series data, which
better captures the nonlinear relationships within the data. Secondly, the proposed algorithm performs
horizontal and vertical clustering on the fused data to improve data correlation and constructs
an adaptive time series perception adjustment module to address the issue of irregular time series
in the clustered data, ensuring the algorithm’s ability to perceive and predict irregular time series
data. Furthermore, the proposed algorithm introduces a closed-loop attention mechanism into the
traditional GRU network structure, enhancing the algorithm’s ability to filter important information,
and strengthening the learning capability through closed-loop updates, ultimately improving the
prediction accuracy of the proposed algorithm.

Figure 6: The prediction results of temperature vs. time

Figure 7: The prediction results of wind velocity vs. time
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Figure 8: The prediction results of humidity vs. time

Fig. 9 illustrates the comparison of the loss function value reduction process vs. iterations. The
figure demonstrates that after 200 iterations, the loss function value of the proposed algorithm is
reduced by 47.98% and 38.82% compared to Baseline 1 and Baseline 2, respectively. This improvement
is due to the proposed algorithm’s consideration of irregular time series perception during model
training, addressing the irregular time series issue in multi-source data, thereby increasing the
algorithm’s convergence speed. Additionally, the proposed algorithm improves the gate structure of
the traditional GRU network, enabling the update and reset gates to adaptively learn from irregular
time distance information, thus enhancing the network’s data prediction accuracy.

Figure 9: The comparison of the loss function value reduction process vs. iterations

4.3 Early Warning Effectiveness Analysis

Fig. 10 illustrates the relative error in calculating the galloping risk coefficient for 80 randomly
selected sample points using different algorithms, where the true values are obtained from actual
meteorological data. The figure indicates that the average error in the galloping risk coefficient
calculated by the proposed algorithm is reduced by 67.1% and 59.4% compared to the comparison
algorithms. This improvement is due to the deep fusion as well as horizontal and vertical clustering
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of multi-source raw data by the proposed algorithm, which significantly enhances the correlation of
the original data and deeply mines the temporal characteristics of the data, laying a foundation for
subsequent data prediction. Additionally, the proposed algorithm constructs an attention closed-loop
mechanism that can backpropagate to adjust network parameters based on the final prediction error,
enhancing the learning ability of the algorithm and ensuring the accuracy of meteorological prediction
data. With more accurate prediction data, the final calculation of the galloping risk coefficient by the
proposed algorithm is more precise. The relevant simulation results are shown in Fig. 11 and Table 2.

Figure 10: The relative error in calculating the galloping risk coefficient using different algorithms

Figure 11: The early warning process of the proposed algorithm before and after an iced transmission
line galloping event
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Table 2: Early warning results of test sets under different algorithms

Algorithm Missed alarm rate False alarm rate

The proposed algorithm 2.7% 7.8%
Baseline 1 9.3% 13.4%
Baseline 2 7.4% 14.6%

Fig. 11 illustrates the early warning process of the proposed algorithm before and after an iced
transmission line galloping event in the dataset. The figure shows that the proposed algorithm issues
Levels I, II, and III warnings respectively before the galloping event, providing early warnings up to 4 h
in advance, thus ensuring ample time for emergency response. This is because the proposed algorithm
constructs an adaptive time series perception adjustment module, enabling the neural network to
adjust for irregular time series. Additionally, the introduction of the attention closed-loop mechanism
enhances the network’s ability to filter and learn important information, ensuring the accuracy of the
prediction data, and thereby providing data support for galloping early warning. Furthermore, the
proposed algorithm calculates the galloping risk coefficient using the unit time impact factor, perceiv-
ing energy accumulation during iced transmission line galloping, thereby increasing the sensitivity to
time series data and achieving precise early warnings for icing galloping.

The early warning results of the proposed algorithm for the test set data of iced transmission
line galloping are shown in Table 2. The missed alarm rate of the proposed algorithm is reduced by
71.07% and 63.52%, respectively, compared to the comparison algorithms, and the false alarm rate is
reduced by 42.71% and 46.58%. This improvement is due to the proposed algorithm’s comprehensive
consideration of data fusion, adaptive irregular time series perception adjustment, and attention
closed-loop mechanisms, enhancing the perception and prediction capabilities for time series data. The
proposed meteorological data prediction network achieves accurate meteorological data predictions,
providing a data foundation for subsequent galloping early warning. The reasons for false alarms
in the proposed algorithm are as follows: 1. The proposed model is highly sensitive to future line
galloping, which may result in early warning signals, and such false alarms can still provide early
warning function; 2. The dataset’s galloping conditions are manually labeled, which may result in
missed labels where small-scale galloping events occurred but were not observed manually. The low
missed alarm rate of the proposed algorithm ensures comprehensive early warnings for transmission
line galloping, achieving the purpose of early warning and prevention in actual application.

5 Conclusion

In this paper, we proposed an early warning method of transmission line galloping based on
the integration of optical fiber sensing and weather forecast time series data. First, multi-source
time series data were deeply fused based on adaptive weighted learning, and K-mediods were used
to cluster the fused data of iced transmission line galloping. Next, the traditional iced transmission
line galloping data prediction network was improved through adaptive adjustment of irregular time
series perception and attention to closed-loop mechanism, comprehensively considering the effects of
temperature, humidity, wind velocity, and duration to construct an iced transmission line galloping
risk coefficient, and early warnings were issued based on the risk coefficient. Finally, using a historical
dataset of transmission lines, the proposed algorithm’s performance was validated by dividing the
dataset into training and test sets. The results show that, compared to the two comparison algorithms,
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the proposed algorithm reduces the prediction errors of temperature by 69.47% and 14.13%, the
prediction errors of wind velocity by 55.25% and 22.44%, and the prediction errors of humidity by
72.48% and 28.29%. The average error of the galloping risk coefficient is reduced by 67.1% and 59.4%,
the missed alarm rate is reduced by 71.07% and 63.52%, and the false alarm rate is reduced by 42.71%
and 46.58%. The current research in this paper still has some limitations. For example, only the early
warning of galloping is considered, and the integrated mechanism of perception and control is not
established, which cannot realize the highly-reliable monitoring of icing galloping on transmission
lines. In addition, this paper uses an idealized perception data model, without considering the problem
of data loss caused by sensor and communication errors, which may lead to a decline in the accuracy
of the final warning results in practical application. In the future, we will establish a comprehensive
monitoring system for transmission lines based on machine learning, taking into account the impact
of false data injection on predictive models, and introduce data encryption and identity authentication
mechanisms to further improve the accuracy of transmission line icing galloping warning and the cyber
security of the comprehensive monitoring system.
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