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ABSTRACT

This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental
data for species introductory site selection systems. Combining Strengths, Weaknesses, Opportunities, Threats
(SWOT) analysis data with Variation Autoencoder (VAE) and Generative Adversarial Network (GAN) the network
framework model (SAE-GAN), is proposed for environmental data reconstruction. The model combines two
popular generative models, GAN and VAE, to generate features conditional on categorical data embedding
after SWOT Analysis. The model is capable of generating features that resemble real feature distributions and
adding sample factors to more accurately track individual sample data. Reconstructed data is used to retain
more semantic information to generate features. The model was applied to species in Southern California, USA,
citing SWOT analysis data to train the model. Experiments show that the model is capable of integrating data
from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from
them, effectively solving the problem of insufficient data collection in development environments. The model is
further validated by the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) classification
assessment commonly used in the environmental data domain. This study provides a reliable and rich source of
training data for species introduction site selection systems and makes a significant contribution to ecological and
sustainable development.
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1 Introduction

Currently, with the rapid development of deep learning data processing technology, its powerful
data representation ability is also widely welcomed in the field of sustainable development and
environmental development [1]. However, training deep neural networks requires a large amount of
annotated data, but many of the current ecosystem development data suffer from thin data volumes
and difficulties in data access. In addition, ecological data have large differences in positive and
negative categories, making it difficult to annotate and uniformly train them. In order to address the
above issues, a network framework that combines Strengths, Weaknesses, Opportunities, and Threats
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(SWOT) analysis data with Variation Autoencoder (VAE) and Generative Adversarial Network
(GAN) networks (SAE-GAN). The framework also references the Technique of Similarity Ordering
Preferences for Ideal Solutions (TOPSIS) detection, which synthesizes to provide a practical solution.

Many well-established models and frameworks exist that can provide references to ambient modal
to textual data [2], as well as read parameters and transfer information efficiently and accurately
[3]. Among them, data generation models, such as GAN and VAE, have been proposed for various
tasks (For example, the process of image ecological change [4], Information extraction and species
prediction [5–7], Species and Scene Detection [8,9]). Recently, some studies [10] have also used
generative modeling [11] to deal with the problem of environmental sequence data generation. To fully
utilize their potential, our generative model SAE-GAN takes advantage of GAN and VAE to generate
features that expand the analyzed data with the help of integrating the analyzed data as conditional
information. It should be noted that existing studies [12,13] have demonstrated the effectiveness of
generative models to simulate input data. In order to address the problem of large differences between
positive and negative categories in ecological data, we creatively use SWOT analysis data to replace
the original collection data, and the framework integration of SWOT analysis is more conducive to
the comprehensive assessment of the data.

Our aim is to expand the dataset in order to fully utilize the existing data for analytical prediction,
where Autoencoder (AE) as well as the extended VAE model have been fully validated for their
accuracy in generating new samples for the data [13]. And among them, VAE has even better data
extraction ability due to the known nature of its potential space. Meanwhile, although GAN is
a powerful generative model and is often used to generate new similar data [14], it suffers from
the problems of unstable training and low quality of generated samples. Different methods have
been proposed to improve GAN, such as Wasserstein GAN (WGAN) [15] and Deep Convolutional
(DCGAN) [16], which have achieved certain superior results. In this paper, after comprehensive com-
parison experiments, it is verified that VAE add GAN together have better results in the field of data
generation, and VAE can better accomplish sample generation and adjustment through its potential
space for differencing and control. When combined with GAN, an adversarial training mechanism
can be introduced into the latent space to further optimize sample generation. The reparameterization
technique of VAE makes the training process more efficient, while GAN improves the generative
ability through the adversarial mechanism. The combination of the two can complement each other’s
deficiencies and improve the overall training efficiency. This study will provide a comprehensive
overview of the architecture and training procedures of the SAE-GAN model, as well as an assessment
of the accuracy and value of the generated synthetic data. The results of this study can provide a
reliable and rich source of training data for species introduction site selection systems, thus making a
significant contribution to ecological and even sustainable development.

By creating high-quality, contextually accurate synthetic data, we can overcome the limitations of
existing datasets while improving the accuracy of species siting models. This study will provide an in-
depth analysis of the design, training procedures, and general efficacy of VAEs and GANs to generate
synthetic data. We will also conduct a comprehensive evaluation of the generated synthetic data, using
a variety of metrics and experiments to assess its quality and usefulness. The potential impact of this
study is enormous, offering a promising solution to the data shortage.

Fig. 1 illustrates the general framework of our conditional generation model, which is an intuitive
combination of Missing importance weighted autoencoder (MIWAE) and GAN. In addition to the
regular encoder (E), the generator (G), and the discriminator (D), we use the SWOT analysis data
as inputs to incorporate sample factor classification sampling merged into our model to ensure that
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the generated features are discriminable at the category level. Specifically, our model consists of four
components, namely, Encoder E, Generator G, Discriminator D, and Categorizer C. Our model is
trained based on the seen class features and their corresponding class-level semantic embeddings.
After 3 training sessions, our model can generate high-quality features for unseen classes and give
the corresponding semantic embedding.

Figure 1: Illustration of our joint generative model (SWOT-MIWAE-GAN)

Meanwhile, we employ perceptual reconstruction to retain more semantic information for feature
generation. The proposed joint generation model can mitigate the domain drift problem by generating
features similar to the actual distribution, which is robust and generalizable to the data reconstruction
task. The specific structure is shown in Fig. 2.

Figure 2: System overview of GAN networks for reconstructing environmental signals in SAE-
GAN. (a) Monitoring point address location messages, i.e., data snapshots; (b) MIWAE generation
data/environmental data; (c) Structure of generation model and discrimination model

In addition, we propose to incorporate an analytical model, TOPSIS, to further validate the
reconstruction data.

The main contribution of this paper is fourfold:

• We propose a joint generative model called SWOT-MIWAE-GAN for environmental data
reconstruction. The model seamlessly combines two popular generative models, i.e., GAN and
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MIWAE, to generate features conditional on categorical data embedding after SWOT analysis. The
model is capable of generating features that are similar to the real feature distribution.

• We add sample factors to add conditions to the data generation so that the final generated data
is more accurately tracked on each sample data. In addition, we employ perceptual reconstruction as
a fine-grained similarity metric to better capture the details and complexity of environmental features.

• We applied our methodology to the Southern California species in the United States citing
SWOT analysis data to train the model, and experimented with multiple classes of loss functions as
criteria, respectively. The results show that the proposed model pioneers the expansion of environmen-
tal data and achieves significant performance improvements compared to traditional methods applied
to environmental data. Not only can it work in the area of species introduction, which is the role of
this paper, but it can be extended to other ecological tasks.

• Our model is further validated that its data reconstruction is equally well generalized and
robust in its holistic nature by the TOPSIS expertise classification assessment commonly used in the
environmental data domain.

2 Related Work

To analyze time-varying ecological data in a more comprehensive and multidimensional way,
scientific data analysis has been extensively studied. Existing research methods are based on three
main categories: 1) a solution based on environmental data fusion; 2) a solution based on SWOT
combined with empowered TOPSIS; and 3) a solution based on VAE add GAN reconstructed data.

2.1 Data Fusion

The core idea of data fusion is usually to aid in signal reconstruction by employing other
classes of data. Of these, there are broad correlations between the different categories [17–20]. Yin
[21] realized the integration of multiple types of data in ecosystems and biological environments by
combining water quality monitoring data and biomonitoring data through the establishment of a GIS
dynamic monitoring model. Raut et al. [22] proposed a distributed decision fusion framework for the
ecosystems and successfully applied the fusion model to the development of intelligent systems for
sustainable planning.

However, the two major bottlenecks in data fusion in the environmental category are: 1) method
designers need to know which data are highly relevant to the detection target; 2) the stringent
requirements for fusion controls between diversity and correlation between different categories of
environmental data limit the use of data and the construction of models. In contrast, the SAE-GAN
proposed in this paper fuses different categories of data by SWOT analysis and then inputs them as
a single data source, which is easier to fuse and generalize. However, there is a point to note that
this paper selects SWOT analysis dataset for the sake of comprehensive indicators, however, SWOT
analysis usually relies on the judgment and perception of an individual or organization, which may
lead to the results of the analysis being biased towards subjective evaluation, therefore, please ensure
that the SWOT data analysis is authoritative when adopting textual methods.

SWOT data preprocessing part: first of all, the collection of data through the positive and negative
factor analysis, we will analyze the data collated into a matrix form and normalized to [0, 10] between
the sample missing in the sample eigenvectors according to the actual development of the data
considerations to take 0 or the mean value. Subsequently load and randomly disrupt the data input
to the VAE-GAN model via the data loader and add random noise, if other noise parameters are
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present in the data, we will add additional noise to the encoder/generator model. The overall data
preprocessing process is shown in Fig. 3.

Figure 3: Overall data process

2.2 SWOT-TOPSIS

SWOT analysis is a good model for data analysis when collecting and analyzing multiple categories
of ecological data while integrating different categories of data in a holistic manner [23–25]. In this
case, SWOT is combined with TOPSIS in terms of positive and negative vectors to better capture
the characteristics and patterns of the data through similarity ranking decisions [23–25]. TOPSIS
is the conversion of internal and external factors in SWOT into numerical indicators. It should be
incorporated into TOPSIS evaluation system to effectively achieve strategic objectives [26]. It is also
widely used in the field of environment [27] and species domains [23].

As can be seen, TOPSIS was able to further optimize the SWOT data and rank the results for
vectorial analysis. Based on this, the SAE-GAN proposed in this paper, as a data vector-driven model
based on modeling reconstruction, is introduced into TOPSIS for further examination, to determine
the accuracy of their reconstructed data for better generalization to other environmental domains.

2.3 VAE-GAN

In recent years, advances in deep learning techniques have demonstrated the great potential
of CNN networks in extracting data features [28]. Meanwhile, data generation models based on
Convolutional Neural Network (CNN), to show strong advantages and are used in a wide range of
application areas such as diverse sample generation [29], generating realistic samples [30], learning
data distributions [31], and unsupervised feature learning [32]. Among them, VAE accurately generates
samples by mapping the original data space through the encoded latent space [33], and GAN improve
its performance through mutual adversarial training between the generators and the discriminators
[34], each of which has its own advantages and both of which have been widely used.

The combination of the two architectures generates samples that are even more diverse and
controlled [12], but complex architectures have some drawbacks. 1) Overfitting and limited scalability
for missing data or insufficient datasets. 2) Difficult to generate data based on a particular sample.
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SAE-GAN uses an improved encoder MIWAE to introduce a hybrid loss function with multiple
interpolations to improve the processing data capability. At the same time, the GAN network training
process introduces the sample factor to make its generated sample data closer to specified sample
characteristics, to improve the precision of data generation and accuracy of analysis.

3 Basic Definitions

In general, the ecological environment development data consists of different categories, in which
the positive factors (air, soil, habitat quality; ecological region protection area and status), negative
factors (extreme weather and vegetation succession, etc.; land competition and human damage) are
difficult to analyze correspondingly, so the ecological environment data after SWOT analysis is more
convenient to analyze the sampling and data integration. For ease of presentation, we represent the
SWOT analyzed data as two-dimensional analyzed data, divided into matrices, which are defined as
analyzed samples for subsequent reconstruction simulations.

Definition 1 (Analyzed data): The results of the SWOT analysis data xi are represented by a matrix,
which records sampling data from ecological surveys within a region.

Definition 2 (Generated data): Firstly, the original environmental data is recorded as xi after SWOT
analysis, the original data is used to generate new data Q through VAE, and finally, the two are trained
against each other by GAN network to finally output the reconstructed data qi.

Definition 3 (TOPSIS validation): Defining positive and negative vectors through weights, to validate
the timeliness and real-time performance of reconstructed data in practical applications.

Our goal: Given SWOT analysis environment data xi, generate data qi by coding complementary
in Eq. (1), two mutually generating confrontations. Our goal is to use the reconstructed corresponding
sample dataset tested by TOPSIS to compensate for the current lack of data on ecosystem develop-
ment, for subsequent modeling and simulation predictions.

max min
∑N

i=1
log pθ

(
x(i)

)
(1)

Therefore, we will illustrate in Section 4 that the reconstructed data approximates the original
environmental data qi, and serves as supplementary data xi for the next data reconstruction.

4 Proposed Joint Model
4.1 Problem Setting

At present, the ecological environment data development still has the problem of difficult
development and insufficient sample data, Therefore, data reconstruction is attempted for fewer
datasets, and the SAE-GAN reconstruction model is established through experimental comparison.

We first use the data Q generated by VAE as the input data for generator G in the next GAN model,
and generate Gaussian-like samples after generator training, meanwhile, we input the original data xi

into the discriminator D, and then the Gaussian-like samples and the original data are trained by the
GAN network generative confrontation training, and the network learns the mapping relationship
between the Gaussian-like samples and the original data, and ultimately generates the reconstructed
data with the similar relationship to the reconstructed data, which can be used to supplement the
required ecological data.
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4.2 MIWAE-GAN Based Generative Modeling

The main innovations of the SAE-GAN reconstruction model are the introduction of sample
factors sf in the VAE and the mutual adversarial learning of input data within two types of simulators
(G, D) in the GAN network. The combination of the two can generate new data that is more
comprehensive and connected for practical use. We therefore further elaborate the innovation by
means of a flowchart and specific explanations, as shown below.

As shown in Fig. 2, our joint generative model seamlessly couples the MIWAE and GAN. Below,
we will first outline the different components of the overall generative model, includes adding sample
factors. This is followed by a detailed description of the TOPSIS analysis model that further tests the
accuracy of the generated data.

Overview of Joint Generation Models: Our proposed generative model has the following compo-
nents: 1) encoder E, 2) decoder D1/generator G1, and 3) discriminator D. The encoder E captures the
intrinsic structure of the xi feature and maps the real feature into the potential space. The generator G is
then reconstructed in the potential representation and decoded into the feature space. In the following,
we will elaborate on the principles and loss functions between the different models.

4.2.1 MIWAE Model

First, MIWAE is a deep generative model based on the incorporation of a variational autoencoder
(VAE) into the Mutual Information (MI) loss function Eq. (2), whose core idea is to learn effective
hidden representations by maximizing the interaction information between the input variables and
the hidden variables [35]. Utilizing mutual information as a learning objective helps to learn the
feature representation better. Subsequent ablation experiments were able to validate our choice. the
MIWAE data generation model is shown in Algorithm 1. The following is a specific explanation of
the algorithm:

Eq (z|x) [log p (x|z)] (2)

MIWAE first constrain the direction of the reconstructed data generation by computing the
negative log-likelihood loss between the input x and the reconstructed output p (x|z).

Then the encoder E in MIWAE transcodes the feature information of the sample into a Gaussian-
like distribution di and outputs the mean μi and standard deviation σi as the encoded result code. Then
a randomly selected value zi from the perfect Gaussian distribution di constructed from the μi and σi

which is fed to the decoder.

Instead of outputting an implicit representation of the original data directly, the encoder outputs
the mean μi and standard deviation σi distilled from the original data. After that, a normal distribution
with mean μi and standard deviation σi is established, and the implicit z is drawn from this normal
distribution, and then the implicit representation z is input to the decoder for decoding, as summarized
in Algorithm 1, which summarizes the detailed training process of MIWAE.

In order to present our model more clearly, the following describes the loss function, the overall
structure, and the sample factors in turn, respectively:

Loss Function: The loss function in MIWAE is shown in Eq. (3). Where Kullback-Leibler (KL)
table loss dispersion is a measure of the two sets of data distribution, is the difference between the
measure, when the two sets of data distribution is closer, KL dispersion will be smaller, and vice versa,
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KL dispersion will be larger, writing Eq. (4). φ is the encoder parameter and θ is the decoder parameter.

L (θ , φ; x, z) = Ez−qφ(x|z) [log pθ (x|z)] − DKL (qφ (z|x) ‖ p (z)) (3)

KLi = −1
2

N∑
i=1

(
1 + log

(
σ 2

j

) − σ 2
j − μ2

j

)
(4)

The goal of encoding is to output data that is highly similar to the original data, so the loss function
of an encoder usually includes Reconstruction Loss to measure the input and output difference
portion. In our experiments, in order to refine the generation criteria and test the results, the four
loss functions including KL dispersion, Regression Loss (RL), Mean Squared Error (MSE), Mean
Absolute Error (MAE) are chosen to work together in Eqs. (5)–(7), bringing in the loss function
formula as in Eq. (8).

L = −E_ (x ∼ D) [log p (x)] + KL [q (z|x) ||p (z)] (5)

MSE = 1
m

m∑
i=1

(
yi − ŷi

)2
(6)

MAE = 1
n

1∑
i=n

∣∣ŷi − yi

∣∣ (7)

L (θ , φ) = 1
m

M∑
i=1

(
xi − x̂i

)2 − 1
2m

M∑
i=1

K∑
j=1

(
1 + log

(
σ 2

j

) − σ 2
j − μ2

j

)
(8)

Structure: The overall structure of MIWAE is shown in Table 1: Encoder E serves as the
data generation model for MIWAE through a two-layer CNN for feature extraction and nonlinear
mapping, respectively. Both subsequent layers use a linear layer for nonlinear transformation to better
capture the higher order features of the data. After receiving the E information, the decoder D1 further
amplifies the feature mapping through one linear layer, two layers of transposed convolution, and
finally the sigmoid function activation function is used to restrict the output value to the [0, 1] interval.

Sample Factor: In order to make the generated data samples arbitrarily close to the environmental
samples in a particular region xi, we introduce a sampling factor sfxi for the generator model definition,
as shown in Eq. (9).

The sample factor acts in the model generator to add a dimension to the generator, splicing the
sample factor to the input with a dimension that is consistent with the number of input samples
and features. Reconstructed data characterized by a particular sample is generated by adjusting the
parameters of the sample factor in the generator by setting all parameters except the tracking sample
to 1.

min
xi

≤ sf ∈ xi ≤ max
xi

(9)
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Table 1: MIWAE’s structural setup

Encoder E

Layers Parameters Output shapes

Input / 7 × 16 × 3
conv-1 + ReLU I1 = 1, O1 = 16, K1 = 3, S1 =2, P1 = 1 7 × 32 × 7
conv-2 + ReLU + Flatten I2 = 16, O2 = 32, K2 = 3, S2 = 2, P2 = 1 7 × 32 × 7
Linear + ReLU I3 = 32 × 13, O3 = 256 7 × 256
Linear I4 = 256, O4 = 2 × 49 7 × 2 × 49

Decoder D1

Layers Parameters Output shapes

Input / /
Linear + ReLU I′

1 = 49, O′
1 = 256 7 × 256

Linear + ReLU I′
2 = 256, O′

2 = 32 ∗ 13 7 × 32 × 13
Unflatten I-BS′

3 = 2, O-BS′
3 = (32, 13) 7 × (32,13)

Conv-Transpose + ReLU I′
4 = 32, O′

4 = 16, K′
4 = 3, S′

4 =2, P′
4 = 1 7 × 16 × 25

Conv-Transpose I′
5 = 16, O′

5 = 1, K′
5 = 3, S′

5 = 2, P′
5 = 1 7 × 1 × 49

Sigmoid / Scalar

4.2.2 GAN Model

We combine the VAE output data with the reconstructed data trained by the GAN network, and
the reconstructed data with better accuracy will be generated through mutual adversarial learning,
and the specific structure of its GAN network is shown below:

A GAN network is a network structure in which the generator G and the discriminator learn to
compete with each other to generate artificial samples that are indistinguishable from real samples by
learning complex distributions among the data [34]. The special cross-entropy formula for GAN in
the generator-discriminator involution relation is shown in Eq. (10). Which denotes the result judged
by the discriminator D (xi) on the real data xi in the generation which is based on the fake data
generated by G (zi). D (G (zi)) denotes the result judged by the discriminator on the fake data G (zi).
The adversarial training method is described in Algorithm 2.

V (D, G) = 1
m

m∑
i=1

[log D (xi) + log (1 − D (G (zi)))] (10)

Similarly, the next specifics are presented in terms of the loss function, and the overall structure,
respectively:

Loss Function: for the discriminator D loss as in Eq. (11), we expect that the outputs D (xi) on
the true samples are all infinitely close to 1, while the outputs D (G (zi)) on the false samples are all
infinitely close to 0. For the generator G, on the other hand, it cannot affect D (xi), only D (G (zi)), so
only the second half of the loss is relevant to the generator, and hence there is Eq. (12) for the generator.
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When both are combined, the loss V is shown in Eq. (13).

LossD = 1
m

m∑
i=1

[log D (xi) + log (1 − D (G (zi)))] (11)

LossG = 1
m

m∑
i=1

[log (1 − D (G (zi)))] (12)

min
G

max
D

V (D, G) = Ex∼p [log D (x)] + Ez∼pz [log (1 − D (G (z)))] (13)

Structure: The specific structure of the GAN network is shown in Table 2: learning data generation
using CNNs in end-to-end mapping from coarse inputs to ground truth Kang et al. obtained good
practical results in environmental data generation [20]. Inspired by this, we choose three-layer CNN
as the generative model in the generator to realize the mapping relationship, but before that, due to
the low number of samples in the input data, we choose to first combine the input noise with other
features through the FC layer to generate a more advanced feature representation.

Table 2: GAN’s structural setup

Generative model G

Layers Parameters Output shapes

Input / /
fc1 nF1 = 256 7 × 256 × 1
conv-1 + ReLU I2 = 1, O2 = 46, K1 = 3, S1 = 1, P1 = 1 7 × 64 × 256
conv-2 I3 = 64, O3 = 128, K2 = 3, S2 = 1, P2 = 1 7 × 128 × 256
conv-3 I4 = 128, O4 = 49, K3 = 3, S3 =1, P3 = 1 7 × 49 × 256
tanh I4 = 128, O4 = 49 Scalar

Discriminative model D

Layers Parameters Output shapes

Input / 7 × 49 × 1
conv-1 + bn + ReLU I′

1 = 49, O′
1 = 64, K′

1 = 3, S′
1 = 1, P′

1 = 1 7 × 64 × 1
conv-2 + bn + leakyReLU I′

2 = 64, O′
2 = 128, K′

2 = 3, S′
2 = 1, P′

2 = 1 7 × 256 × 1
conv-3 + bn + leakyReLU I′

3 = 128, O′
3 = 256, K′

3 = 3, S′
3 = 1, P′

3 = 1 7 × 256
pool I′

4 = 32, O′
4 = 16, K′

4 = 3, S′
4 = 2, P′

4 = 1 7 × 256
fc1 n′

F1 = 256 7, 1

In the mapping, we approximate the corresponding environmental data xi given qi as input and
the output class Gaussian distribution di, i.e., xopt = G (di). As shown in Table 2, the G model consists
of three convolutional layers that are connected in layers to represent different operations: 1) feature
extraction and representation; 2) nonlinear mapping; and 3) reconstruction. Where the kernel size, step
size, and padding of the convolutional layer are denoted by f1, f2, f3; s1, s2, s3 and p1, p2, p3, respectively.
All three CNN layers are nonlinearly transformed using the ReLU activation function. The final layer
of the generator model uses a Than activation layer to restrict the output values to between (−1, 1).
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For the discriminator model, we use a structure similar to G, with two linear layers followed by
two transposed convolutional layers. All of them use ReLU activation function. Finally, the features
extracted from the convolutional layers are converted into scalar values by means of a fully connected
layer, which determines whether the samples are real or generated.

4.2.3 TOPSIS Model

The TOPSIS model of superior and inferior programs is a comprehensive evaluation method that
makes full use of the information in the raw data, and its results accurately reflect the indicator gaps
[25]. In this study, we constructed a TOPSIS model by combining the data generated by the generator
with the sfxi with the corresponding matrix of raw environmental data (sfxi adjusted to the data of
different environmental addresses in xi) and used the difference method (1 − x) to transform the
negative indicators in the data metrics into positive indicators. The transformed data matrix is denoted,
and the formula is shown in Eq. (14). Next, the raw data are normalized with the normalization
formula in Eq. (15).

Zij = − Xij√∑n

k=1

(
Xij

)2
(14)

Z =

⎛
⎜⎜⎝

z11 z12 · · · z1p

z21 z22 · · · z2p

...
...

. . .
...

zn1 zn2 · · · znp

⎞
⎟⎟⎠ (15)

TOPSIS calculates the distance between the evaluated and the optimal and worst values in
Eqs. (18) and (19) based on the vector of optimal and worst values given in Eqs. (16) and (17).
where the weights are determined using the entropy weighting method Eq. (20). The robustness and
generalizability of the reconstructed data is further verified by comparing it with the original data xi

that has not been combined with the reconstructed data after evaluation by the TOPSIS model, and
the overall evaluation process is shown in Fig. 4.

z+ = max
nj

(
z+

1 , z+
2 , . . . , z+

p

)
(16)

z− = min
nj

(
z−

1 , z−
2 , . . . , z−

p

)
(17)

D+
i =

√√√√
m∑

j=1

(
zij − Z+

j

)2
(18)

D−
i =

√√√√
m∑

j=1

(
zij − Z−

j

)2
(19)

dj = 1 − ej (20)
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Figure 4: Building TOPSIS model to further validate the robustness and generalizability of recon-
structed data. (a) Environmental data xi analyzed directly; (b) Indirect analysis of data generated by
MIWAE; (c) Comparison of the two ranking results

5 Evaluation
5.1 Description of the Data Set

In this paper, we analyze a sample of data using a SWOT analysis of potentially receptive sites
in the field of environmental development regarding the Pacific kangaroo rat in South America [36].
The 49 categories of metrics in 7 addresses are taken for preprocessing, followed by reconstructing
the data through SAE-GAN, and finally, the original data samples combined with the corresponding
generated reconstructed data samples are validated through TOPSIS.

5.2 Experimental Setup

For the environmental sample data, we encode the environmental sample data matrix xi =
mn (m = 7, n = 47) to generate the reconstructed data di = mini (i ∈ 1 ∼ 7). Next, it will be fed to
the generator and discriminator, respectively, and the performance of the signal reconstruction will be
evaluated by measuring the loss values of the reconstructed signal with respect to the original signal
and TOPSIS analysis.

The proposed implementation of SAE-GAN is based on CNN, TensorFlow [37], and TensorLayer
[38], All networks were trained on Google Colab v100 GPUs. The structural settings of MIWAE and
GAN in SAE-GAN are shown in Tables 1 and 2, where “Conv” denotes the convolutional layer, “FC”
denotes the fully connected layer, and “bn” denotes batch normalization. For network optimization,
we use the Adam optimizer.

5.3 Performance Assessment

For SAE-GAN, as described in Section 4.1. Ecosystem development data has the problem of fewer
samples, to prevent training overfitting due to the number of samples, so we use a variety of loss
functions to work together to train the best reconstruction indicator data.
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Based on the data qi generated by MIWAE as mentioned in Section 4.2, the data reconstruction
performance of MIWAE on the baseline method and the optimal number of iterations are tested by
means of MAE, Iteration loss, RL, MI and KL evaluation metrics test model. These metrics are
important tools for evaluating and optimizing the performance of data reconstruction, they help
us to understand the effectiveness of the model in dealing with missing data and reconstructing
ecological datasets, and to determine the optimal number of iterations to achieve the best performance.
The overall performance of SAE-GAN reconstructed data is later compared by discriminator loss
(d_loss), generator loss (g_loss), MSE and MAE in GAN network. Figs. 5 and 6 list the results of
environmental data reconstruction, from which it can be seen that the two metrics get the best results
at 50/100 iterations respectively, meanwhile, the SAE-GAN proposed in this paper achieves the best
performance in environmental data reconstruction.

As described in Section 4.1, many environmental development difficulties make for sparse data
volumes and small sample sizes. To prevent training overfitting, we chose multiple classes of loss
functions to work together, and Figs. 5 and 6 show that the best iterations occur 50/100 times. 1) The
results of Fig. 5 for RL loss, overall loss, Avg. MAE, KL scatter, and MI loss are 13.626 × 103, 15.61
× 103, 1.96, 14.76, 0.35, the proposed MIWAE method is seen to outperform the baseline in terms of
KL scatter. 2) The results of d_loss, g_loss, MSE, and MAE loss in Fig. 6 are 0.0183, 0.1027, 2 × 103,
2.3 × 103, where MSE and MAE losses were similarly better than baseline. We observe that the MSE
drops off a cliff as the number of iterations increases, and we believe that multiple iterations cause
training overfitting.

Figure 5: RL loss; overall loss; Avg. MAE; KL scatter; MI loss for MIWAE in SAE-GAN
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Figure 6: d_loss, g_loss; MSE; MAE loss of GAN network in SAE-GAN

Algorithm 1: MIWAE data generation methodology
Input: SWOT analysis sample xi, feature tensor,

maximum iterative number maxIter, weight factor,
learning rate η, optimizer Adam;

Output: Generate data Q, The value of the KL Divergence,
and MAE as well as Mi interaction loss values;

Mi ← Mutual Information;
Loss ← Impose a penalty term on the encoder;
Variable t ← 0;
while t < maxIter do

each xi in encoder do, output Gaussian distribution di

add Loss L (θ , φ; x, z) = Ez−qφ(x|z) [log pθ (x|z)] − DKL (qφ (z|x) ‖ p (z))
// Impose a penalty term on the encoder and Mi Loss;

// θ , φ Auto-encoder parameters;
(Continued)
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Algorithm 1 (continued)
output μ1 · · ·μm ← average values, σ1 · · · σm ← standard deviation;

for di → Di do⎡
⎢⎣

μ1

...
μm

+
⎡
⎢⎣

σ1

...
σm

→
⎡
⎢⎣

z1

...
zm

→ perfect Normal distribution Di;

// Drawing Zi from a normal distribution.
for Zi in Decoder do

Output data q and calculate MAE and Mi loss;
// Update parameters of z with

decoder. t ← t + 1;
return Generate data Q, KL Loss, Mi, MAE;

Algorithm 2: Adversarial training methods for GAN
Input: Generate data Q, Batch size m, collection of low-/high-quality

sensing signal pairs P, collection of impact map I, maximum iterative number maxIter,
generator and discriminator subepochs G and D, weight factor λ, learning rate η;

Output: Optimized parameters of generative network
φG, and optimized parameters of discriminative network φD, Loss.

φG, φD ← Small random values;
Loss ← g_loss, d_loss, MSE, MAE;
for number of training iterations do

for k steps do
Sample minibatch of m noise samples

{
z(1), · · · , z(m)

}
from noise prior pg (z).

Sample minibatch of m examples
{
x(1), · · · , x(m)

}
from data generating distribution pdata (x).

Update the discriminator by ascending its stochastic gradient:

∇θd

1
m

∑m

i=1

[
log φD

(
x(i)

) + log
(
1 − φD

(
φG

(
z(i)

)))]

end for
Sample minibatch of m noise samples

{
z(1), · · · , z(m)

}
from noise prior pg (z).

Update the generator by ascending its stochastic gradient (improved objective):

∇θg

1
m

∑m

i=1 log
(
φd

(
φg

(
z(i)

)))
return φG, φD;

5.4 TOPSIS Test Analysis

As mentioned in Section 4.2, in order to further test whether the reconstructed data in its entirety
can be used for subsequent modeling simulation predictions, we analyze the results of each sample
in the original environmental data xi individually by TOPSIS and then compare them with the data
generated by SAE-GAN after combining them by TOPSIS analysis. Its analysis results are shown in
Table 3, and the TOPSIS analysis results after adding the reconstructed data are consistent with the
original results, which verifies the reconstruction accuracy.
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Table 3: TOPSIS analysis comparison

Norm Positive ideal
solution
distance

Negative ideal
solution
distance

Composite
score index

Combining
reconstructed
data (D+)

Combining
reconstructed
data (D-)

Reconstructed
data (score
index)

Arrange in
order

LAX 0.57582076 0.73849507 0.56188555 0.55854247 0.68660689 0.55142532 1
Tijuana
estuary

0.60833461 0.70017705 0.53509424 0.65527205 0.58559769 0.47192519 2

Alta vicente 0.6005932 0.68927405 0.53437596 0.69990852 0.55755838 0.44339806 3
Torrey pines 0.66530357 0.63915284 0.48997639 0.72534289 0.52228092 0.41862052 4
Dilley 0.72825653 0.53136242 0.42184378 0.69702325 0.48932224 0.41246184 5
Laguna coast 0.77935812 0.5346117 0.40686756 0.73706779 0.51322836 0.41048543 6
Turtle ridge 0.77491456 0.48886518 0.38682783 0.78118011 0.42123606 0.35032468 7

5.5 Ablation Study of ESR-GAN

Here we conduct an extensive ablation study to evaluate how the SAE-GAN framework affects the
reconstruction results of environmental data. The experiments are conducted in terms of uniformity
and diversity, respectively.

Uniformity test: As mentioned above, the solution pipeline of SAE-GAN consists of three main
parts: 1) encoder E; 2) decoder D1, generator G; 3) discriminator D, while we combine multiple classes
of loss functions to jointly verify the reconstruction accuracy. Therefore, we perform ablation in two
ways: 1) the encoder removes the MI loss and 2) the end-to-end output using either the encoder-
decoder or generator-discriminator network alone, i.e., removing a portion of the overall frame condi-
tion. From Table 4, we observe that each ablation of SAE-GAN leads to worse signal reconstruction
performance. These results show that the SAE-GAN framework can effectively improve the quality
of reconstructed data.

Table 4: Ablation study

Experimental methods Loss Reconstruction loss KL divergence Mutual information loss d_loss g_loss MSE MAE

SAE-GAN 15,601.7471 13,626.2051 14.7594 0.3558 1.3834 0.7048 0.1034 0.2427
VAE LOSS 15,628.2773 15,628.2773 18.1834 18.1834 / / / /
Encoder-Decoder only 15,601.7471 13,626.2051 14.7594 0.3558 / / / /
Generator-discriminator only / / / / 1.3856 0.6867 0.0002 0.0023

Diversity of Test Cases: As stated in the introduction above, in order to understand the advantages
of SAE-GAN over other common generative adversarial networks in terms of diversity of test cases,
AE, GAN, WGAN, and DCGAN were chosen as comparison models for the experiment. In some
tests, DCGAN, WGAN usually do not directly calculate the reconstruction loss, KL scatter and MI
loss, so we uniformly adopt MSE, MAE as the evaluation index of this ablation experiment. From
Table 5, it can be seen that our constructed model possesses better prediction accuracy and indexes
compared with other models.



CMC, 2025, vol.82, no.1 945

Table 5: Diversity experiments

Evaluation indicators MSE MAE

Other works
AE 0.1494 0.2517
GAN 44.2968 6.1034
DCGAN 40.3362 5.7864
AE-GAN 0.0437 0.1664
VAE-WGAN 6.6972 52.2040
Our’s
SAE-GAN 0.0183 0.1027

5.6 SAE-GAN Extension Study

A practical framework for environmental data reconstruction should have the ability to generalize
to handle multiple types of data and adapt to various states of reality such as integrated assessment.
In this paper, the sampling state refers primarily to the number of monitoring sites and their
corresponding spatial layout. We analyzed the data through SWOT and input environmental data
reconstruction. The data is generated by two overlays and a lot of experiments are conducted, the
final result verifies that SAE-GAN has better training accuracy and generalization compared to other
data reconstruction models.

However, the SAE-GAN model established in this paper also possesses certain limitations, as
mentioned in Section 2.1, SWOT analysis is highly subjective and may bias the analysis results. Mean-
while, although SAE-GAN can follow up the real-time change data of the ecological environment by
adjusting the SWOT parameters, SWOT belongs to the comprehensive integration analysis, and the
real-time change parameters of a certain point may have an impact on the overall analysis results.
For the above problems, we consider incorporating certain noise (influence parameters) and acting
on larger datasets in future research, as well as incorporating other features of generative adversarial
networks, such as domain transformation and conditional generation, which can also be introduced
into the model.

Adaptation of SAE-GAN models to other environmental challenges can be continuously explored
in future research by optimizing the algorithm and loss function to will improve the stability of training
and generation quality. In addition, investigating new network structures and techniques may reduce
training time and computational resource requirements. Future research will also need to consider
data privacy and ethical issues to ensure that the application of the model does not violate individual
privacy or cause adverse social impacts and, at the same time, ensure that the data generated respect
the principles of ecological diversity and sustainability.

6 Conclusion

In this paper, we propose a new generative model-based framework, SAE-GAN, for reconstructing
environmental signals by sparse and homogeneously distributed sampling. By combining two popular
generative models and expanding the loss function action rate, the model can synthesize high-quality
features with elemental similarity and overall similarity to real features. Based on the problem of
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differences in sampled data categories, the proposed SAE-GAN model incorporates sample factors
to provide complementary conditions for generating data and obtains better performance than the
environmental data techniques commonly acted upon. Multi-class loss function detection and TOPSIS
model analysis ranking as well as ablation experiments demonstrated that our model can generate data
features similar to the original data for use in problems that cannot be further analyzed for prediction
due to lack of sufficient environmental data. Future research will act on larger datasets combined with
more advanced generative modeling architectures to accommodate richer and more complex ecological
data by facilitating model generation. This includes models capable of handling both temporal and
spatial data, which are critical for capturing the dynamics of biological patterns and environmental
change.
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