
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.057491

ARTICLE

Optimizing Fine-Tuning in Quantized Language Models: An In-Depth
Analysis of Key Variables

Ao Shen1, Zhiquan Lai1,*, Dongsheng Li1,* and Xiaoyu Hu2

1National Key Laboratory of Parallel and Distributed Computing, National University of Defense Technology,
Changsha, 410073, China
2Strategic Assessments and Consultation Institute, Academy of Military Science, Beijing, 100091, China
*Corresponding Authors: Zhiquan Lai. Email: zqlai@nudt.edu.cn; Dongsheng Li. Email: dsli@nudt.edu.cn
Received: 19 August 2024 Accepted: 10 October 2024 Published: 03 January 2025

ABSTRACT

Large-scale Language Models (LLMs) have achieved significant breakthroughs in Natural Language Processing
(NLP), driven by the pre-training and fine-tuning paradigm. While this approach allows models to specialize
in specific tasks with reduced training costs, the substantial memory requirements during fine-tuning present a
barrier to broader deployment. Parameter-Efficient Fine-Tuning (PEFT) techniques, such as Low-Rank Adaptation
(LoRA), and parameter quantization methods have emerged as solutions to address these challenges by optimizing
memory usage and computational efficiency. Among these, QLoRA, which combines PEFT and quantization, has
demonstrated notable success in reducing memory footprints during fine-tuning, prompting the development of
various QLoRA variants. Despite these advancements, the quantitative impact of key variables on the fine-tuning
performance of quantized LLMs remains underexplored. This study presents a comprehensive analysis of these
key variables, focusing on their influence across different layer types and depths within LLM architectures. Our
investigation uncovers several critical findings: (1) Larger layers, such as MLP layers, can maintain performance
despite reductions in adapter rank, while smaller layers, like self-attention layers, are more sensitive to such changes;
(2) The effectiveness of balancing factors depends more on specific values rather than layer type or depth; (3) In
quantization-aware fine-tuning, larger layers can effectively utilize smaller adapters, whereas smaller layers struggle
to do so. These insights suggest that layer type is a more significant determinant of fine-tuning success than layer
depth when optimizing quantized LLMs. Moreover, for the same discount of trainable parameters, reducing the
trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one. This
study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research
into optimizing LLM fine-tuning in resource-constrained environments.

KEYWORDS
Large-scale Language Model; Parameter-Efficient Fine-Tuning; parameter quantization; key variable; trainable
parameters; experimental analysis

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.057491
https://www.techscience.com/doi/10.32604/cmc.2024.057491
mailto:zqlai@nudt.edu.cn
mailto:dsli@nudt.edu.cn


308 CMC, 2025, vol.82, no.1

1 Introduction

In recent years, Large-scale Language Models (LLMs) have established new benchmarks in
Natural Language Processing (NLP) by delivering remarkable performance across a diverse array of
tasks [1–5]. The widely adopted pre-training-fine-tuning paradigm allows these models to first learn
general language representations during pre-training and then adapt to specific downstream tasks
through fine-tuning, thereby offering significant cost savings for end-users by minimizing the need for
extensive retraining [6–8]. Despite these advancements, fine-tuning LLMs remains a memory-intensive
endeavor due to their massive parameter sizes, presenting a substantial barrier to their broader
deployment, especially in resource-constrained environments. To address these challenges, Parameter-
Efficient Fine-Tuning (PEFT) techniques [9,10] and parameter quantization strategies [11–14] have
been developed. PEFT methods, such as Low-Rank Adaptation (LoRA) [15–17], focus on reducing
memory overhead by updating only a small subset of parameters using low-rank matrices, while
quantization compresses models by converting high-precision weights into lower-precision formats,
thereby drastically cutting down memory requirements and accelerating inference speeds.

One of the most notable advancements in this area has been the development of QLoRA [18],
which integrates PEFT with quantization, combining the strengths of both approaches. Specifically,
QLoRA first compresses pre-trained models into low-bitwidth formats via quantization and then
applies LoRA for efficient fine-tuning. This dual approach effectively reduces the memory footprint
during fine-tuning, making it more feasible for practical applications. Building on this foundation,
several QLoRA variants, including Q-BaRA and QA-HiRA [19], IR-QLoRA [20], and QA-LoRA
[21], have been introduced to further optimize model performance and enhance fine-tuning efficiency
through different innovative methodologies. However, despite the growing popularity and practical
success of these methods, key variables that critically influence adapter fine-tuning have not been
adequately explored, especially in terms of their quantitative impact on fine-tuning outcomes and
overall model accuracy.

In well-established research fields, the influence of key variables on model performance has been
thoroughly investigated. Examples include sparsity rates in pruning [22], bit width in mixed-precision
training [23], the number of experts in each layer of Mixture of Experts (MoE) models [24–26], and
scaling laws in LLM inference [27–29]. Yet, the combination of quantization and PEFT-a hybrid
approach that holds immense potential-has not been thoroughly investigated within this context.
Moreover, the diversity of key variables involved in this hybrid method, ranging from rank and
balancing factors to input-output configurations, introduces a level of complexity that goes beyond the
scope of single-variable studies conducted in prior research. Given the direct impact of these variables
on the number of trainable parameters and the broader implications for fine-tuning efficiency, a
comprehensive examination is warranted.

This paper takes a pioneering step by offering an in-depth analysis of the key variables affecting
fine-tuning in quantized LLMs. Building upon existing research, we categorize LLM layers by type and
depth, systematically examining how different settings of key variables influence fine-tuning accuracy.
Our investigation reveals several critical trends: (1) The rank of the adapter significantly impacts fine-
tuning accuracy, especially for larger layers (e.g., MLP layers), which can tolerate reductions in rank
with minimal performance loss. In contrast, smaller layers (e.g., self-attention layers) are more sensitive
to rank reductions. Layer depth shows minimal influence in this context. (2) The choice of balancing
factors is primarily dependent on their specific values, with certain settings consistently performing
better across layers, rather than varying based on layer type or depth. (3) Quantization-aware fine-
tuning allows larger layers to use smaller adapters effectively, while smaller layers face challenges in



CMC, 2025, vol.82, no.1 309

maintaining performance with reduced adapter size. Additionally, adapter size is more strongly linked
to layer type than to layer depth. Overall, our findings highlight that layer type plays a more significant
role than layer depth in optimizing fine-tuning for quantized LLMs. By tailoring configurations
based on these insights, it is possible to achieve similar fine-tuning results with significantly fewer
trainable parameters, offering a more resource-efficient approach. Future work will delve further into
understanding these relationships to refine fine-tuning strategies for quantized LLMs.

2 Related Work
2.1 Optimize the Efficiency of LLM

Quantization Quantization is a model compression technique that reduces the numerical precision
of model weights and activation functions, converting floating-point numbers to lower-precision
representations such as 8-bit or lower integer formats [30–32]. This approach significantly reduces
the storage size of the model, accelerates model loading and inference processes, while maintaining
model performance within acceptable bounds. In LLMs, Post-Training Quantization (PTQ) is a
common method applied after model pre-training to optimize deployment efficiency [12–14,33,34].
PTQ quantizes the model weights, thereby reducing memory footprint and enabling the use of more
efficient computational hardware such as specialized quantization accelerators or FPGAs [27,35].

Parameter-Efficient Fine-Tuning Parameter-Efficient Fine-Tuning (PEFT) techniques are designed
to address resource constraints encountered when fine-tuning large pre-trained models [9,10]. By
introducing a small number of trainable parameters, these techniques avoid updating the entire
parameter set of the model, thus reducing computational and memory requirements during the fine-
tuning process. A key advantage of PEFT is that it allows the model to quickly adapt to new tasks
while retaining pre-trained knowledge. LoRA (Low-Rank Adaptation), a PEFT method, introduces
low-rank matrices in critical layers of the model to adjust weights [15–17]. This method has proven
effective across various tasks, significantly reducing the number of parameters needed for fine-tuning.

2.2 Combination of PEFT and Quantification

A well-known recent work QLoRA combines quantization and LoRA methodologies [18]. It first
quantizes the pre-trained model’s weights using a 4-bit NormalFloat format, followed by fine-tuning
using LoRA. This approach not only reduces memory usage but also maintains the efficiency of the
fine-tuning process. Additionally, QLoRA can be integrated with Quantization-Aware Training (QAT)
[19,21], where the adapter components are compressed to align with the low-precision representations
of the pre-trained model. QAT allows the model to account for the effects of quantization during
training, resulting in a more accurate low-precision inference model post fine-tuning. Recent work
has focused on enhancing the accuracy of QLoRA by optimizing the fine-tuning of adapters [19] and
preserving more information [20], thereby improving the overall accuracy.

2.3 Exploring the Optimization of Key Variables

Previous works have extensively investigated the underlying principles of traditional Deep Neural
Network (DNN) model compression, such as the setting of different sparsity levels across layers
[22,36,37] and the selection of bit-widths [23,38–40]. In recent years, with the rise of LLMs, researchers
have shifted their focus towards understanding LLMs as well as fine-tuning [41]. For instance, in the
case of MOE models, it has been observed that different MOE layers learn different representations,
leading to varying optimal numbers of experts across layers [26]. And for the computer vision model,
the layer close to the input learns the basic representation, so we can choose to freeze during fine-tuning



310 CMC, 2025, vol.82, no.1

[24,25]. Some studies have focused on exploring trade-offs in LLM through the lens of scaling laws,
aiming to uncover the potential relationships between key variables and training outcomes [27–29].
For instance, research has examined how to balance bit width and the number of parameters under
the same memory constraints, analyzed the impact of different data types on final performance, and
evaluated the effects of network width and depth across various datasets. However, the scaling laws for
LLMs primarily analyze inference, leaving a gap in the research on fine-tuning. Additionally, recent
studies combining quantization with PEFT have introduced a variety of key variables that warrant
further investigation.

3 Methodology
3.1 Preliminaries

In this section, we briefly introduce the principles of the methods involved in this paper to facilitate
the explanation of the key variables.

Quantization. To save memory usage during model loading, the pre-trained model is first quan-
tized into a low-precision representation before fine-tuning the LLM [33,35]. The quantization con-
verts high-precision floating-point w into low-precision representations ŵ = ⌈

w−β

α

⌋
. The parameters

α and β serve as the quantization factors within the quantization block, respectively achieving the
scaling and shifting of values. �� is the rounding function, and ŵ is the low-precision representation.
During fine-tuning, the low-precision representation needs to be dequantized back to a high-precision
data format for computation:

w̃ = α · ŵ + β = α ·
⌈

w − β

α

⌋
+ β (1)

LoRA introduces two low-rank matrices A and B as fine-tuning modifications for linear layer [15].
The dimension of A is (Dinput, Drank), and B is (Drank, Doutput), where Drank << min(Dinput, Doutput). Thus, AB
forms a matrix with the same dimensions as the original, but the actual count of trainable parameters is
significantly lower than that of the base layer, specifically Dinput×Drank+Drank×Doutput << Dinput×Doutput.
The methods presented below are all based on a similar low-rank adaptation fine-tuning approach,
while the number of trainable parameters can be adjusted by modifying the rank of adapter. The fine-
tuning computation can be expressed as:

y = W�x + s · (AB)�x (2)

where x and y are the input and output for adapter, respectively. s is the scaling factor.

QLoRA combines quantization and LoRA, first quantizing the LLM parameters and then fine-
tuning using LoRA [18]. The fine-tuning computation can be represented as:

y = W̃
�
x + s · (AB)�x (3)

where replace the pre-trained W with W̃.

IR-QLoRA uses the effective Information Elastic Connection (IEC) structure in the adapter part
to enrich the adapter’s information without changing the structure of adapters [20]. The fine-tuning
process can be expressed as:

y = W̃
�
ICQx + s · [B�

(A�x + avg(x)) + concat(A�x + avg(x))] (4)



CMC, 2025, vol.82, no.1 311

where W̃ICQ is the weight of Information Calibration Quantization (ICQ), and avg(), concat() are the
are non-parameter operators, which perform averaging and splicing operations respectively (defined
in [20]).

Q-BaRA introduces a balancing factor λ in the QLoRA computation and simplifies the adapter
input and output by compressing them by a factor of λ, while expanding the rank by λ (thus the number
of trainable parameters remains unchanged) [19]. The fine-tuning computation can be represented as:

y = W̃
�
x + s · repeat(B’)�(A’)�avg(x)) (5)

where avg() and repeat() are implemented through AvgPool(λ) and repeat_interleave(λ), respectively.
Both AvgPool() and repeat_interleave() are the function defined in PyTorch, see the official PyTorch
documentation1 for a detailed explanation.

QA-HiRA uses a single matrix B as the fine-tuning adapter, with the dimensions
(

Dinput

λ1
, Doutput

λ2

)
[19]. λ1 · λ2 equals the block_size of the pre-trained model quantization. The fine-tuning computation
can be expressed as:

y = W̃
�
x + s · repeat((C’)�avg(x)) (6)

where avg() and repeat() are also implemented through AvgPool(λ1) and repeat_interleave(λ2) in
PyTorch, respectively. Since the multiplication of two matrices is no longer used, the number of
parameters of QA-HiRA no longer involves the rank of the adapter, but can be calculated as
Dinput

λ1

× Doutput

λ2

QA-LoRA compresses the adapter input to align with the group-wise quantization of the pre-
trained model for QAT fine-tuning [21]. The compression factor is group size. The fine-tuning
computation can be represented as:

y = W̃
�
x + s · (AB)�avg(x) (7)

where avg() is implemented through AvgPool(group_size).

A comparison of these methods is shown in Fig. 1.

Figure 1: Comparison of QLoRA, IR-QLoRA, QA-LoRA, Q-BaRA, QA-HiRA

1https://pytorch.org/docs/stable/index.html (accessed on 07 October 2024).

https://pytorch.org/docs/stable/index.html


312 CMC, 2025, vol.82, no.1

3.2 Key Variable

In the methods that fine-tune quantized LLMs using LoRA, three categories of key variables
directly influence the adapter’s fine-tuning process. The first category pertains to the rank of LoRA,
which controls the intrinsic rank of the low-rank adapter. The second category includes factors that
balance the adapter’s capability with the difficulty of fine-tuning, such as the λ proposed in Q-BaRA.
The third category comprises functional variables aimed at aligning the quantization of the pre-trained
model to achieve QAT-based fine-tuning, such as λ1 and λ2 proposed in QA-HiRA, and the group size
proposed in QA-LoRA. The detailed explanations of these key variables are as follows:

• rank of adapter: This variable is the intrinsic dimension of the low-rank adapter fine-tuning,
determining the complexity of the parameter space that the product matrix can represent, which
is Drank of matrices A and B introduced in Section 3.1. Consequently, varying ranks correspond
to different dimensions of the adapter. If the rank is too low, it may fail to capture sufficient
task-specific information; if it is too high, it approaches full-parameter fine-tuning, losing the
advantage of parameter efficiency. The methods involved include QLoRA, IR-QLoRA, QA-
LoRA, and Q-BaRA.

• Balancing factor λ (in Q-BaRA): This factor simplifies the adapter’s input and output,
compressing the dimensions to 1/λ of the original while expanding the rank by λ times.
In the corresponding methods, λ is utilized within the PyTorch functions AvgPool(λ) and
repeat_interleave(λ) to adjust the adapter’s dimensions. The number of trainable parameters
remains unchanged.

• Compression factor λ1, λ2 (in QA-HiRA): These factors simplify the adapter’s input and
output, compressing the input dimensions to 1/λ1 and the output dimensions to 1/λ2. In
the corresponding methods, λ1, λ2 are also utilized within the PyTorch functions AvgPool(λ)
and repeat_interleave(λ) to adjust the adapter’s dimensions. The adapter forms a matrix with

dimensions
(

Dinput

λ1
, Doutput

λ2

)
.

• group_size in QA-LoRA: This variable performs pooling operations on the adapter input,
downpooling group size values with their average. It also reduces the number of parameters
in matrix A. group_size is utilized within the PyTorch functions AvgPool(group_size). In the
QA-LoRA method, it jointly affects fine-tuning along with rank.

• A graphical explanation of these key variables can be found in Fig. 1.

3.3 Experimental Settings

Experimental design. In the aforementioned methods, researchers have already conducted analyses
on the key variables within their approaches; however, two critical factors remain unexplored:

1) Layer-specific analysis: Considering the differences between various layers in LLMs, particu-
larly between attention layers and MLP (Multi-Layer Perceptron) layers, we have conducted a more
granular analysis of the key variables specific to each layer.

2) Integrated analysis for key variables: With the introduction of various methods, a diverse set
of key variables has been identified, each serving different functions. In some approaches, multiple
key variables simultaneously influence the fine-tuning of LLMs. Therefore, we have integrated these
factors into our experiments to conduct a comprehensive analysis, providing deeper insights into the
fine-tuning process.

Foundation models and datasets. We use LLaMA [4] and LLaMA2 [42] (ranging from 7B to 13B) as
the foundation models for our experiments. Alpaca [43] is selected as the fine-tuning dataset for our



CMC, 2025, vol.82, no.1 313

study. Alpaca was created using only 52 K data with minimal training cost, achieving performance
approximately equivalent to GPT-3.5.

Measurement metrics. We assess the performance of the LLMs in few-shot settings using the
Massively Multitask Language Understanding (MMLU) benchmark [44], which is a comprehensive
assessment tool designed to evaluate the capabilities of LLMs across a wide array of NLP tasks.
It serves as a platform for measuring the generalization and transfer learning abilities of LLMs by
challenging them with diverse datasets spanning multiple domains. MMLU encompasses a broad
spectrum of subjects, including 57 tasks across various domains such as humanities, STEM, and
social sciences. The benchmark is constructed with the intent to simulate real-world scenarios where
language models must exhibit proficiency in understanding and generating human-like responses to
various tasks. We evaluate the average score across all tasks. The official MMLU evaluation script and
prompts are utilized for this purpose.

Additionally, we evaluate the zero-shot common sense reasoning capabilities of the models on
tasks from HellaSwag [45], PIQA [46], WinoGrande [47], ARC [48], BoolQ [49], and OpenBookQA
[50], with results generated using the OpenCompass Large Model Evaluation System 2.

Quantization. We rigorously follow the quantization methods specified for each approach to
compress the pre-trained models. Specifically, QLoRA [18], IR-QLoRA [20], Q-BaRA, and QA-
HiRA [19] employ NF4 combined with double quantization [35], while QA-LoRA uses GPTQ [33]
for quantization.

Training details. During the fine-tuning phase, we set the constant LoRA α to 16 and apply no
dropout. The optimization process utilizes a paged AdamW optimizer, with a maximum gradient norm
of 0.3. We employ a batch size of 4 and accumulate gradients over 4 steps. A constant learning rate
schedule is applied, with the rate set at 2 × 10−5 for the 7B and 13B models, and 1 × 10−5 for the 33B
and 65B models. Fine-tuning involves 10 K steps for Alpaca.

Model details. We utilize the standard LLaMA [4] and LLaMA2 [42] models, which share a highly
similar architecture consisting of multiple DecoderLayers, with each DecoderLayer comprising an
Attention module and an MLP. Following the typical setup for LoRA fine-tuning of quantized LLM
models, we incorporate LoRA into both the Attention and MLP components for fine-tuning. The
specific layers involved and their respective dimensions are detailed in the accompanying Table 1.

Table 1: Structure of LLaMA-7B

LlamaModel Size LoRA
embed_tokens (32001, 4096) ×
LlamaDecoderLayer (×32) self_attn q_proj (4096, 4096) �

k_proj (4096, 4096) �
v_proj (4096, 4096) �
o_proj (4096, 4096) �
rotary_emb – –

mlp gate_proj (4096, 11008) �
up_proj (4096, 11008) �
act_fn – –

(Continued)

2https://opencompass.org.cn/home, (accessed on 07 October 2024)

https://opencompass.org.cn/home


314 CMC, 2025, vol.82, no.1

Table 1 (continued)

LlamaModel Size LoRA
embed_tokens (32001, 4096) ×

input_layernorm – –
post_attention_layernorm – –

norm – –
lm_head (4096, 32001) ×

4 Experimental Results

In this section, we report the impact of various key variables on different evaluation metrics under
multiple experimental configurations. We summarize the underlying patterns observed across these
different conditions. The results presented are the averages from 3 independent experiments.

In order to conveniently display the experimental results, we list the experimental list in Table 2.

Table 2: Checklist of experiments

Description Observation Result in

1 Various ranks across different
types of layers

Larger size (MLP) layers are more
tolerant of rank reduction than smaller
size (self-attention) layers

Figs. 2, A1, Table 3

2 Various ranks across different
depths of layers

No significant correlation Fig. 3, Table 3

3 Various values of λ across
different layer types and depths

No significant correlation. High
accurracy obtained only with all λ = 2

Figs. 4, A2

4 Various combinations of λ1 and
λ2 across different types of layers

Larger size (MLP) layers are more
tolerant of adapter size reduction than
smaller size (self-attention) layers

Fig. 5, Table 4

5 Various combinations of λ1 and
λ2 across different depths of layers

No significant correlation Fig. 5, Table 4

4.1 Results of Experiments on LoRA Rank

We first present the impact of rank on the performance of different layers. The layers of the model
are categorized based on their type (self-attention or MLP) and depth (the first half closer to the
input or the second half closer to the output). We then examine the relationship between fine-tuning
performance and rank.

Various ranks across different types of layers. In LLMs, the computational processes across layers
differ significantly, as do the number of trainable parameters involved in each layer. To account for
these variations, we assigned different ranks to distinct layer types during fine-tuning and evaluated
their impact on MMLU test accuracy. As illustrated in Fig. 2, a clear trend can be observed: compared
to self-attention layers (including q_proj, k_proj, v_proj, and o_proj) and MLP layers (including



CMC, 2025, vol.82, no.1 315

gate_proj, up_proj, and down_proj), the self-attention layers are more sensitive to rank reduction,
whereas MLP layers exhibit greater robustness to such reductions (regardless of whether the rank is
decreased by 2-fold or 4-fold, the height of the red bars in the histogram is generally higher than that of
the yellow bars). When the rank of MLP layers is lowered, the impact on overall accuracy is noticeably
smaller. Furthermore, when the rank is extremely low, fine-tuning performance degrades accordingly,
with a sharper decline in accuracy as the rank is reduced further. However, when the initial rank is
relatively high, a moderate reduction, particularly in MLP layers, does not significantly compromise
accuracy. The decrease in rank corresponds to a decrease in the number of trainable parameters. It is
noteworthy that halving or quartering the trainable parameters of larger multilayer perceptron (MLP)
layers does not affect the final fine-tuning accuracy. Specifically, for the LLaMA-7B model, this results
in a reduction of approximately 33.42% and 50.13% in overall trainable parameters, respectively, while
for the LLaMA-13B model, the reduction is about 33.47% and 50.20%. These findings hold true for a
rank of 64, which is commonly used in practice, as well as when considering the average across various
ranks. This pattern is consistently observed across both LLaMA and LLaMA2 models, as well as in the
IR-QLoRA, QA-LoRA and Q-BaRA setting (shown in Fig. A1), suggesting the broad applicability
and robustness of this finding.

Figure 2: (Continued)



316 CMC, 2025, vol.82, no.1

Figure 2: The 5-shot MMLU accuracy (%) of various ranks on different types of layers

We also fine-tuned the models using these configurations and observed their performance on
the 0-shot commonsenseQA, as depicted in Table 3. The same pattern emerged across various tasks:
appropriately reducing the rank of MLP layers has a negligible impact on the final performance.

Table 3: Accuracy (%) comparison on the 0-shot commonsense QA

Method HellaSwag ARC-e ARC-c PIQA WinoGrande BoolQ OBQA Avg.

QLoRA (LLaMA-7B) 61.8 75.8 43.6 78.1 68.4 73.7 32.8 62.0
rank_att reduced to half 60.4 74.8 43.3 77.3 67.4 73.2 32.4 61.2
rank_mlp reduced to half 61.4 75.5 43.8 78.4 68.3 72.8 32.7 61.8
rank_1 reduced to half 60.5 75.0 43.0 77.1 67.7 72.9 31.8 61.1
rank_2 reduced to half 60.8 74.8 43.5 76.7 68.0 72.7 32.1 61.2
QLoRA (LLaMA2-7B) 75.6 68.9 45.7 77.8 68.6 77.2 72.2 69.4

rank_att reduced to half 75.1 68.3 45.1 77.2 68.5 76.6 71.9 69.0
rank_mlp reduced to half 75.8 68.5 45.9 77.8 68.7 77.3 72.5 69.5
rank_1 reduced to half 74.8 68.5 45.1 77.0 68.7 76.3 72.0 68.9
rank_2 reduced to half 75.3 68.3 45.4 77.4 67.8 76.3 71.7 68.9

Various ranks on different depths of layers. Layers at different depths learn distinct representations,
and many key variables are directly correlated with layer depth. However, when fine-tuning quantized
LLMs, as illustrated in Fig. 3, we did not observe a significant correlation between accuracy and layer
depth when varying the rank across different depths (rank_1 represents the rank of the first half of
the model, close to the input, and rank_2 represents the rank of the second half of the model, close to
the output). This lack of correlation may be attributed to the fact that quantizing a pre-trained LLM
causes a loss of information due to low-precision representations. Consequently, during fine-tuning,
the quantized LLM must not only learn new knowledge from the target dataset but also compensate
for the information lost during quantization. Therefore, reducing the rank in either the earlier or later
layers adversely impacts the final accuracy.



CMC, 2025, vol.82, no.1 317

Figure 3: The 5-shot MMLU accuracy (%) of various ranks on different depths of layers

4.2 Results of Experiments on Balancing Factor

The balancing factor λ proposed in Q-BaRA [19] can be considered another key variable. Built
upon the QLoRA framework, it balances the complexity between the adapter’s input and output and
the rank size. Additionally, both λ and rank jointly influence the adapter’s fine-tuning performance.
Therefore, we conducted comprehensive experiments by analyzing these factors in combination.

Various λ values on different layer types and depths. We evaluated the fine-tuning performance
across different layer types and depths using various λ values under different rank settings. The
configuration from Q-BaRA, where a uniform λ = 2 is applied across all adapters, is used as the
baseline for comparison. The experimental results, shown in Fig. 4, indicate no significant correlation
between the choice of λ and the type or depth of the layers. Instead, the ultimate accuracy is related
to the value of λ itself: setting λ = 1 for some adapters outperforms setting λ = 4 (The yellow and
red bars with no patterns are taller than the yellow and red bars with spaced patterns), suggesting that
excessive simplification of the adapter’s input and output is detrimental to fine-tuning. Additionally,
deviating from the λ = 2 setting (whether lowering to 1 or increasing to 4) leads to a decrease in



318 CMC, 2025, vol.82, no.1

accuracy, confirming that λ = 2 serves as the optimal balance point for fine-tuning. Additional results
regarding the selection of λ value can be found in Fig. A2.

Figure 4: The 5-shot MMLU accuracy (%) of various λ on different layers



CMC, 2025, vol.82, no.1 319

4.3 Results of Experiments on Quantization-Aware Fine-Tuning

In some studies, a quantization-aware fine-tuning strategy is employed to ensure that the fine-
tuned model can be directly represented in low bit-width formats. This is typically achieved by
compressing the inputs and outputs of adapters to align with the quantization approach used in
the pre-trained model. We conducted experiments to analyze the impact of varying compression
factors on fine-tuning performance. For QA-LoRA [21], which similarly uses two low-rank matrices
as adapters, the relationship between fine-tuning performance and rank has already been discussed in
Section 4.1. However, since the group size in QA-LoRA must strictly match the GPTQ compression
in the pre-trained model, it cannot be freely adjusted layer by layer. Therefore, our primary focus is
on experiments involving QA-HiRA [19].

Various combinations of λ1 and λ2 across different layers. In QA-HiRA, the quantized blocks in
the pre-trained model typically use sizes of 32 or 64, and it has been suggested in the study that the
combination of (λ1, λ2) can take values from (4, 8) or (8, 8). As analyzed in Section 3.1, larger λ1 × λ2

represents a larger compression factor and uses a smaller size adapter. We conduct experiments by
categorizing layers based on type and depth, and test different combinations of (λ1, λ2) to observe
their impact on fine-tuning performance. We use the default setting (λ1, λ2) = (4, 8) for the whole
model as the baseline, and change the setting of some adapters to (λ1, λ2) = (8, 8) according to
the types or depths of layers, respectively. As shown in Fig. 5, although larger block sizes increase
quantization error, the results indicate that setting (λ1, λ2) = (8, 8) for MLP layers does not degrade
fine-tuning performance, suggesting that MLP layers can accommodate higher block sizes and thus
reduce the number of trainable parameters. Additionally, no clear correlation was found between the
optimal (λ1, λ2) configuration and layer depth. The same conclusion is also reflected in the 0-shot
CommonsenseQA task, as shown in the Table 4.

Figure 5: (Continued)



320 CMC, 2025, vol.82, no.1

Figure 5: The 5-shot MMLU accuracy (%) of various λ1 and λ2 on different layers

Table 4: Accuracy (%) comparison on the 0-shot commonsense QA based on QA-HiRA

Method HellaSwag ARC-e ARC-c PIQA WinoGrande BoolQ OBQA Avg.

(λ1, λ2) = (4, 8) LLaMA-7B 76.3 56.6 43.4 79.2 70.2 77.9 58.2 66.0
(λ1, λ2)_att = (8, 8) 76.4 55.4 43.1 78.2 69.8 77.2 57.9 65.4
(λ1, λ2)_mlp = (8, 8) 76.4 56.7 43.2 78.7 70.5 77.5 58.0 65.9
(λ1, λ2)_1 = (8, 8) 75.8 56.4 43.0 78.1 69.6 77.0 58.5 65.5
(λ1, λ2)_2 = (8, 8) 75.6 56.6 43.3 78.4 69.5 76.5 58.3 65.5

(λ1, λ2) = (4, 8) LLaMA2-7B 75.1 66.2 44.5 76.2 67.1 73.5 69.4 67.4
(λ1, λ2)_att = (8, 8) 75.1 65.8 44.3 76.0 66.7 73.6 69.0 67.2
(λ1, λ2)_mlp = (8, 8) 75.4 66.1 44.5 76.2 67.0 73.6 69.2 67.4
(λ1, λ2)_1 = (8, 8) 74.8 65.8 44.3 75.8 66.8 73.1 69.3 67.1
(λ1, λ2)_2 = (8, 8) 74.8 65.6 44.2 75.9 66.9 73.0 69.0 67.0

5 Conclusion

In this work, we systematically analyzed fine-tuning strategies that combine PEFT with parameter
quantization. Focusing on recent methodologies, we examined the influence of key variables within
these approaches on the final fine-tuning performance. Based on extensive experiments, we reached
the following conclusions:

• The rank of the adapter significantly impacts fine-tuning accuracy, especially when the rank is
set extremely low. Furthermore, the effect of reducing the rank varies across different types of
layers: larger layers (e.g., MLP layers) can maintain similar accuracy even with reduced rank,
while smaller layers (e.g., self-attention layers) cannot. However, layer depth shows no clear
correlation with rank reduction effectiveness.

• Adjusting balancing factors according to layer type or depth does not yield a consistent
correlation with fine-tuning accuracy. Instead, performance is more closely linked to the specific
value of the balancing factor itself: a value of 2 generally performs best, followed by 1, while
further increasing the factor tends to degrade fine-tuning results.



CMC, 2025, vol.82, no.1 321

• In quantization-aware fine-tuning methods that compress the input and output of adapters,
larger layers (e.g., MLP layers) can effectively utilize smaller adapters (with fewer trainable
parameters), whereas smaller layers (e.g., self-attention layers) struggle to maintain perfor-
mance with similarly reduced adapters. Additionally, there is no significant correlation between
adapter size and layer depth.

These findings provide insights into the intrinsic patterns governing fine-tuning in quantized
LLMs, enabling more targeted configurations based on specific needs. Notably, when it is necessary to
reduce the number of trainable parameters during fine-tuning, prioritizing the reduction of trainable
parameters in larger layers is more conducive to maintaining the original fine-tuning accuracy. This
suggests that layer type has a more substantial impact on fine-tuning outcomes compared to layer
depth. The likely reason for this is that fine-tuning not only involves learning new knowledge for
specific tasks but also compensates for the performance loss introduced by model quantization.
Further exploration and analysis of these aspects are left for future work.

Acknowledgement: We extend our sincere thanks to our friends and family for their unwavering
support and encouragement throughout the duration of this research endeavor. Their understanding
and patience have provided us with the stability necessary to pursue our academic goals with dedication
and focus. Additionally, we are deeply grateful for the invaluable assistance and camaraderie received
from our peers and colleagues. Their insights and collaborative spirit have significantly enriched our
work and contributed to the advancement of our research. We acknowledge the collective effort that
has been instrumental in bringing this study to fruition.

Funding Statement: This work was supported by the National Key R&D Program of China (No.
2021YFB0301200) and National Natural Science Foundation of China (No. 62025208).

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Ao Shen; data collection: Ao Shen, Xiaoyu Hu; analysis and interpretation of results:
Ao Shen, Xiaoyu Hu; draft manuscript preparation: Ao Shen; project administration: Zhiquan Lai;
funding acquisition: Zhiquan Lai, Dongsheng Li. All authors reviewed the results and approved the
final version of the manuscript.

Availability of Data and Materials: The data presented in this study are available or can be reproduced
in QLoRA at https://github.com/artidoro/qlorahttps://github.com/artidoro/qlora (accessed on 07
October 2024), IR-QLoRA at https://github.com/htqin/ir-qlorahttps://github.com/htqin/ir-qlora
(accessed on 07 October 2024), QA-LoRA at https://github.com/yuhuixu1993/qa-lorahttps://github.
com/yuhuixu1993/qa-lora (accessed on 07 October 2024), qbaraqahira at https://github.com/
xiaocaigou/qbaraqahirahttps://github.com/xiaocaigou/qbaraqahira (accessed on 07 October 2024)
and OpenCompass Large Model Evaluation System at https://opencompass.org.cn/homehttps://
opencompass.org.cn/home (accessed on 07 October 2024).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
[1] J. Achiam et al., “GPT-4 technical report,” 2023, arXiv:2303.08774.

https://github.com/artidoro/qlorahttps://github.com/artidoro/qlora
https://github.com/htqin/ir-qlorahttps://github.com/htqin/ir-qlora
https://github.com/yuhuixu1993/qa-lorahttps://github.com/yuhuixu1993/qa-lora
https://github.com/yuhuixu1993/qa-lorahttps://github.com/yuhuixu1993/qa-lora
https://github.com/xiaocaigou/qbaraqahirahttps://github.com/xiaocaigou/qbaraqahira
https://github.com/xiaocaigou/qbaraqahirahttps://github.com/xiaocaigou/qbaraqahira
https://opencompass.org.cn/homehttps://opencompass.org.cn/home
https://opencompass.org.cn/homehttps://opencompass.org.cn/home


322 CMC, 2025, vol.82, no.1

[2] S. Bubeck et al., “Sparks of artificial general intelligence: Early experiments with GPT-4,” 2023,
arXiv:2303.12712.

[3] T. Le Scao et al., “Bloom: A 176b-parameter open-access multilingual language model,” 2022, arXiv e-
prints, pp. arXiv–2211.

[4] H. Touvron et al., “LLaMA: Open and efficient foundation language models,” 2023, arXiv:2302.13971.
[5] J. Wei et al., “Emergent abilities of large language models,” 2022, arXiv:2206.07682.
[6] T. Brown et al., “Language models are few-shot learners,” Adv. Neur. Inf. Process. Syst., vol. 33, pp. 1877–

1901, 2020.
[7] J. Devlin, M. -W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transform-

ers for language understanding,” 2018, arXiv:1810.04805.
[8] W. X. Zhao et al., “A survey of large language models,” 2023, arXiv:2303.18223.
[9] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts for generation,” 2021,

arXiv:2101.00190.
[10] N. Houlsby et al., “Parameter-efficient transfer learning for NLP,” in Int. Conf. Mach. Learn., PMLR,

2019, pp. 2790–2799.
[11] T. Dettmers et al., “SpQR: A sparse-quantized representation for near-lossless llm weight compression,”

2023, arXiv:2306.03078.
[12] J. Lin et al., “AWQ: Activation-aware weight quantization for llm compression and acceleration,” 2023,

arXiv:2306.00978.
[13] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth and S. Han, “SmoothQuant: Accurate and efficient post-

training quantization for large language models,” in Int. Conf. Mach. Learn., PMLR, 2023, pp. 38087–
38099.

[14] X. Wei et al., “Outlier suppression: Pushing the limit of low-bit transformer language models,” Adv. Neur.
Inf. Process. Syst., vol. 35, pp. 17402–17414, 2022.

[15] E. J. Hu, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen et al., “LoRA: Low-rank adaptation
of large language models,” 2021, arXiv:2106.09685.

[16] S. Hayou, N. Ghosh, and B. Yu, “LoRA+: Efficient low rank adaptation of large models,” 2024,
arXiv:2402.12354.

[17] B. Zi, X. Qi, L. Wang, J. Wang, K. -F. Wong and L. Zhang, “Delta-LoRA: Fine-tuning high-rank
parameters with the delta of low-rank matrices,” 2023, arXiv:2309.02411.

[18] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “QLoRA: Efficient finetuning of quantized
LLMs,” in Advances in Neural Information Processing Systems, 2024, vol. 36, pp. 1–28.

[19] A. Shen, Q. Wang, Z. Lai, X. Li, and D. Li, “Accurate and efficient fine-tuning of quantized large language
models through optimal balance,” 2024, arXiv:2407.17029.

[20] H. Qin et al., “Accurate LoRA-finetuning quantization of LLMs via information retention,” 2024,
arXiv:2402.05445.

[21] Y. Xu et al., “QA-LORA: Quantization-aware low-rank adaptation of large language models,” in Twelfth
Int. Conf. Learn. Represent., 2023.

[22] S. Liu et al., “The unreasonable effectiveness of random pruning: Return of the most naive baseline for
sparse training,” 2022, arXiv:2202.02643.

[23] Y. Fu et al., “CPT: Efficient deep neural network training via cyclic precision,” 2021, arXiv:2101.09868.
[24] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural networks?”

in Advances in Neural Information Processing Systems 27 (NIPS 2014), 2014, pp. 3320–3328.
[25] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in Comput. Vis.-

ECCV 2014: 13th Eur. Conf., Zurich, Switzerland, Springer, 2014, pp. 818–833.
[26] S. Rajbhandari et al., “DeepSpeed-MoE: Advancing mixture-of-experts inference and training to power

next-generation AI scale,” in Int. Conf. Mach. Learn., PMLR, 2022, pp. 18332–18346.
[27] T. Dettmers and L. Zettlemoyer, “The case for 4-bit precision: k-bit inference scaling laws,” in Int. Conf.

Mach. Learn., PMLR, 2023, pp. 7750–7774.
[28] J. Kaplan et al., “Scaling laws for neural language models,” 2020, arXiv:2001.08361.



CMC, 2025, vol.82, no.1 323

[29] T. Henighan et al., “Scaling laws for autoregressive generative modeling,” 2020, arXiv:2010.14701.
[30] B. Jacob et al., “Quantization and training of neural networks for efficient integer-arithmetic-only infer-

ence,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 2704–2713.
[31] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks with pruning,

trained quantization and huffman coding,” 2015, arXiv:1510.00149.
[32] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for all: Train one network and specialize it for

efficient deployment,” in Int. Conf. Learn. Represent., 2020, pp. 1–15.
[33] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “GPTQ: Accurate post-training quantization for

generative pre-trained transformers,” in Eleventh Int. Conf. Learn. Represent., 2023.
[34] X. Wu, Z. Yao, and Y. He, “ZeroQuant-FP: A leap forward in llms post-training W4A8 quantization using

floating-point formats,” 2023, 2023, arXiv:2307.09782.
[35] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “GPT3. int8(): 8-bit matrix multiplication for

transformers at scale,” in Neural Information Processing Systems (2022), vol. 35, pp. 30318–30332, 2022.
[36] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu and A. Liotta, “Scalable training of artificial

neural networks with adaptive sparse connectivity inspired by network science,” Nat. Commun., vol. 9, no.
1, pp. 1–12, 2018. doi: 10.1038/s41467-018-04316-3.

[37] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, “Rigging the lottery: Making all tickets winners,”
in Int. Conf. Mach. Learn., PMLR, 2020, pp. 2943–2952.

[38] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen and Y. Zou, “DoReFa-Net: Training low bitwidth convolutional
neural networks with low bitwidth gradients,” 2016, arXiv:1606.06160.

[39] Z. Ma et al., “BaGuaLu: Targeting brain scale pretrained models with over 37 million cores,” in Proc. 27th
ACM SIGPLAN Symp. Prin. Pract. Parall. Programm., 2022, pp. 192–204.

[40] C. Yang, Z. Wu, J. Chee, C. De Sa, and M. Udell, “How low can we go: Trading memory for error in
low-precision training,” 2021, arXiv:2106.09686.

[41] T. Jiang et al., “MoRA: High-rank updating for parameter-efficient fine-tuning,” 2024, arXiv:2405.12130.
[42] H. Touvron et al., “LLaMA 2: Open foundation and fine-tuned chat models,” 2023, arXiv:2307.09288.
[43] R. Taori et al., “Stanford alpaca: An instruction-following llama model,” 2023. Accessed: Aug. 15, 2024.

[Online]. Available: https://github.com/tatsulab/stanford_alpaca
[44] D. Hendrycks et al., “Measuring massive multitask language understanding,” 2020, arXiv:2009.03300.
[45] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi, “HellaSwag: Can a machine really finish your

sentence?” 2019, arXiv:1905.07830.
[46] Y. Bisk et al., “PIQA: Reasoning about physical commonsense in natural language,” Proc. AAAI Conf.

Artif. Intell., vol. 34, no. 5, pp. 7432–7439, 2020. doi: 10.1609/aaai.v34i05.6239.
[47] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi, “WinoGrande: An adversarial winograd schema

challenge at scale,” Commun. ACM, vol. 64, no. 9, pp. 99–106, 2021. doi: 10.1145/3474381.
[48] P. Clark et al., “Think you have solved question answering? try ARC, the AI2 reasoning challenge,” 2018,

arXiv:1803.05457.
[49] C. Clark, K. Lee, M. -W. Chang, T. Kwiatkowski, M. Collins and K. Toutanova, “BoolQ: Exploring the

surprising difficulty of natural yes/no questions,” 2019, arXiv:1905.10044.
[50] T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal, “Can a suit of armor conduct electricity? A new dataset

for open book question answering,” 2018, arXiv:1809.02789.

Appendix A. More Experimental Results

From Fig. A1, it is observable that across all variant methods, a consistent pattern emerges: layers
with larger sizes (MLP layers), exhibit a greater capacity to withstand reductions in rank.

Fig. A2 reveals that, with the exception of scenarios where the rank is extremely low, a setting of
λ = 2 consistently yields optimal results. Utilizing higher values of λ (i.e., λ = 4 or λ = 8) does not
surpass the performance achieved with the λ = 1 configuration.

https://doi.org/10.1038/s41467-018-04316-3
https://github.com/tatsulab/stanford_alpaca
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1145/3474381


324 CMC, 2025, vol.82, no.1

Figure A1: The 5-shot MMLU accuracy (%) of various λ on different layers



CMC, 2025, vol.82, no.1 325

Figure A2: The 5-shot MMLU accuracy (%) of various values of λ


	Optimizing Fine-Tuning in Quantized Language Models: An In-Depth Analysis of Key Variables
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experimental Results
	5 Conclusion
	References
	Appendix A. More Experimental Results


