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ABSTRACT

The increasing popularity of the Internet and the widespread use of information technology have led to a rise in
the number and sophistication of network attacks and security threats. Intrusion detection systems are crucial to
network security, playing a pivotal role in safeguarding networks from potential threats. However, in the context
of an evolving landscape of sophisticated and elusive attacks, existing intrusion detection methodologies often
overlook critical aspects such as changes in network topology over time and interactions between hosts. To
address these issues, this paper proposes a real-time network intrusion detection method based on graph neural
networks. The proposed method leverages the advantages of graph neural networks and employs a straightforward
graph construction method to represent network traffic as dynamic graph-structured data. Additionally, a graph
convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to
capture the intricate relationships within the graph structure comprehensively. Furthermore, it uses an integrated
graph neural network to address dynamic graphs’ structural and topological changes at different time points
and the challenges of edge embedding in intrusion detection data. The edge classification problem is effectively
transformed into node classification by employing a line graph data representation, which facilitates fine-grained
intrusion detection tasks on dynamic graph node feature representations. The efficacy of the proposed method is
evaluated using two commonly used intrusion detection datasets, UNSW-NB15 and NF-ToN-IoT-v2, and results
are compared with previous studies in this field. The experimental results demonstrate that our proposed method
achieves 99.3% and 99.96% accuracy on the two datasets, respectively, and outperforms the benchmark model in
several evaluation metrics.
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1 Introduction

Intrusion Detection Technology (IDT) monitors networks and systems to detect malicious activi-
ties or security policy violations to protect against unauthorized access, modification, and destruction.
Its significance lies in real-time monitoring, security reinforcement, and event logging for timely threat
detection and response [1]. The predominant methods are signature-based and rule-based techniques,
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which offer high accuracy and ease of management but struggle with detecting unknown threats and
have high maintenance costs [2].

Artificial intelligence, notably machine learning, is increasingly used in Network Intrusion Detec-
tion Systems (NIDS), utilizing supervised, unsupervised, and semi-supervised learning to identify
behavioral patterns [3–5]. Deep learning (DL) has further advanced NIDS by handling complex,
large datasets with models such as convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and autoencoders (AE) [6–8]. Unlike traditional signature-based systems, machine learning-
based NIDS offers automated feature extraction, adaptability, low false positives, and the ability to
address zero-day attacks [9]. Deep learning techniques enhance detection accuracy and adaptability,
making them highly effective for modern intrusion detection systems.

Despite advancements in intrusion detection, several research gaps remain unaddressed. Tradi-
tional deep learning methods, such as CNNs and RNNs, often fail to capture the intricate relationships
between network nodes and the evolving interactions in network traffic. CNNs, though effective
at modeling features like protocols and service categories, do not incorporate critical topological
information about network structures. Similarly, RNNs excel in modeling traffic sequence features but
overlook the complex interdependencies between communication flows over time. These limitations
highlight the need for models integrating topological and temporal features to improve detection
accuracy and robustness, particularly against sophisticated, evolving threats.

Recent focus has intensified on using Graph Neural Networks (GNNs) for intrusion detection,
as the intrusion detection task benefits from the rich structural information inherent in network flow
data, which can be directly encoded into graph formats [10]. Graph Neural Network (GNN) encode
network flow data into graphs, showing network hosts and communication links as nodes and edges,
highlighting host interactions. Various studies have explored modeling network traffic with different
graph data forms to manage diverse attack characteristics and address complex patterns [11,12].
However, a critical limitation of traditional GNNs is their primary focus on node representations,
often neglecting the rich information embedded in edges, which are crucial for accurately modeling
communication flows and improving intrusion detection. Overcoming this challenge—specifically by
optimizing edge representations—remains a crucial obstacle to fully realizing the potential of GNNs
in network traffic analysis.

GNNs utilize static graphs to capture structural, topological, and edge attribute information
efficiently, offering superior representation capabilities compared to flat data structures. Incorporating
attention mechanisms into the message-passing process enhances the model’s ability to prioritize
essential data and learn optimal vector representations from large-scale network data. However,
dynamic graphs, with evolving structures or attributes, more accurately model complex network
relationships, which is crucial for detecting sophisticated cyber-attacks, such as Advanced Persistent
Threats (APTs) [13]. However, adequate data representation from dynamic graphs requires appropriate
modeling techniques and algorithms. Existing GNN-based intrusion detection methods leverage the
full spectrum of feature information from network traffic and host communication interactions
to improve detection performance but treat all network traffic as static graph inputs, neglecting
crucial temporal correlations between specific attack behaviors. To address this, recent studies [14]
have adopted dynamic graphs with spatiotemporal features that capture additional information,
particularly topological changes, which static graphs cannot. Despite this progress, challenges remain
in generating edge embeddings for dynamic graphs and integrating advanced attention mechanisms.

Building on previous studies, we propose a novel dynamic integrated neural network with attention
(DIGNN-A) for intrusion detection designed to address the critical challenges identified in existing
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methods. This model utilizes dynamic graphs as input, addressing the inherent limitations of static
graphs in capturing the temporal evolution of network topology. To improve the spatial feature
representation of graph data, we integrate graph convolution operations with multi-head attention
mechanisms. Recognizing the significance of temporal and structural changes in dynamic graphs, we
implement a hybrid approach combining integrated graph neural networks with line graphs, enabling
efficient learning and capturing both temporal and spatial features from network traffic. The proposed
DIGNN-A significantly enhances real-world intrusion detection by incorporating time evolution
and attention mechanisms. It supports continuous network and system monitoring, rapid threat
response, and protection for enterprises and critical infrastructure, crucial for traditional Information
Technology (IT) security and emerging fields like Internet of Things (IoT), cloud computing, and
industrial control systems. The key contributions of this paper are outlined as follows:

• Modeling network traffic as a dynamic graph utilizing a line graph structure transforms the
edge classification task into a node classification task while ensuring that the model remains
unaffected by the changing structures and attributes of the dynamic graph. This approach
facilitates the flexible representation of network traffic data in various sizes and forms for
intrusion detection tasks. It can be applied to a broader range of graph neural network scenarios.

• During the message-passing phase, a graph convolution operation with an attention mechanism
allows the model to assign weights to messages from various neighbors. This improves the
processing of complex messages and enhances overall performance.

• An innovative integrated graph neural network is deployed to process dynamic graph inputs,
learning a sequence-to-sequence representation of a succession of graph snapshots. This
approach effectively captures the temporal and spatial information inherent in the graph data,
enabling it to execute intricate intrusion detection tasks on dynamic graphs precisely.

• Two public intrusion detection datasets were subjected to experimental analysis, and the results
indicate that the proposed NIDS model demonstrates a slight superiority over existing methods
in key metrics, including detection accuracy and the F1-score.

The remainder of the paper is organized as follows: Section 2 reviews related work. Section 3
presents the proposed NIDS methodology. Section 4 describes the experimental setup and evaluation
metrics. Section 5 provides a comparative analysis of the results and ablation study. Finally, Section 6
summarizes the findings and suggests future research directions.

2 Related Works
2.1 DL-Based NIDSs

Inspired by deep learning frameworks in computer vision [15] and natural language processing
(NLP) [16], recent research has increasingly utilized deep learning-based methods to analyze structured
network traffic data from the outset. These methods leverage deep learning’s capacity to handle large,
high-dimensional datasets, thus overcoming many limitations of traditional NIDS.

For example, Al-Turaiki et al. [17] introduced a two-step preprocessing approach combining
dimensionality reduction and feature engineering within convolutional neural network architectures to
enhance anomaly-based intrusion detection. Man et al. [18] proposed a model incorporating residual
learning to address potential performance degradation in deep networks with many layers, along
with an enhanced focal loss function to address category imbalance in the training set, improving
the model’s ability to detect infrequent categories. Al-Haija et al. [19] developed an ensemble learning
model using AdaBoost, RUSBoost, and bagged models for botnet detection in IoT networks. The
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ensemble achieved superior performance with a 99.60% detection rate, surpassing the individual
classifiers.

Imrana et al. [20] identified high false alarm rates and difficulties detecting specific attacks like
User-to-Root and Remote-to-Local as major limitations of traditional intrusion detection systems.
To overcome these, researchers proposed a Bidirectional Long-Short-Term-Memory (Bi-LSTM)
based intrusion detection system to capture temporal features. Sinha et al. [21] enhanced this by
integrating CNN and Bi-LSTM for better spatial and temporal feature recognition. Cao et al. [22]
developed a model combining CNN and Gated Recurrent Unit (GRU), utilizing hybrid and adaptive
synthetic sampling for data imbalance and integrating Random Forest with Pearson correlation
for feature selection. An attention mechanism assigns feature weights, reducing computational cost
and improving performance, effectively addressing multi-class classification and class imbalance in
intrusion detection.

While deep learning-based approaches have advanced intrusion detection, they struggle to model
intricate network topologies and evolving traffic interactions. These methods focus on internal data
characteristics, like communication ports and protocols, treating each traffic piece discretely and
neglecting correlations, which reduces detection accuracy. Additionally, they often overlook network
topology modeling, hindering the detection of attacks with distinct network patterns, such as Cross-
Site Request Forgery (CSRF) and Distributed Denial of Service (DDoS), and proving inadequate for
complex, variable intrusion tactics.

2.2 NIDSs Based on GNN

GraphSAGE [23] is a graph neural network algorithm for large-scale graphs, utilizing sampling
and aggregation strategies. It samples neighboring nodes, aggregates their information using different
functions, and learns embedded node representations for classification tasks. E-GraphSAGE [10],
proposed by Lo et al., extends GraphSAGE to generate edge embeddings by combining edge features
and topological patterns. Since intrusion detection datasets focus on edge features, the algorithm
initializes node features as vectors of 1. It performs IoT intrusion detection on four NetFlow datasets,
demonstrating superior performance over traditional machine learning methods.

Anomal-E [24] presents a static graph-based unsupervised intrusion detection method combining
E-GraphSAGE, improved Deep Graph Infomax (DGI), and four traditional anomaly detection
algorithms. This is the first method to integrate graph learning with anomaly detection for network
attacks. FT-GCN [11] enhances intrusion detection with limited labels and constructs interval-
constrained traffic graphs using three rules. Reference [25] introduced Traficaware Self-supervised
model for Network Intrusion Detection (TS-IDS), a self-supervised learning framework for IoT
network intrusion detection, using GNNs to capture traffic relationships and improve detection with
node and edge features. It also employs a self-supervised approach using auxiliary attributes to enhance
graph characterization without labeled data.

Graph construction for intrusion detection datasets can use IP and PORT fields or just IP
fields. Reference [12] introduced a heterogeneous attribute graph with IoT traffic features and
their values as nodes to reveal relationships between traffic features and topology. This is done by
aggregating various node and edge types using an improved message-passing approach. Additionally,
a data optimization strategy inspired by Huffman coding reduces the graph’s size and complexity,
minimizing computational burden while maintaining predictive accuracy. IDS faces challenges in
processing large volumes of network traffic while ensuring privacy protection. Insights from privacy-
preserving recommender systems offer valuable approaches. For instance, Liu et al. [26] proposed a



CMC, 2025, vol.82, no.1 821

simplified graph convolutional network model in their work on privacy-preserving point-of-interest
recommendations, which balances user preferences and privacy by generating a secure subset of data.
Similarly, Qi et al. [27] used local sensitive hashing in their research to protect user privacy while
recommending point-of-interest categories based on long- and short-term dependencies. These studies
provide valuable inspiration for addressing privacy issues in intrusion detection systems.

While earlier GNN approaches incorporate data interaction and topology, they often overlook the
temporal dimension. EULER [14] addresses this by combining GNNs and RNNs in an unsupervised
intrusion detection system, leveraging both network topology and temporal characteristics. GNNs
encode the network at specific moments, while RNNs track dynamic changes over time. The system
also extends to a distributed framework for improved performance, highlighting the importance of
temporal data. DLGNN [28], a semi-supervised method inspired by the 5G radio frame structure,
monitors IP address communications by slicing streams into temporal graph snapshots. It uses
placeholders for temporary communication absences, interpreting sparse behavior as a unique pattern.
The method transforms edge classification into node classification by converting graph snapshots into
line graph snapshots. Dynamic GNNs extract spatial information from each snapshot, capturing long-
term communication patterns between IP pairs.

Previous methods have leveraged the graph-structured nature of network traffic for intrusion
detection by utilizing intrinsic features and host interactions. However, studies [10–12] and [24,25]
treated all traffic as a single graph, overlooking the dynamics of topology and node interactions.
References [14] and [28] proposed partitioning traffic into discrete graph snapshots to capture spatial
and temporal data. The EULER method combines GNNs and RNNs for node-level detection.
However, existing NIDS datasets primarily focus on edge features rather than node-level data, and
most GNN techniques emphasize node embeddings. DLGNN converts edge classification into node
classification using a line graph structure, but monitoring host IP communications remains challenging
in complex networks. Additionally, existing methods often neglect the differentiation of data types
within models. Inspired by the human visual attention system, the attention mechanism in deep
learning prioritizes critical data elements, enhancing model performance. Given the enormous volume
of network data, integrating this mechanism helps identify the most relevant information. To sum up,
Table 1 summarizes some facts and figures about some recent research below.

Table 1: Summary of reviewed related work research from the last years

Paper Detection
approach

Data format Data information used Dataset for
evaluation

[17,18] CNN and some
improvements

Grid Network statistics NSL-KDD,
UNSW-NB15

[19] Ensemble model Grid Network statistics,
profiles for normal and
malicious behaviors

N-BaIoT 2021

[20–22] CNN + RNN Sequence Sequence relationship NSL-KDD,
UNSW-NB15,
CIC-IDS2017

[10] GNN Static graph Network statistics,
topological information

BoT-IoT,
ToN-IoT

(Continued)
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Table 1 (continued)

Paper Detection
approach

Data format Data information used Dataset for
evaluation

[11] GNN Static graph Network statistics,
graph structure built
with custom rules

UNSW-NB15,
CIC-
Darknet2020,
ISCXTor2016

[26] GNN Static graph Users’ historical
check-in data, user-POI
connections, privacy
preferences

Collected from
Foursquare

[12] GNN Heterogeneous
graph

Heterogeneous attribute
graph structure of
network traffic
characteristics

BoT-IoT, ISOT

[14] GNN + RNN Discrete time
dynamic graphs

Network statistics,
topological
information, temporal
association

Facebook,
Enron10,
COLAB, LANL

[28] GNN + Deeply
customized GRU

Discrete time
dynamic graphs

Network statistics,
topological
information, temporal
association

NF-BoT-IoT,
NF-ToN-IoT,
NF-CSE-CIC-
IDS2018 and
their v2 versions

3 Methodology

In this section, we introduce DIGNN-A, a real-time intrusion detection model based on dynamic
graph neural networks designed to optimally leverage the temporal and topological information
inherent in network data. We begin by constructing a threat model tailored to the intrusion detection
scenario, facilitating a deeper understanding and more effective mitigation of complex threats.
Following this, we outline the overarching framework of the model, detailing the process of creating
dynamic line graphs from network traffic. A graph convolution operation, enhanced by an attention
mechanism, is then applied to each line graph snapshot, improving the spatial feature representation
of the graph data. Each snapshot’s node features and adjacency matrix are subsequently fed into an
integrated graph neural network model, generating node embeddings. These embeddings are used for
node-level anomaly detection, enabling the identification of potential intrusion behaviors.

3.1 Threat Model

The proposed approach is based on a threat model applicable to most traditional network
scenarios. An abstract representation of the threat model is illustrated in Fig. 1 below. It is assumed
that all network traffic must traverse a firewall device, which may be situated on an upstream router.
The firewall device collects and processes communication traffic between all hosts in the network.
Each traffic record is collected and stored in a data format defined by a quintuple containing the
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source IP address, source port, destination IP address, destination port, and transport protocol [29].
Additionally, other statistical characteristics, such as communication status, communication byte size,
and duration, are also recorded. The firewall device can inspect, store, export, and block the recorded
traffic.

Figure 1: Overview of the threat model

Network devices can be categorized as either functioning correctly or compromised by attackers,
who use them to perform malicious activities. Attackers exploit the network’s communication infras-
tructure for attacks like DDoS, injection, vulnerability exploitation, and executing shell code, affecting
network traffic characteristics. Identifying compromised devices within mixed normal and abnormal
traffic is crucial, as attackers disguise malicious traffic to mimic normal patterns. Instead of deep
packet inspection, we use a statistical model for anomaly detection. Integrating a continuously updated
anomaly detection model into network security allows real-time data monitoring from firewalls, real-
time anomaly detection, and alert notifications.

3.2 Overview of the Model

This paper proposes a Dynamic Integrated Neural Network with Attention (DIGNN-A) model
incorporating an attention mechanism. To overcome the limitations of classical GNNs, which typically
prioritize node embeddings, we introduce a line graph structure as an alternative representation of
the original graph. This approach provides a more efficient representation of graph structures while
converting the intrusion detection edge classification task into a node classification task. Additionally,
it addresses the challenge of changes in the node-set at different time steps due to the dynamic nature
of the graph, ensuring the stability of node embeddings. Before the dynamic graph is input into
the integrated graph neural network, a graph convolution operation with an attention mechanism is
applied to enhance data representation, thereby improving the model’s ability to derive more effective
vector representations from large datasets. Ultimately, the integrated graph neural network generates
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the corresponding node embeddings. The model consists of three principal components: the dynamic
line graph processing module, the graph convolutional neural network module, and the integrated
graph neural network module. The comprehensive architecture of the model is illustrated in Fig. 2
below.

Figure 2: A framework for DIGNN-A model

The primary contributions of this study are as follows: We propose a dynamic graph modeling
method based on a line graph structure, which transforms edge classification tasks into node classi-
fication tasks, thereby improving the model’s adaptability and flexibility to dynamic graph structure
changes. By incorporating graph convolution operations with attention mechanisms, the model can
effectively differentiate the significance of neighboring information, enhancing its capability to process
complex data. Additionally, we employ an integrated graph neural network architecture to capture the
spatiotemporal characteristics of dynamic graphs, enabling accurate handling of complex intrusion
detection tasks.

3.3 Constructing Dynamic Line Graph Snapshots

Graph-based data effectively captures structural information through interactions among a set of
objects. Additionally, the graph’s topology stores implicit relational information between these objects.
By integrating a temporal dimension into graph data, dynamic graphs are used to represent both the
network’s topology and its temporal changes. This method allows the model to encompass a more
comprehensive scope of information.

In this study, we represent network traffic data as a series of discrete-time dynamic graphs for
model input. Each discrete dynamic is composed of multiple static graphs. A static graph can be
represented as G = {V , E, A}, where V and E are the sets of nodes and edges of G, respectively.
The topological information of the graph is represented by the adjacency matrix A ∈ R

|V |×|V |, where
Au,v = 1 if there exists an edge between nodes u and v, and Au,v = 0 otherwise. A discrete-time dynamic
graph can be viewed as a sequence of T static graphs {G1, G2, · · · , GT} [30], which represent snapshots
of different periods or windows. This definition of a snapshot of the static graph at a specific moment
aligns with the definition of a single static domain.

The key features of network traffic used in constructing the static graph include source and
destination IP addresses, source and destination port numbers, transaction protocols, transaction
states, transaction bytes, and timestamps. In our approach, combinations of sockets—defined by
IP addresses and port numbers—are treated as nodes in the graph, with communications between
two sockets modeled as edges. This methodology is consistent with the approach used in most
existing studies. Features such as communication protocol type, communication status value, and
communication traffic byte size are incorporated as edge features.
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To effectively obtain edge embeddings, one intuitive method is to incorporate edge feature
information into the graph data during the message passing stage for transmission and aggregation.
However, these methods still face the issue of oversmoothing. The line graph L(G) serves as an
equivalent representation of the original graph G. Edges in the original graph are represented as
nodes in the line graph, providing a more efficient method for modeling edge-to-edge relationships.
Let G = (V , E) be a graph where E consists of ordered pairs (e1, e2, · · · , en). Then, L (G) = (E, Ẽ) is
the line graph of G, where (e1, e2) ∈ Ẽ ⇔ e1 ∩ e2 �= ∅. This structure also proves to be a more efficient
method for detecting specific attack methods characterized by distinct structural features.

To align the dynamic graph data input with the sequence input format required by the integrated
graph neural network module, a fixed batch size is used to partition the data and construct static
graph snapshots. These snapshots are subsequently transformed into line graph structures, ensuring a
consistent number of nodes in each line graph snapshot. The line graph snapshots are then assembled
by specifying the time window size (similar to the sequence length in RNN) as the input of the model.
The choice of batch size directly influences the sparsity of the graph data, which, in turn, affects the
model’s computational complexity. The impact of batch size on the model is further analyzed in the
parameter analysis section (Section 5.3).

In general, the process of converting raw one-dimensional network traffic data into a discrete-
time dynamic graph is as follows: First, sort the traffic data by the time field and divide it into
snapshots of a fixed batch size. Then, construct the original static graph snapshot with IP and port
sockets as nodes and interactions between sockets as edges, and construct an equivalent line graph
snapshot based on the line graph definition. Finally, multiple consecutive line graph snapshots are
combined into a dynamic graph through a time window as input to the model. This transformation
allows the anomalous edge detection task in intrusion detection systems to be recast as a node
classification problem, making it compatible with a broader array of graph neural network models. It
also preserves the topology and interaction information that evolves within the network traffic data.
This is accomplished by using a consistent batch size and line graph structure that ensures uniform
node count across line graph data sets, thereby meeting the model’s input requirements for dynamic
graphs. The methodology for constructing the dynamic line graph module is depicted in Fig. 3 below.

Figure 3: Data preprocessing process
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3.4 Graph Convolutional Neural Network Module

The graph convolution operation exemplifies a type-specific implementation that follows the
message-passing paradigm. It is designed to effectively capture the interaction patterns among data, as
well as the feature information of neighboring nodes. In accordance with the dynamic line graph data
obtained in the preceding section, graph convolution operations are applied to each discrete-time static
graph. This process aggregates neighbor information at each time step and generates node embeddings.
However, existing graph convolution methods exhibit several shortcomings when handling complex
graph structures. Firstly, these methods predominantly rely on local neighbor information for feature
aggregation, which hampers their ability to capture dependencies between distant nodes effectively.
Consequently, their performance tends to be suboptimal in some complex graph structures. Secondly,
the aggregation operations in existing methods are typically fixed, lacking the flexibility to adapt to
the varying needs of different graph structures, which can result in information loss or redundancy.

To address these issues, we introduced TransformerConv [31] to implement this part of the
network, which leverages the strengths of the Transformer model from NLP and applies them to
graph neural networks. The self-attention mechanism is combined with graph convolutional networks
to capture long-distance dependencies between nodes and dynamically adjust their relationships,
reducing information loss. Leveraging the parallel computing of Transformers, this approach effi-
ciently handles large-scale graph data, reduces computational overhead, improves training efficiency,
and better manages global information. Compared to other GNN models, TransformerConv more
accurately captures the relationships and interactions between different flows. The TransformerConv
layer calculates the output features of each node using the following formula:

x
′
i = W1xi +

∑
j∈N(i)

ai,jW2xj (1)

where x′
i represents the feature vector of node i, which is derived by aggregating the information from

its neighboring nodes, the xi indicates the feature vector of the input node i. The N(i) denotes the set
of neighboring nodes associated with node i. All Ws are learnable parameters. The matrix of attention
scores aij is computed using multiplicative attention as follows:

ai,j = softmax
(

(W3xi)
ᵀ(W4xj)√
d

)
(2)

where xi represents the feature vector of the input node i, xj represents the feature vector of the
neighboring nodes of node i, and d denotes the size of the hidden layer of each head. If edge features
exist as input features, the formula must be modified as follows:

x
′
i = W1xi +

∑
j∈N(i)

ai,j(W2xj + W5ei,j) (3)

ai,j = softmax
(

(W3xi)
ᵀ(W4xj + W5ei,j)√

d

)
(4)

where ei,j represents the edge eigenvectors between nodes i and j. The attention score matrix, denoted
by ai,j, enables the model to differentiate the relative importance of the various neighbors of each node
in the network. The final node representation is obtained by multiplying the attention score matrix by
the feature matrix of each neighboring node, xj.

In our study, we utilize the TransformerConv layer, which conducts convolutional operations on
graph snapshots at each time step using a self-attention mechanism. The self-attention mechanism’s
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ability to adaptively adjust the weights of relationships between different nodes is crucial for intrusion
detection in network traffic data. Attack traffic often shows a complex and nonlinear relationship
with normal traffic. Moreover, the multi-head attention mechanism enables the model to extract
features from various subspaces, enhancing its representational capacity. For network traffic intrusion
detection, this means the model can analyze traffic patterns from multiple perspectives, increasing the
accuracy and robustness of the detection process. By incorporating additional GNN convolutional
layers before the integrated graph neural network module, we can more deeply explore the intricate
relationships between nodes and their neighboring nodes, significantly enhance feature extraction
capabilities, and further enrich the diversity of node representations, all while effectively minimizing
potential information loss.

3.5 Integrated Graph Neural Network Module

Given that the input is structured data in the form of a line graph, the number of nodes
representing line graph snapshots is fixed at each time step. However, the set of nodes varies over time
steps, posing a challenge for the use of stacked dynamic graph neural networks due to the irregular
nature of the data. Integrated graph neural networks effectively address this issue by leveraging their
inherent properties [32]. Integrated graph neural networks are constituted by replacing linear change
operations in GRU with GNN convolution operations, as illustrated in Fig. 4 below. This model
is unaffected by changes in the node-set and can obtain the embedded representation of the line
graph snapshot nodes at each time step. Additionally, by passing the hidden layer states, we obtain
long-term evolution information of the line graph snapshots, further capturing temporal and spatial
correlations between the network embeddings to generate the embeddings of each node. This process
can be represented as follows:

Ht = GNN − GRU(Ht−1, Xt, At) (5)

Figure 4: Overview of the architecture of the integrated graph neural network module

Following the preceding graph convolution module, neighboring nodes in the network receive an
embedded representation that incorporates neighbor information through message passing. However,
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literature’s findings [33] indicated that the model’s performance significantly declines as the number
of graph convolution layers increases. The incorporation of a more significant number of graph
convolution operations into an integrated graph neural network inevitably leads to the oversmoothing
issue within the model.

The GCNII [34] model incorporates initial residuals and constant mapping in its convolution
operation, which helps prevent oversmoothing and consistently enhances performance as the network
depth increases. Consequently, we selected GCNII as the convolution module in our integrated graph
neural network. Subsequent experiments, detailed in Section 3.6, further validate the effectiveness of
this structure. The integrated graph neural network module, GNN-GRUCell, can be represented by
Eqs. (6)–(9).

rt = σ(GCNIIr (Xt, X0, At) + GCNIIr(Ht−1, X0, At)) (6)

zt = σ(GCNIIz (Xt, X0, At) + GCNIIz(Ht−1, X0, At)) (7)

h̃t = tanh(GCNIIh (Xt, X0, At) + GCNIIh(rt � Ht−1, X0, At)) (8)

Ht = (1 − z) � h̃t + zt � Ht−1 (9)

where Xt denotes the node feature matrix at time t, while X0 represents the initial node feature matrix
for the input with residual connections, the adjacency matrix at time t is denoted as At. The node
feature matrix Ht captures both temporal and spatial information and serves as the output at each
time step of the model. The graph convolution layers used for reset gates, update gates, and hidden
state gates are denoted as GCNIIr, GCNIIz, and GCNIIh, respectively.

Given the necessity of classifying the nodes in each snapshot of the dynamic line graph (equivalent
to classifying the edges in the original graph), it is evident that using the output of each time step for
classification is a logical and appropriate approach. Therefore, the integrated graph neural network
module is treated as a sequence-to-sequence model for both inputs and outputs. As with the named
entity recognition task in the field of natural language processing, we consider the hidden state at each
time step to be the output of the current time step and the input for the subsequent time step. The model
generates a sequence that matches the length of the input sequence, producing a node representation
of the input dynamic graph. This output effectively captures both temporal and spatial information, as
the model allows the hidden state at each time step to incorporate information from both the current
and preceding time steps, thereby capturing long-term dependencies in the sequence. The impact of the
distinct GNN modules in the integrated model will be examined in the ablation experiment section.

3.6 Abnormal Traffic Classification

Following the previous modules, the node embedding representations of the discrete line graph
snapshots, which incorporate temporal and spatial information, are obtained. These node represen-
tations of line graphs are equivalent to the edge embeddings of the original graphs. In this study, we
consider abnormal traffic monitoring in intrusion detection as a binary classification problem. The line
graph node feature matrix from Section 3.6, capturing temporal and spatial information, is fed into a
neural network with a single hidden layer. Subsequently, the probability distribution is computed using
the Softmax function, and the category with the highest probability is taken as the final classification
result, as shown in Eq. (10).

P = softmax(W × Xt + b) (10)
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where P represents the probability of an incorrect prediction, while W and b signify the parameters of
the fully connected layer, normal traffic is labeled as 0, whereas abnormal traffic is labeled as 1.

Cross-entropy loss functions generally demonstrate better gradient properties during optimiza-
tion, which enables more efficient parameter updates during backpropagation. The gradient calcu-
lation for the cross-entropy loss function involves comparisons among different classes, allowing
for more practical guidance in parameter updates. This efficiency leads to faster convergence to the
optimal solution during training. Therefore, we have chosen cross-entropy as the loss function for this
study, as shown in Eq. (11).

L (y, p) = −
q∑

j=1

[y log p + (1 − y) log(1 − p)] (11)

where L (y, p) denotes the binary cross-entropy loss, y represents the true label of the data, and p
denotes the probability that the model predicts that the sample belongs to category 1. log denotes the
natural logarithm.

4 Experimental Setup

In this section, the experimental environment, configuration, data sets used, and experimental
evaluation criteria are described.

4.1 Dataset

In this work, the UNSW-NB15 [35] and NF-ToN-IoT [36] datasets are used, which are two
datasets commonly used in the field of network intrusion detection. Table 2 shows the distribution
of data and categories within each dataset.

Table 2: Dataset attributes and distribution

UNSW-NB15 NF-ToN-IoT-v2

Categories Number of flows Categories Number of flows

Normal 2,218,456 Benign 6,099,469
Generic 215,481 Scanning 3,781,419
Exploits 44,525 Xss 2,455,020
Fuzzers 24,246 Ddos 2,026,234
DoS 16,353 Password 1,153,323
Reconnaissance 13,987 Dos 712,609
Analysis 2677 Injection 684,465
Backdoors 2329 Backdoor 16,809
Shellcode 1511 Mitm 7723
Worms 174 Ransomware 3425

Total 2,539,739 Total 16,940,496

Number of features 47 Number of Features 45
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UNSW-NB15 dataset: developed by researchers at the University of New South Wales (UNSW)
Cyber Security Laboratory to facilitate the study of network intrusion detection systems’ performance.
The dataset includes a combination of typical network traffic and malicious traffic, categorized into
various attack types. It is a standard dataset frequently used in cybersecurity research. The UNSW-
NB15 dataset contains approximately 2.6 million records, encompassing nine distinct attack types:
fuzzers, analysis, backdoors, DoS, exploits, generic, reconnaissance, shellcode, and worm. Using the
Argus and Bro-IDS tools, the researchers developed twelve algorithms that generated 49 class-labeled
features.

NF-ToN-IoT-v2 dataset: derived from the original NF-ToN-IoT dataset by converting its pcap-
format file into a NetFlow-based feature set [37]. ToN-IoT, designed for cybersecurity research in
IoT environments, includes traffic data from various IoT devices under normal and attack conditions.
The NF-ToN-IoT-v2 dataset consists of 45 features and about 16 million records, with 63.99% attack
samples and 36.01% normal samples, covering nine attack types.

4.2 Environments

The configuration of the experimental platform includes an Intel Core i7-8700K CPU, an
NVIDIA GeForce RTX 3090 GPU with 24 GB of memory, 16 GB of RAM, and a Windows 10 oper-
ating system. The experimental environment consists of Python 3.9.16, PyTorch 2.0.0, CUDA 12.4,
and PyTorch Geometric 2.4.0. The proposed algorithms are implemented using PyTorch and PyTorch
Geometric, where the model comprises a three-layer TransformerConv and a two-layer GCNII-GRU
module with a hidden layer size set to 64. Nonlinear activation functions are incorporated into both the
TransformerConv and GCNII-GRU modules and Dropout is introduced between the hidden layers
to mitigate overfitting in the neural networks. The Adam optimizer is utilized for backpropagation,
and the training-test split ratio is set to 0.3. Additional hyperparameters are detailed in Table 3.

Table 3: Other hyperparameter settings

Hyperparameter Description Default value

Batch size Number of nodes in a line graph snapshot 2048
Window size Number of snapshots in a discrete dynamic graph 10
Hidden size Graph convolutional layer and integrated graph

neural network hidden layer size
64

Num layers RNN layer size in integrated graph neural networks 2
Learning rate When moving toward the minimum of the loss

function, the step size in each iteration
0.0001

Weight decay L2 penalty term of the loss function 0.001
Attention heads Attention header size in TransformerConv 3
Alpha Strength of initial residual connections in GCNII 0.5
Dropout Dropout probability of normalized attention

coefficients for exposing each node to a randomly
sampled neighborhood during training in
TransformerConv

0.5
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4.3 Evaluation

Due to the prevalence of data redundancy and imbalance in network traffic datasets, selecting
appropriate evaluation metrics is crucial for accurately demonstrating model performance. The
confusion matrix is employed to assess the model’s effectiveness, and its derived metrics—accuracy,
precision, recall, and F1-score—provide a comprehensive reflection of the model’s performance. The
confusion matrix categorizes the classification results as follows: True Positive (TP) represents the
number of positive samples correctly predicted as positive; True Negative (TN) denotes the number of
negative samples correctly predicted as negative; False Positive (FP) indicates the number of negative
samples incorrectly predicted as positive; and False Negative (FN) signifies the number of positive
samples incorrectly predicted as negative.

Accuracy indicates the proportion of correctly classified samples to the total number of samples.
Precision represents the proportion of correctly predicted positive samples to the total predicted
positive samples. The False Alarm Rate (FAR) indicates the proportion of samples incorrectly
predicted to be attacks among all normal samples. Recall, based on the actual samples, represents
the proportion of correctly predicted positive cases to the total actual positive cases. The F1-score is
the harmonic mean of Recall and Precision. The formulas are shown in Eqs. (12) to (16), respectively.

Accuracy = TP + TN
TP + FN + TN + FP

(12)

Precision = TP
TP + FP

(13)

FalseAlarmRate = FP
FP + TN

(14)

Recall = TP
TP + FN

(15)

F1 − Score = 2 × Recall × Precision
Recall + Precision

(16)

4.4 Baseline

We compare the performance of our proposed method on two datasets, UNSW-NB15 and NF-
ToN-IoT-v2, with the following detection methods:

• CNN-BiLSTM [21]: A network traffic intrusion detection method that combines the advan-
tages of CNN and Bi-LSTM layers.

• Stacked Random Forest [38]: Employs a balanced and stacked Random Forest classifier and
uses the SHAP method to provide interpretable analysis of feature contributions.

• VLSTM [39]: Learns low-dimensional feature representations from high-dimensional raw
data using encoder-decoder neural networks and variational reparameterization methods. The
reconstructed hidden variables are constrained by three loss functions and categorized by a
lightweight estimation network, which is suitable for anomaly detection in industrial big data
environments.

• CTGNN [40]: A network anomaly detection framework based on Continuous Time Graph
(CTG) neural networks designed to capture attributes and complex behavioral information
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of network interactions. The model utilizes a message aggregation scheme that fuses spatio-
temporal neighborhood information, real-time distributions, and historical states to improve
the learning ability of low-frequency interaction behaviors.

• E-GraphSAGE [10]: An extension of GraphSAGE that captures edge features of graphs as well
as topology information for intrusion detection in IoT networks.

• DLGNN [28]: Semi-supervised learning addresses the high cost of data labeling by trans-
forming network traffic into spatio-temporal graphs using a dynamic graph neural network.
This method captures the evolution of communication between IP pairs through continuous
snapshots. Additionally, the line graph structure enhances the edge-embedded representation
of network communications and the message aggregation capability of graph convolution.

5 Results and Discussion

In this section, several state-of-the-art models are compared with DIGNN-A to demonstrate the
feasibility of the designed model. Then, the usability of each module in the model is demonstrated by
ablation experiments. Finally, the results of the experiment are discussed.

5.1 Experimental Results

The complete dataset underwent experimental validation. During the data processing stage, the
training dataset was transformed into a data structure suitable for model input, following the dynamic
line graph snapshot method proposed in Section 3. After training the model, binary classification
results were obtained for the test set. Table 4 provides a detailed account of the outcomes of our
methodology under the binary classification paradigm, including accuracy, precision, FAR, recall,
and F1-score for both our proposed approach and the baseline model on both datasets. Overall, our
method proves effective in intrusion detection binary classification scenarios, demonstrating higher
accuracy, precision, and F1-score. For example, on the NF-ToN-IoT-v2 dataset, our method achieves
99.96% accuracy, 99.98% precision, a 0.03% FAR, 99.97% recall, and a 99.97% F1-score.

Table 4: Comparison of binary classification performance with benchmark model

Dataset Method Reference Accuracy Precision FAR Recall F1-score

UNSW-
NB15

MLP – 98.65% 0.9597 2.84% 0.9716 0.9655

CNN-BiLSTM [21] 98.62% 0.9554 2.54% 0.9745 0.9648
Stacked random
forest

[38] 98.60% 9655 3.74% 0.9626 0.9640

VLSTM [39] 89.50% 0.8600 1.17% 0.9780 0.9070
CTGNN [40] 98.83% 0.9607 1.99% 0.9800 0.9703
Proposed method – 99.30% 0.9743 3.00% 0.9700 0.9722

NF-ToN-
IoT-v2

Random forest [41] 99.66% 0.9991 0.58% 0.9980 1.0000

DNN [41] 94.74% 0.9674 6.08% 0.9527 0.9600
E-GraphSAGE [10] 99.69% 1.0000 0.15% 0.9985 1.0000
DLGNN [28] 98.69% 0.9982 2.05% 0.9794 0.9887
Proposed method – 99.96% 0.9998 0.03% 0.9997 0.9997
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Given the significant category imbalance in the selected dataset, the F1-score is a more critical
metric for assessing model performance. The F1-score is calculated based on precision and recall.
In intrusion detection tasks, while it is generally acceptable for normal traffic to be misclassified as
anomalous, it is crucial to avoid misclassifying anomalous traffic as normal. Such errors could mean
that an attack on the network goes undetected, potentially leading to severe consequences. In the
context of the model’s confusion matrix, this underscores the importance of minimizing false positives
(FPs). To achieve this, the model must maintain a high level of precision.

As evidenced by the data presented in the table, our proposed method demonstrates superior
performance in binary classification, particularly reflected by the F1-score. In the UNSW-NB15
dataset, the proposed method achieves an F1-score of 97.22%, the highest among all models, indicating
the best balance between precision and recall. The method also attains an accuracy of 99.3%,
surpassing all comparative models, including CTGNN (98.83%) and Multilayer Perceptron (MLP)
(98.65%). Although the method exhibited a FAR of 0.03, which is slightly higher than CTGNN’s
FAR of 0.0199, it outperformed across other metrics. This superior performance may be attributed
to the dataset’s significant imbalance, with a higher number of positive class samples than negative
ones, prompting the model to prioritize positive class predictions. Overall, the proposed method
demonstrates superior performance in terms of accuracy and F1-score, maintaining overall superiority
over other models despite a slight disadvantage in precision and recall.

In the NF-ToN-IoT-v2 dataset, the proposed method exhibited the lowest FAR of 0.0003 among
all compared models. The method also achieved an accuracy of 99.96%, surpassing all other models.
Its F1-score is comparable to that of E-GraphSAGE, the current state-of-the-art method in intrusion
detection. However, the proposed method not only reduced the FAR by 0.12% but also improved
accuracy by 0.27% compared to E-GraphSAGE. Compared to the DLGNN, which also uses a line
graph structure as input, there is a performance improvement of close to about 1% in all metrics, while
the false alarm rate is reduced by a factor of 7. In conclusion, the proposed method demonstrates
superior performance across various metrics, including accuracy, precision, FAR, recall, and F1-score,
particularly excelling in precision and FAR. This represents a highly effective solution with notable
advantages.

To thoroughly evaluate our method’s performance, we compared it with several mainstream
intrusion detection techniques. E-GraphSAGE incorporates edge features during message-passing and
derives edge embeddings from connected nodes, but its effectiveness is limited by node characteristics
like quantity and feature quality, making it better suited for large static graphs than sparse dynamic
ones. We address this using a line graph structure, though with some inherent limitations. EULER uses
a simple stacked graph neural network but suffers from oversmoothing with deeper layers. DLGNN
mitigates this with GCNII and a customized GRU, but its need to track each IP pair limits adaptability
in complex networks. CTGNN uses continuous dynamic graph data for finer temporal representation
and reduced false alarms. While our data processing can handle various network types, it is less
effective than tracking IP pairs or using dynamic graphs for capturing temporal data, reflecting a
trade-off between accuracy and complexity. Finally, we introduce an attention mechanism to boost
performance, though at the cost of added computational complexity.

5.2 Analysis of Ablation Experiments

To evaluate model performance, key components, and features, as well as validate the effectiveness
of the GNN and integrated graph neural network modules, we conducted a series of ablation exper-
iments. The base model and parameters followed the default settings outlined in the Experimental
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Details section. For comparison, we used the binary classification results on the UNSW-NB15 dataset.
The methods were divided into four processes: input graph structure processing, GNN convolution
module, integrated GNN module, and anomaly detection module. The ablation results are presented
in Table 5, focusing on the following variants:

• DIGNNA-O: Using the original structure as model input, the convolution operation on the
original graph produces node embeddings. The anomaly detection module employs EdgeEn-
coder to derive edge embeddings by aggregating the node embeddings at the ends of the edges.
It is used to verify the validity of the line graph structure.

• DIGNNA-E: Using the original graph as the model input, the graph neural network convolu-
tion module operation was replaced with the convolution operation from the E-GraphSAGE
method. This modification was used to validate the effectiveness of TransformerConv.

• DIGNNA-N: Removes the graph neural network convolution module, which is used to
determine the relative importance of different modules in the proposed model from the side
and to evaluate the contribution of this module to performance improvement.

• DIGNNA-S: Remove the integrated graph neural network module and verify its effectiveness
by replacing it with a simple RNN model.

• DIGNN-A: We present the model unchanged.

The results of the ablation experiments are presented in Table 5.

Table 5: Results of ablation experiments

Experiment ID Method Accuracy Precision Recall F1-score

DIGNNA-O Origin Graph +
TransformerConv + GCN2GRU
+ EdgeEncoder

0.808 0.8147 0.9857 0.8921

DIGNNA-E Origin Graph + E-GraphSAGE
+ GCN2GRU + EdgeEncoder

0.8137 0.9735 0.7901 0.8722

DIGNNA-N Line Graph + GCN2GRU +
Linear

0.9919 0.9606 0.9761 0.9683

DIGNNA-G Line Graph + TransformerConv
+ GRU + Linear

0.8731 0.8736 0.9994 0.9323

DIGNN-A Line Graph + TransformerConv
+ GCN2GRU + Linear (ours)

0.993 0.9743 0.97 0.9722

The experimental results indicate that any modifications to the modules, such as replacing the
original graph data used as model inputs or altering the graph convolutional neural network and
integrated graph neural network modules, inevitably result in a decline in model performance. This
observation underscores several key findings:

A comparison of DIGNNA-O and DIGNN-A reveals that using line graphs is a more advanta-
geous approach than using original graphs for introducing edge features in the convolution operation.

A comparison of DIGNNA-O and DIGNNA-E reveals that, unlike E-GraphSAGE, Trans-
formerConv utilizes an attention mechanism for graph convolution operations, assigning distinct
weights to each node. This method allows the model to capture more intricate details of the graph
structure.
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DIGNNA-N excludes the graph convolutional neural network module compared to DIGNN-A.
Nevertheless, the final results show only slight declines, suggesting that incorporating line graphs and
the integrated graph neural network module is pivotal to our proposed methodology. Additionally,
the graph convolutional neural network module contributes to the overall enhancement of the model.

In DIGNNA-S, we use the conventional recurrent neural network GRU to replace the integrated
graph neural network module in the methodology, thereby giving the model a structure analogous
to the stacked graph neural network described in previous sections. However, because the line graph
structure is used as an input to the model, the set of line graph nodes at each time step is variable,
making it impossible to correspond to the sequence data required by the GRU. Consequently, the
model is ineffective.

5.3 Parameter Analysis

To investigate the influence of various module parameters on the model’s performance, we
analyzed the results obtained by varying the values of several key parameters, as depicted in Fig. 5.
Specifically, we evaluated the effect of batch size on the model by comparing four different sizes.
Notably, when the batch size was set to 2048, the model achieved the best performance, particularly in
terms of accuracy, recall, and F1-score. However, the highest precision rate was observed with a batch
size of 1024. Additionally, the training time decreased proportionally with the increase in batch size.

To explore the impact of window size, we tested five different time window sizes and found that
the accuracy rate remained stable between 99.09% and 99.3% for all window sizes. A window size of
10 demonstrated a balanced performance with the highest accuracy rate and F1-score, while a window
size of 100 was more suitable for prioritizing the reduction of false alarm rate.

We examined the impact of varying TransformerConv layers on model performance. As the
number of layers increased, accuracy gains diminished while precision and recall fluctuated. The model
showed the most stable performance with three layers. This balance likely stems from the fact that more
layers allow better information aggregation from neighbors, but too few layers may miss information,
and too many may introduce redundancy.

Furthermore, to validate the effect of the number of RNN layers in the integrated graph neural
network module, we compared the performance of models with different numbers of RNN layers. Our
findings indicated that the number of RNN layers had a minimal impact on the model’s performance,
with the best performance observed when the number of layers was set to 2.

Lastly, to assess the impact of convolutional modules in the integrated graph neural network, we
tested four modules: SAGEConv, GCNConv, GCN2Conv, and TransformerConv. SAGEConv and
TransformerConv had similar Accuracy and F1-score but were more consistent, likely due to better
capture of local structural information through message passing. GCNConv, which updates node
features via weighted averaging of neighbors, requires more local smoothing. GCN2Conv performed
the best, achieving the highest F1-score and balanced precision and recall, likely due to its residuals
and identity mapping, which prevent oversmoothing or class bias.
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Figure 5: Effect of different parameters in the model on the experimental results. (a) Effect of batch
size on model results; (b) Effect of window size on model results; (c) Effect of the number of
TransformerConv layers on model results; (d) Effect of the number of RNN layers in the integrated
graph neural network module on the model results; (e) Effect of different convolutional modules in
integrated graph neural networks on model results

5.4 Analysis of Line Graph

To further analyze the role of line graphs and their adaptability to other models, we conducted
validation experiments by applying the line graph structure to the TransformerConv model. Trans-
formerConv can directly incorporate edge feature information during message passing. We compared
two implementations: one that adds edge features to the TransformerConv and another that uses the
line graph structure. The results of these comparative experiments, as shown in Table 6, indicate that
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the TransformerConv model using the line graph structure achieves higher detection rates and F1-
scores than the version incorporating edge features. These findings suggest that the line graph structure
can enhance convolution operations beyond the models considered in this paper.

Table 6: Comparative experiments with line graph methods

Experimental setting Dataset Accuracy F1-score

TransformerConv + Line Graph UNSW-NB15 90.32% 0.9047
TransformerConv UNSW-NB15 88.67% 0.8869
TransformerConv + Line Graph NF-ToN-IoT-v2 97.32% 0.9783
TransformerConv NF-ToN-IoT-v2 92.64% 0.9267

Fig. 6 shows the original graph and line graph visualizations for two randomly selected pairs of
graph snapshots from the UNSW-NB15 test set, with red highlighting anomalous edges and nodes in
the line graph. As evident from the figure, the line graph structure effectively aggregates anomalous
edges from the original graph into significant clusters of anomalous nodes. This makes detecting these
anomalies more straightforward and efficient in the line graph. The model can learn features associated
with these clusters, thereby avoiding the high computational overhead required to identify and detect
anomalous edges in the original graph. Additionally, communication interactions that occur only once
in the original graph appear as isolated nodes in the line graph. For these isolated communications,
the line graph reduces unnecessary message-passing operations during graph convolution and directly
utilizes the original edge features for learning.

Figure 6: (Continued)
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Figure 6: Distribution of original and line graphs. (a) Original graph 1 distribution; (b) Line graph 1
distribution; (c) Original graph 2 distribution; (d) Line graph 2 distribution

When addressing edge embedding challenges and potential trade-offs, several methods are worth
noting: (1) generating edge embeddings through node embeddings, (2) combining node embeddings
with edge features, and (3) converting the graph into a line graph. Each has its pros and cons. The first
two methods are simple and efficient, suitable for large-scale graphs, but rely heavily on node feature
quality. If edge features are limited or invalid, performance may suffer. Additionally, when edges
significantly outnumber nodes, oversmoothing, information redundancy, and noise accumulation can
degrade results. Line graphs, as an equivalent representation, retain topological structure and local
information, naturally capturing high-order relationships. However, in extreme cases, such as when
communication traffic forms independent pairs, line graphs may reduce to discrete points, weakening
anomaly detection. Therefore, selecting the appropriate method depends on the application. In some
scenarios, a multi-graph fusion approach, combining line graphs with other methods, can enhance
model robustness by processing different structures from multiple perspectives.

In accordance with the definition of a line graph, each node within the line graph represents an
edge from the original graph. When dynamic graphs are utilized to sort and divide data over time,
the degree distribution in a specific snapshot of the original graph may seem markedly uneven. In
contrast, in line graphs, edges from the original graph that share a common node are connected solely
as nodes, redistributing the impact of high-degree nodes across multiple edge nodes and leading to a
more uniform degree distribution. This characteristic enables the identification of nodes with dense
communication in the original graph when represented in the line graph. Furthermore, converting a
graph G to a line graph L(G) is a linear-time operation [42]. The complexity of message passing in
graph neural networks correlates closely with node degrees, exhibiting a computational complexity of
O(|V | ·max(dv)), where |V | is the number of nodes, and max(dv) represents the maximum node degree
in a graph. Due to the limited connectivity relationships per edge, the maximum degree of nodes in a
line graph is typically lower than the maximum degree in the original graph. Additionally, the number
of nodes in a line graph |E| is generally less than or equal to the square of the total number of nodes
|V |, resulting in relatively low computational complexity.

To further verify the performance of the line graph method in adapting to highly dynamic
environments, we recorded the time required to process the dataset into a dynamic graph suitable
for input to the model under the default parameter settings described in the experimental section.
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The experimental results are presented in Table 7. As shown, the processing time is proportional to
the number of data records; however, the time needed to process a single graph snapshot remains
consistent. Additionally, it is essential to note that the NF-ToN-IoT-v2 dataset includes four more
features than the UNSW-NB15 dataset, indicating that an increase in the number of features further
affects the data processing time.

Table 7: Comparison of dataset processing time

Dataset Total records Total processing time Average processing time of a
graph snapshot

UNSW-NB15 2,539,739 80.02 s 64.67 ms
NF-ToN-IoT-v2 16,940,496 567.11 s 65.02 ms

6 Conclusion

The paper presents a real-time intrusion detection method using integrated graph neural networks.
This approach combines statistical data from network traffic with long-term sequence dependencies,
improving anomaly detection on dynamic graphs. The method’s graph snapshot segmentation allows
broader application across network intrusion datasets without performance loss. By converting graph
snapshots into line graph snapshots, the edge detection problem is simplified to node detection,
benefiting from graph neural networks for node classification. The model uses a graph convolution
operation with an attention mechanism to enhance prediction accuracy. Experiments on UNSW-NB15
and NF-ToN-IoT-v2 datasets show the model’s superiority over benchmark models.

Despite its advantages, the proposed integrated graph neural network for real-time intrusion
detection has limitations. The interpretability issue inherent in graph neural networks could be
addressed through further research using the GNNExplainer [43]. Additionally, incorporating other
data sources, such as host logs and user behavior, could enhance the detection of complex, multi-stage
attacks. Future work may explore adapting the method to unsupervised or semi-supervised learning
paradigms, reducing the reliance on labeled data and improving model adaptability and generalization.
The development of heterogeneous graph neural networks could also enable the fusion of diverse data
sources, better responding to evolving threats.
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