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ABSTRACT

Solar cell defect detection is crucial for quality inspection in photovoltaic power generation modules. In the produc-
tion process, defect samples occur infrequently and exhibit random shapes and sizes, which makes it challenging
to collect defective samples. Additionally, the complex surface background of polysilicon cell wafers complicates
the accurate identification and localization of defective regions. This paper proposes a novel Lightweight Multi-
scale Feature Fusion network (LMFF) to address these challenges. The network comprises a feature extraction
network, a multi-scale feature fusion module (MFF), and a segmentation network. Specifically, a feature extraction
network is proposed to obtain multi-scale feature outputs, and a multi-scale feature fusion module (MFF) is used
to fuse multi-scale feature information effectively. In order to capture finer-grained multi-scale information from
the fusion features, we propose a multi-scale attention module (MSA) in the segmentation network to enhance
the network’s ability for small target detection. Moreover, depthwise separable convolutions are introduced to
construct depthwise separable residual blocks (DSR) to reduce the model’s parameter number. Finally, to validate
the proposed method’s defect segmentation and localization performance, we constructed three solar cell defect
detection datasets: SolarCells, SolarCells-S, and PVEL-S. SolarCells and SolarCells-S are monocrystalline silicon
datasets, and PVEL-S is a polycrystalline silicon dataset. Experimental results show that the IOU of our method
on these three datasets can reach 68.5%, 51.0%, and 92.7%, respectively, and the F1-Score can reach 81.3%, 67.5%,
and 96.2%, respectively, which surpasses other commonly used methods and verifies the effectiveness of our LMFF
network.
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1 Introduction

In recent years, sustainable development has been promoted, and the means of forecasting
energy consumption have progressed [1]. Exploiting non-polluting, low-cost renewable energy [2] has
gradually become an essential component of the energy strategy. Among these, solar energy is one
of the crucial ways to optimize the energy structure with the advantages of high resource potential,
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low environmental pollution, and sustainable utilization. Solar cells are one of the main compo-
nents of photovoltaic power generation, and they can be divided into monocrystalline silicon and
polycrystalline silicon according to the material used for production. The surface of monocrystalline
silicon exhibits a uniform texture background, while the surface of polycrystalline silicon has more
patches and a complex texture background, as shown in Fig. 1. Due to the brittle crystalline silicon
material, its production is affected by various factors such as environmental conditions, equipment,
and manufacturing processes. These factors can lead to defects, including broken grids, black spots,
and cracks. These defects will directly affect the efficiency and safety of PV modules [3,4]. Therefore,
defect detection on the cell surface is an essential step in the production process, which is of great
significance for developing the photovoltaic power generation industry.

(a) Monocrystalline silicon panel (b) Polycrystalline silicon panel

Figure 1: Electroluminescence (EL) image of PV module cell

Traditional methods for cell defect detection primarily rely on visual inspection. However, the
detection efficiency and accuracy are greatly limited by subjective factors, such as the inspector’s
experience, working environment, and physical condition. Additionally, the locations, shapes, and
sizes of surface defects are diverse and random, which makes manual inspection labor-intensive and
inefficient. Recently, machine vision and deep learning technologies have been widely adopted for
defect detection across various fields, including industrial products defect detection [5–8], fabrics defect
detection [9], ultrasound welding defect detection [10], and automotive glass defect detection [11]. To
overcome the limitations of traditional detection methods, researchers have begun employing machine
vision methods, which mainly rely on electroluminescence (EL) technology with high-resolution
infrared cameras to obtain near-infrared images of the battery cell for defect detection. Li et al. [12]
proposed a wavelet transform-based defect detection method for polysilicon cells, which used wavelet
coefficients of single decomposition layers as features and the differences of wavelet coefficients
between coefficients of consecutive layers as weights to distinguish local defects from the crystalline
background. This method can effectively detect surface defects in solar cells. Anwar et al. [13]
proposed an improved anisotropic diffusion filtering and image segmentation algorithm. Based on
the electroluminescence intensity of solar cell micro-crack electroluminescence intensity distribution,
Spataru et al. [14] proposed a two-dimensional matched filter-based microcrack detection method and
obtained a binary localization map of the microcrack defect location by image post-processing.

However, most machine vision-based methods utilize traditional filtering techniques to reduce
the noise in the image during the detection process. These methods often struggle to distinguish
the background texture from the real defect when dealing with cell surfaces with complex textures.
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Especially for defects with small sizes and complex morphology, the filtering techniques may fail to
effectively separate the noise from the effective information, which may lead to misdetections and
missed detections.

Deep learning has been introduced into solar cell defect detection to address these issues.
Zhang et al. [15] proposed a multi-feature region proposal fusion network MF-RPN to improve the
adaptability of scale variations of surface defects in solar cells. However, this network needs to extract
candidate regions from different feature layers of the convolutional neural network, which significantly
increases the computational cost. Pratt et al. [16] proposed a semantic segmentation model based on
the U-Net architecture to locate defective regions accurately, but it performed poorly on polycrystalline
silicon cells and microcrack defects. Xie et al. [17] introduced an unsupervised domain adaptive method
for detecting defects in EL images of solar cells, which addressed the challenges of defect detection and
data labeling on polycrystalline silicon wafers with many impurities. However, this method cannot
accurately locate defective regions. While methods based on deep learning can improve detection
accuracy to a certain extent, they still face limitations when applied to solar cell defect detection,
including large amounts of calculation, complex models, and difficulty in small target detection.

To address the shortcomings of existing methods, this paper focuses on two aspects: lightweight
and small target defect detection. For the first aspect, depthwise separable convolution is introduced
to construct depthwise separable residual blocks, which replace traditional residual blocks to achieve a
lightweight network. For the second aspect, a multi-scale feature fusion module is designed to capture
deep and shallow features to improve the network’s image representation. Additionally, a multi-scale
attention module is employed to focus on finer-grained features for detecting and localizing small
target defects. Consequently, the overall architecture of our network is compact and efficient, with the
ability to detect all types of defects in monocrystalline and polycrystalline silicon cells. Notably, due
to the lack of publicly available solar cell wafer defect detection datasets suitable for training semantic
segmentation networks, this paper introduces three segmentation datasets with fine-grained defect
labels: two for monocrystalline silicon and one for polycrystalline silicon. These datasets are detailed
in Section 4.1.

In summary, the main contributions of this paper are:

(1) Because there are few publicly available solar panel defect detection datasets, three solar cell
datasets with refined defect labels are proposed to provide a benchmark for subsequent research on
segmentation networks, i.e., SolarCells, SolarCells-S, and PVEL-S. SolarCells and SolarCells-S are
monocrystalline silicon panel datasets, while PVEL-S is a polycrystalline silicon panel dataset. The
datasets are available on Kaggle: https://www.kaggle.com/datasets/xiaoyunchen666/dataset-of-solar-
cells-defect-segmentation, accessed on 25 November 2023.

(2) An end-to-end lightweight solar cell defect detection segmentation network LMFF is pro-
posed. Depthwise separable convolution is used to construct depthwise separable residual blocks to
reduce the number of network parameters.

(3) A multi-scale feature fusion module is proposed to fuse the multi-scale features extracted by
a feature extraction network. Then, it is combined with the proposed multi-scale attention module
to give the network the ability of minor defects segmentation. Experimental results on three datasets
verified that our proposed LMFF network achieved high accuracy in solar cell defect detection and
localization.

https://www.kaggle.com/datasets/xiaoyunchen666/dataset-of-solar-cells-defect-segmentation
https://www.kaggle.com/datasets/xiaoyunchen666/dataset-of-solar-cells-defect-segmentation
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2 Related Work
2.1 Methods Based on Image Classification

Classification-based methods typically divide the input image into blocks with overlap and then
classify each block. If an image block contains a certain number of defective pixels, it is marked
as defective block. The image block size is determined by the input image size of the deep learning
model, with common sizes being 256 × 256, 128 × 128, or 32 × 32. Balzategui et al. [18] proposed
a convolutional neural network-based method for detecting surface defects in polysilicon solar cells.
This method divided the solar cell EL image into multiple regions by a sliding window, and then
a CNN network is used to classify each region as a defective or non-defective region. Additionally,
Cha et al. [19] proposed a CNN-based concrete crack detection method to achieve the division of
256 × 256 slab images into defective and non-defective categories. Li et al. [20] fine-tuned the
GoogleNet architecture and designed a CNN for crack detection, which achieved binary image
classification. However, these methods can only detect defects at the image level, and cannot locate
defects at the pixel level.

2.2 Methods Based on Object Detection

Object detection is a basic task in computer vision, which aims to locate defect objects in images
and determine their categories. Current object detection methods often build upon classical network
architectures such as Faster R-CNN [21], SSD [22], and YOLO [23]. For the defect detection task,
defects in the image can be treated as objects such that object detection networks can be used.
Zhang et al. [24] proposed a model that fuses Faster R-CNN and R-FCN. In order to address the issue
of high false negative rates, this model fused the detection results of two different models and adopted
a multi-scale strategy to adjust the region proposal network. In addition, a hard-to-score negative
sample mining strategy was used to solve the problem of excessive negative sample space prevalent in
solar cell defect images. Similarly, Xu et al. [25] enhanced the Faster R-CNN framework by integrating
feature cascade, Adversarial Spatial Dropout Network (ASDN), Soft-NMS, and data augmentation to
improve recognition accuracy for road-base defects. Li et al. [26] proposed a surface defect detection
method Mobilenet-SSD based on the SSD network combined with MobileNet, which achieved the
detection of surface defects such as wear, depressions, and burrs on containers. Although methods
based on object detection can achieve good performance, they usually require extensive labeled data
for training and can only provide coarse localization of defect targets, which significantly limits their
applications in industrial defect detection.

2.3 Methods Based on Image Segmentation

Compared with image classification and object detection methods, segmentation-based approaches
can classify each pixel in an image and provide a more accurate localization result. This capability
has made segmentation-based approaches widely used in microcrack defect detection. For instance,
Yang et al. [27] proposed a crack detection method based on Fully Convolutional Networks (FCN)
and achieved good results on pavement and concrete wall image datasets. However, this network
could not accurately detect microcracks and cracks near image boundaries. Zhang et al. [28] proposed
a pavement crack detection method by combining U-Net and GAN, which can solve the issue of large
negative sample space by inputting larger crack images into an asymmetric U-shaped generator. To
further improve defect localization, Pratt et al. [16] proposed a semantic segmentation model based
on the U-Net architecture. However, this model performed poorly on polysilicon cells and microcrack
defects.
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To solve the above problems, from the perspective of lightweight, this paper designs a depthwise
separable residual block (DSR) based on depthwise separable convolution and residual block to
reduce the model parameters, and constructs the overall framework of solar cell defect detection
network LMFF based on DSR. Given that features at different scales contain rich image information,
this paper uses the proposed feature extraction network to extract multi-scale features. The multi-
scale feature fusion module (MFF) is then utilized to fuse the multi-scale features, which makes the
fusion features have both shallow texture features and deep semantic features. Additionally, a multi-
scale attention module (MSA) is designed in the segmentation network to capture fine-grained key
information to improve the detection ability of various defect targets. Compared with the existing
models such as U-Net, LMFF is more lightweight, and significantly improves the accuracy and
robustness of defect detection through finer multi-scale feature fusion and attention module.

3 Method

This section details the core principles of LMFF. The overall structure of LMFF is illustrated in
Fig. 2, which comprises a feature extraction network, a multi-scale feature fusion module (MFF), and
a segmentation network. Specifically, the feature extraction network first captures multi-scale features,
and the MFF module fuses multi-scale features to obtain multi-scale fusion features. The multi-scale
attention (MSA) module in the segmentation network focuses on fine-grained information at various
scales, which enables the detection of small target defects. Finally, the segmentation network’s output
feature map is upsampled to match the resolution of the original image, and the target loss is used to
achieve accurate location results of defect areas.

Figure 2: LMFF network structure

3.1 Depthwise Separable Residual Block

In order to make the network more lightweight, we introduce depthwise separable convolution
to construct depthwise separable residual blocks. Fig. 3 shows the difference between conventional
convolution and depthwise separable convolution. In a conventional convolution operation, when a
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three-channel RGB image with a resolution of 5 × 5 (shape of 5 × 5 × 3) is input, after the convolution
operation of four 3 × 3 × 3 convolution kernels, the final output is a feature map with a shape of 3 ×
3 × 4. Thus, this conventional convolution operation involves 108 parameters (3 × 3 × 3 × 4) and 972
computations (3 × 3 × 3 × 3 × 3 × 4).

Figure 3: Example of conventional convolution and depthwise separable convolution operations

The depthwise separable convolution operation can be decomposed into two steps: Depthwise
(DW) convolution and Pointwise (PW) convolution. In DW convolution, each convolution kernel is
responsible for only one channel and the convolution operation is performed on only one channel.
Consequently, the number of feature maps generated by DW convolution equals the number of
input channels, and the feature map will not be extended. However, DW convolution only operates
independently on each channel of the input, which fails to fully utilize the feature information at the
same spatial location across different channels. To address this problem, PW convolution with a 1 × 1
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convolution kernel is usually performed after DW convolution to fully mix the feature information of
different channels. Similar to the conventional 2D convolution, PW convolution combines the feature
information from different channels at the same spatial location of the input feature map by weighting
to increase the nonlinearity of the output feature. For a three-channel RGB image with a resolution
of 5 × 5 (shape of 5 × 5 × 3), in order to obtain an output of the same shape as conventional 2D
convolution, three DW convolutions of 3 × 3 × 1 are first used for convolution calculation, and obtain
three feature maps of shape 3 × 3 × 1. These feature maps are then convolved by four 1 × 1 × 3 PW
convolutions, and the final output is four feature maps with the shape of 3 × 3 × 1. Therefore, the
number of parameters for the depthwise separable convolution in this example is 39 (3 × 3 × 3 + 1 ×
1 × 3 × 4), and the total computation is 351 (3 × 3 × 3 × 3 × 3 + 1 × 1 × 3 × 3 × 3 × 4).

The computation and number of parameters for depthwise separable convolution are about one-
third of that of conventional 2D convolution. Therefore, this paper introduces depthwise separable
convolutions into the residual module to further reduce network parameters. The conventional
residual module consists of two 3 × 3 convolution layers. In this paper, the first 3 × 3 convolution
is replaced by a PW convolution to adjust the number of channels. Following the depthwise separable
convolution approach, the second 3 × 3 convolution is replaced with a combination of DW and PW
convolutions to decrease the module’s parameter count. The structure of the depthwise separable
residual block (DSR) is depicted in the lower right part of Fig. 3.

3.2 Feature Extraction Network

As shown in Fig. 2, the feature extraction network comprises four layers, which can extract the
feature information of different levels of photovoltaic cells, respectively. Considered that the size of
the output feature matrix of the first layer is 32 × 240 × 240, the feature information contains relative
simple features and excessive image detail information. Meanwhile, the network model directly uses
the output features of all layers of the feature extraction network to train parameters, which will
significantly increase the computation and reduce the detection speed. Therefore, the first layer’s
information is discarded, and the output features of the last three layers are selected for network
model training to alleviate the problem of information redundancy. Specifically, for any input image
x ∈ Rw×h×c, the feature extraction network extracts the feature matrices yi from the last three layers
(layer2, layer3, layer4), as expressed below:

f
(
x; θf

) = yi (i = 2, 3, 4), (1)

where θf denotes the parameters of the feature extraction network, which need to be optimized during
training. yi ∈ Rwi×hi×ci(i = 2, 3, 4) denotes the i-th layer feature matrix.

3.3 Multi-Scale Feature Fusion Module

The different morphologies and sizes of solar cell defect areas increase the difficulty of defect
detection. Therefore, we propose the multi-scale feature fusion module (MFF) to fuse the three layers
of features extracted by the feature extraction network, which enables the multi-scale fusion features
with different receptive fields. The overall structure of MFF is shown in Fig. 4.

Firstly, considering that different feature levels have different receptive fields, shallow features
retain more image detail information, and deep features can capture high-level semantic information,
so the MFF module uses the features of the last three layers, i.e., y2, y3 and y4 obtained from the
feature extraction network for fusion. In order to ensure that different layers have the same resolution
for subsequent feature fusion, the resolutions of y3 and y4 are uniformly adjusted to a same size w2 × h2
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as well as the second layer feature y2. The number of channels c2, c3 and c4 of each layer feature remains
constant. The Unfold operation is then used to halve the resolution of each layer feature and expand
a dimension of size 4 to increase the perception of local context features. Further, in order to avoid
increasing too much computational cost, the number of channels is restored by averaging after the
Unfold operation along the amplified dimension. Finally, concatenate operation is performed on the
adjusted features of each layer along the channel dimension to obtain the multi-scale fusion feature ŷ.
The above process can be expressed as follows:

y
′
i = reszie (yi (i = 2, 3, 4)), (2)

y
′′
i = Unfold

(
y

′
i ∈ Rw2×h2×ci (i = 2, 3, 4)

)
, (3)

y
′′′
i = mean

(
y

′′
i ∈ Rw3×h3×ci×4 (i = 2, 3, 4)

)
, (4)

ŷ = Cat
(
y

′′′
i ∈ Rw3×h3×ci (i = 2, 3, 4)

)
, (5)

where ŷ ∈ Rw3×h3×(c2+c3+c4). The ŷ obtained by the above steps fuses the features of different receptive
fields and forms a dense multi-scale region representation of the input image x. This dense multi-scale
feature representation can better capture the defect information of different scales and sizes in the
image, which can improve the localization ability of the overall model.

Figure 4: Multi-scale feature fusion module MFF

3.4 Multi-Scale Attention Module

As shown in Fig. 2, the multi-scale fusion feature ŷ obtained by MFF module is input into a DSR
block to obtain the feature representation z ∈ Rw3×h3×c′ , and the number of channels is adjusted to c′.
In order to enable the model to obtain fine-grained multi-scale feature information while maintaining
resolution, this paper proposes a new multi-scale attention module MSA. The overall architecture
of MSA refers to the design method of Pyramid Split Attention (PSA) [29]. In the MSA module,
the convolution kernels of different sizes are firstly used to extract multi-scale features to enhance
the perception of local small defect features and global features. To further enhance MSA ability of
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small defect detection, the spatial attention mechanism is introduced to adaptively pay attention to the
changes of small areas in the image space, and the channel attention mechanism is used to enhance the
dependence between different channel information and key feature information. As shown in Fig. 5,
MSA consists of four branches and its implementation can be divided into the following steps:

Figure 5: MSA network structure

Firstly, each branch applies convolution kernels of different sizes to extract spatial information
of different scales from the input feature map z. The smaller convolution kernel can more acutely
capture the local small defect features, while the larger convolution kernel captures the global context.
This multi-scale convolution combination is more conducive to extract the feature information of
different scales and the change relationship between local defect features and global structure. Thus,
the accuracy of small defect detection can be improved. At the same time, referring to PSA, group
convolution is used to solve the problem of parameter number increasing caused by the increase of
convolution kernels.

z
′
i = Conv (ki, group = Gi) (z) (i = 1, 2, 3, 4), (6)

where the i-th convolution kernel ki = 2 × i + 1, the ith group is Gi = 2
ki−1

2 . z′
i ∈ Rw2×h2×c′/4 denotes the

feature maps of different scales with the number of channels c′/4. It should be noted that the group
size G = 1 when the convolution kernel k = 3.

Secondly, in order to further obtain important information and fine-grained features in the feature
space of each branch, a spatial attention mechanism (SA) is introduced to focus on the spatial
information on each branch independently. Firstly, global average pooling and maximum pooling
along the channel dimension are performed on the input z′

i . The results are concatenated along the
channel dimension to obtain a w2 × h2 × 2 feature map. After a 7 × 7 convolution kernel, the number
of channels is reduced to 1, followed by the activation function Sigmoid() to obtain the spatial attention



530 CMC, 2025, vol.82, no.1

feature map. This feature map is multiplied by the input z′
i to obtain the ultimate output. The specific

process can be represented as follows:

z
′′
i = σ(Conv(k = 7)([Avgpool(z

′
i); Maxpool(z

′
i)]) × z

′
i , (7)

Thirdly, the outputs of the four branches are concatenated along the channel dimension. Then
the global average pooling (AvgPool) and global maximum pooling (MaxPool) are performed on the
concatenated features along the spatial dimension by the channel attention mechanism (CA). Then,
the results are processed by the shared fully connected layer (SFC) and activated by the Sigmoid()
function to obtain the weights of the channels. Finally, the weight vectors are weighted to the feature
layers channel by channel.

z′′ = Cat
([

z
′′
1 + z

′′
2 + z

′′
3 + z

′′
4

])
, (8)

F = σ (SFC (Avgpool (z′′)) + SFC (Maxpool (z′′))) × z′′. (9)

Figure 6: Visualization of the output features of each branch inside the MSA network

As illustrated in Fig. 6, we visualize the four branch outputs z′′
1 , z′′

2 , z′′
3 , z′′

4 of the MSA module.
The first branch employs a small convolution kernel and receptive field, which can obtain more fine-
grained feature output. In the last three branches, with the increase of the convolution kernel size,
the receptive field becomes larger and the sampling becomes sparser, which can obtain more abstract
feature information and capture the overall trend. Therefore, the multi-scale attention module can
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extract richer and more comprehensive feature information. The final output feature F not only
contains general global information, but also the detail local information, which enables LMFF to
capture various defects in solar cells.

3.5 Target Loss

In the real practice, a common problem is that the negative sample (defect-free images) number is
far greater than the positive sample (defective images) number. In order to make the predicted results of
LMFF closer to the actual ground truth, this paper jointly trains the network by using the CE loss and
Dice loss [30]. Dice loss usually pays more attention to the mining foreground regions, which can well
alleviate the problem of too large negative sample space in the image, but there will be loss saturation
problems. CE loss can calculate the loss of foreground pixels and background pixels equally. But in the
case of imbalanced foreground and background, CE loss alone tends to favor the background, which
results in poor performance of model training. On the other hand, the joint usage of CE loss and Dice
loss can compensate their both shortcomings such that the network can ensure the similarity between
the segmentation results and ground truth.

Specifically, we use (10) and (11) to minimize the CE loss and Dice loss between the model-
predicted segmentation results and the ground truth of the image abnormal regions.

LCE = − 1
N

∑N

i=1

(
yi log ŷi + (

1 − yi
)

log
(
1 − ŷi

))
, (10)

LDice =
∑N

i=1

(
1 − 2

∣∣ŷi
⋂

yi
∣∣∣∣ŷi

∣∣ + |yi|

)
, (11)

where ŷ denotes the model prediction segmentation result. y denotes the ground truth of the image
anomaly region, and N denotes the number of training images.

Therefore, the target loss for training LMFF is defined as:

Ltotal = λDLDice + λCLCE, (12)

where λD and λC are balanced loss hyperparameters.

4 Experiments
4.1 Datasets

To verify the effectiveness and superiority of the method in this paper, we disclose three solar cell
defect detection datasets for semantic segmentation network training, named as SolarCells, SolarCells-
S and PVEL-S. These datasets provide refined defect labels. The details are described as follows and the
datasets are available on Kaggle: https://www.kaggle.com/datasets/xiaoyunchen666/dataset-of-solar-
cells-defect-segmentation, accessed on 25 November 2023.

(1) SolarCells: The SolarCells dataset consists of 190 monocrystalline silicon cell EL defect images
collected by our team from the web, with a resolution size of 448 × 448. We divide the dataset according
to the ratio of 8:2 between the training set and the test set, with 152 defect images in the training set
and 38 defect images in the test set.

(2) SolarCells-S: The SolarCells-S dataset comprises monocrystalline EL defect images collected
by our partner company. There are only 36 defect images in total and divided into the dataset according
to the ratio of 8:2 between the training set and the test set, with 28 images in the training set and 8

https://www.kaggle.com/datasets/xiaoyunchen666/dataset-of-solar-cells-defect-segmentation
https://www.kaggle.com/datasets/xiaoyunchen666/dataset-of-solar-cells-defect-segmentation
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images in the test set. Due to the small number of samples in the dataset, the training set and test
set are augmented by rotating 180°, mirroring, darkening, and brightening, respectively. Finally, the
training set was increased to 144 images and the test set to 36.

(3) The PVEL-S dataset is a subset of the PVEL-AD [31] dataset, which is jointly published
by Hebei University of Technology and Beijing University of Aeronautics and Astronautics for
benchmarking PV cell abnormal defect detection methods. 36,543 images of polysilicon abnormal
defects with 12 categories, such as cracks, broken grids, black cores, thick lines, scratches, fragments,
and broken angles, are included in the PVEL-AD dataset. This dataset is mainly used for target
inspection networks. We selected 1200 polysilicon defect images to form the PVEL-S dataset and
accurately labeled the defective regions in the pixel-level. The labeled 1200 images were divided
according to the ratio of 8:2 between the training set and the test set. The final PVEL-S dataset contains
960 defect images in the training set and 240 defect images in the test set.

4.2 Performance Evaluation Indicators

To better validate the network performance, six metrics such as intersection ratio (IOU), average
category intersection ratio (MIOU), F1-Score, foreground pixel accuracy (FPA), background pixel
accuracy (BPA), average category pixel accuracy (MPA), are selected in this paper to evaluate the
defect segmentation performance comprehensively and reasonably.

IOU = TP
TP + FP + FN

, (13)

MIOU =
(

TP
TP + FP + FN

+ TN
TN + FP + FN

)
/2, (14)

F1 − Score = 2TP
2TP + FP + FN

, (15)

FPA = TP
TP + FN

, (16)

BPA = TN
TN + FP

, (17)

MPA = (FPA + BPA)/2, (18)

where TP, FP, TN and FN stand for true positive, false positive, true negative and false negative,
respectively. IOU denotes the intersection ratio between the predicted segmentation result and the
defective true ground truth, which directly reflects the positioning and segmentation ability of the
model. The higher IOU indicates the better the positioning performance. MIOU denotes the average
IOU of both foreground and background categories, which is used to measure the average detection
performance of the model on different categories. F1-Score denotes the reconciled average of the
accuracy and recall, which can comprehensively measure the effect of the two to balance the missed
and false detections of the model. FPA denotes the ratio of correctly predicted foreground pixels to
the total foreground pixels, which reflects the ability of the model to accurately identify non-defect
regions. BPA denotes the ratio of correctly predicted background pixels to total background pixels,
and the level of BPA is directly related to the reliability of the model in distinguishing background and
defect. Especially in the detection task with complex background, BPA is an important performance
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measure. MPA denotes the average pixel accuracy for both foreground and background categories,
and it is used to measure the ability of the model to correctly classify at the pixel level. It focuses
on the classification accuracy at the pixel level and helps analyze the performance of the model in
fine-grained detection tasks.

4.3 Implementation Details

LMFF uses the feature extraction network to obtain the multi-scale feature outputs of layer2,
layer3 and layer4, and resolution size of the input image x is uniformly adjusted to 480 × 480. The
shapes of three features y2, y3 and y4 are 64 × 120 × 120, 128 × 60 × 60 and 256 × 30 × 30, respectively.
y2, y3 and y4 are input into the MFF module to obtain the shape of the multi-scale fusion feature ŷ as
448 × 60 × 60, and the channel c′ of ŷ is adjusted to 256 by the DSR block. The MSA module does
not change the shape of the input features. The detailed setup of the segmentation network is shown
in Fig. 2.

LMFF was optimized by the SGD optimizer with a learning rate of 0.01, momentum = 0.9. The
batch size is set to 8. Both λD and λC are set to 1. The hardware configurations of the devices used for
the testing were: Intel(R) Core(TM) i9-10900X CPU@3.70 GHz and NVIDIA GeForce RTX3080Ti.

5 Evaluation Results

In this section, LMFF is first evaluated on SolarCells and SolarCells-S monocrystalline silicon
defect detection datasets, and compared with the mainstream segmentation networks FCN [32],
Deeplab-v3 [33], U-Net [34] and U2-Net [35]. Meanwhile, detailed ablation experiments are also
conducted on these two monocrystalline silicon defect datasets to analyze the performance of
individual modules in the proposed method. Finally, in order to further show the superiority of the
proposed method, this paper also makes evaluation on the polycrystalline silicon defect detection
dataset PVEL-S.

5.1 SolarCells

Table 1 shows the detection results of LMFF with other segmentation methods on the SolarCells
dataset, and it can be seen that LMFF achieves the highest performance in five indicators: IOU,
MIOU, F1-Score, FPA and MPA. Compared with the U2-Net network with the best overall perfor-
mance, LMFF outperforms it in all indicators, with an increase of 6.5% in IOU, 3.4% in MIOU, 4.8%
in F1-Score, 3.0% in FPA, 0.2% in BPA, and 1.6% in MPA. These comparative data strongly illustrate
the superiority of LMFF in detecting solar cell defects compared with other methods. Especially, the
IOU is improved by 6.5%, which shows that the LMFF method has a strong advantage in accurately
locating defects and can realize the segmentation of different types of defects in solar cells.

Table 1: SolarCells dataset detection results

Method IOU MIOU F1-Score FPA BPA MPA

FCN [32] 51.3 74.0 67.8 63.5 98.7 81.1
Deeplab-v3 [33] 51.1 73.7 67.6 67.4 98.2 82.8
U-Net [34] 60.6 78.8 75.5 82.2 98.0 90.1
U2-Net [35] 62.0 79.5 76.5 84.8 97.9 91.4
LMFF (Ours) 68.5 82.9 81.3 87.8 98.1 93.0
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In order to better show the segmentation performance of LMFF, we show the comparison of
the predicted segmentation results of different methods on the SolarCells dataset, as shown in Fig. 7.
The first column displays the test image, the second column represents the corresponding ground
truth and the third to seventh columns represent the prediction segmentation results of different
methods, respectively. Fig. 7 clearly shows that FCN and Deeplab-v3 methods exhibit serious leakage
segmentation when segmenting defective images, with poor overall effect. In addition, although U-Net
and U2-Net perform better in the overall segmentation results, they still need to be improved in the
segmentation details of black spots, fragments and cracks. In contrast, our method performs much
better in the overall segmentation performance. Especially, it handles the defect edge details much
better and smoother, and the segmentation results are more accurate.

Figure 7: Comparison of segmentation results of different methods on SolarCells dataset

5.2 SolarCells-S

Table 2 shows the detection results of various method on the SolarCells-S dataset. It is evident
that FCN and Deeplab-v3 perform relatively well on the BPA metric, but poor on the other five
metrics. This shows that they have great limitations in overall performance, especially in terms of
segmentation and detection accuracy. In contrast, the U-Net and U2-Net methods perform relatively
well on the whole, and can achieve better results on multiple indicators. Compared with the best U-Net
network among the four methods, LMFF achieves 2.1% improvement in IOU, 0.7% improvement in
MIOU, 1.7% improvement in F1-Score, 0.8% improvement in BPA. Although the performance on FPA
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and MPA metrics of LMFF are lower than that of U-Net and U2-Net, the significant improvement
of LMFF in core indicators (IOU, MIOU, F1-Score) make up for these deficiencies, which further
demonstrates the excellent performance of LMFF in detection accuracy and defect location.

Table 2: Detection results of SolarCells-S dataset

Method IOU MIOU F1-Score FPA BPA MPA

FCN [32] 30.5 65.7 45.7 40.6 98.8 72.0
Deeplab-v3 [33] 34.2 68.0 50.1 37.7 99.5 71.1
U-Net [34] 48.9 73.3 65.8 73.6 97.8 86.2
U2-Net [35] 48.0 72.6 64.9 72.0 98.4 85.3
LMFF (Ours) 51.0 74.0 67.5 67.2 98.6 82.9

Figure 8: Comparison of segmentation results of different methods on the SolarCells-S dataset

Fig. 8 compares the predicted segmentation results of the LMFF method with other advanced
methods on the SolarCells-S dataset. Compared with Fig. 7, it can be seen that the defect segmentation
results of each method are lower than those of the SolarCells dataset, and the leakage segmentation
phenomenon is more serious. This is due to the smaller training samples in the SolarCells-S dataset.
Although the training samples are expanded by data augmentation, more samples with actual defects
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are still needed. A small training dataset will increase the difficulty of network training and lead to
insufficient training, which generally degrades the defect localization performance. It can be intuitively
seen from Fig. 8 that the proposed method can still show relatively stable defect segmentation
performance and the good superiority and robustness.

5.3 Inference Speed

In industrial applications, the network model needs to ensure excellent detection performance and
efficient inference performance to meet practical demands. Therefore, we comprehensively evaluate
the model’s inference performance from four aspects: inference time per image, predicted frames per
second (FPS), floating point operations and the number of parameters. Table 3 presents the detection
results for various methods across these indicators. The LMFF model achieves an inference time of
only 5.66 milliseconds per image and a prediction rate of 176.6 FPS, which demonstrates excellent
real-time inference capabilities. This result also reflects that LMFF can not only respond quickly, but
also maintain efficient inference speed. Additionally, LMFF shows superior performance in terms of
network computation and parameter count, with values of 6.51 G and 1.18 M, respectively. Compared
with the U-Net network with the best inference performance, LMFF reduces network computation
by 29.1 G and the number of parameters by 3.14 M. These significant advantages make LMFF
more applicable in complex industrial scenarios. Thus, LMFF not only achieves the best detection
performance but also maintains high inference performance.

Table 3: Comparison of different methods in terms of inference time, predicted frames per second
(FPS), floating-point operations, and number of parameters

Method Inference time (ms) FPS FLOPs (G) Param (M)

FCN [32] 13.01 76.87 122.05 32.95
Deeplab-v3 [33] 15.54 64.35 144.25 39.63
U-Net [34] 5.28 189.36 35.61 4.32
U2-Net [35] 21.32 46.90 132.37 44
LMFF (Ours) 5.66 176.6 6.51 1.18

5.4 Ablation Study

To verify the effectiveness of the design strategy, we conducted ablation experiments on SolarCells,
SolarCells-S datasets.

(1) Impact of module components: The LMFF network employs the depthwise separable residual
block (DSR) as its fundamental module to minimize the number of network parameters.

It can be intuitively found from Table 4 that compared with Res blocks, the detection performance
of the model by using DSR has a relatively slight decline on both datasets. We analyzed that DSR first
performs independent operations on each input channel based on Depthwise (DW) convolution, and
then uses Pointwise (PW) convolution to fuse feature information of different channel dimensions.
Such a simple decomption-fusion approach may not be able to fully capture complex context depen-
dencies and feature intersections, which results in performance degradation. However, it can be seen
from Table 5 that DSR module performs better in inference performance compared to the Res block.
In terms of inference performance, the number of parameters is reduced by 5.86 M, computational
load by 35.11 G, frames per second increase by 28.53, and single inference time decreases by 1.05 ms.
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Thus, despite a minor reduction in detection performance, the DSR module significantly enhances
network inference performance, which makes LMFF more suitable for industrial applications.

Table 4: Comparison of detection performance between conventional residual blocks and depthwise
separable residual blocks

Module SolarCells SolarCells-S

IOU MIOU IOU MIOU

Res block 68.9 83.2 51.8 74.4
DSR block 68.5 82.9 51.0 74.0

Table 5: Comparison of inference performance between traditional residual blocks and depthwise
separable residual blocks

Module Inference time (ms) FPS Flops (G) Param (M)

Res block 6.71 148.07 41.62 7.04
DSR block 5.66 176.60 6.51 1.18

LMFF uses MFF module to fuse multi-scale features extracted by feature extraction network,
which can enable the fused features to contain shallow texture information and deep abstract semantic
information. The results of ablation experiments on two datasets are shown in Fig. 9. The comparison
between the black and purple lines shows that the introduction of the MFF module significantly
improves five metrics of the LMFF network, except for BPA, which verifies the effectiveness of the
MFF module.

Figure 9: Detection results when using different module components on both datasets

LMFF employs MSA module to extract richer and fine-grained multi-scale information without
losing the resolution of fusion features, which can improve the utilization of valuable features and
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reduce the missed segmentation caused by information loss. The comparison between the red and
purple lines in Fig. 9 shows that the introduction of MSA module further improves the detection
results of LMFF on both datasets. Additionally, the Fig. 9 clearly shows that after the introduction
of MSA module, the overall performance of LMFF in the six indicators is better than the network
performance without MSA module. This confirms the effectiveness of the MSA module in enhancing
overall network performance.

To further verify the effectiveness of introducing the Spatial Attention (SA) and Channel Atten-
tion (CA) mechanisms within the MSA module, we conduct a comparative analysis by comparing
the purple, blue, green and red lines in Fig. 9. The results demonstrate that compared with not using
any attention mechanism module, using only one attention mechanism within MSA improves the
comprehensive evaluation indicators on both datasets. Furthermore, the simultaneous inclusion of
both attention mechanisms significantly enhances the network’s performance across all six indicators.
These results show that the MSA module more effectively focuses on the dependencies between
different channel information in multi-scale features and the small defect features with subtle changes
in the feature space by the channel and spatial attention mechanism, so that the MSA module can
efficiently grasp the feature change relationship from local to global, and improve the performance of
the overall network.

(2) Impact of different losses: In this study, we employ CE loss and Dice loss to jointly train the
LMFF. Fig. 10 presents the detection results when different loss functions are used on the two datasets.
It can be found that the network performance is relatively poor when using CE loss or Dice loss alone
for training. This is mainly due to the fact that CE loss or Dice loss each focuses on different task
features and cannot make full use of their respective advantages, which results in poor performance.
When the CE loss and Dice loss are used jointly, the network performance is significantly improved,
which verifies the effectiveness of the joint loss strategy. In addition, Fig. 11 provides a visual analysis
of network defect segmentation maps under different loss functions. When using CE loss or Dice loss
independently, the network has some false detection phenomena, while using the joint loss strategy
can help the network to learn better anomaly discrimination features, and make the segmentation of
defective regions finer and more accurate.

Figure 10: Detection results when using different loss functions on the two datasets
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Figure 11: Effect of different loss functions on the performance of network defect segmentation

5.5 Evaluation Results on the PVEL-S Dataset

SolarCells and SolarCells-S are monocrystalline silicon defect detection datasets. The surface
texture of monocrystalline silicon cells is uniform, which makes defects easier to be identified.
In contrast, the complex textured background of the polycrystalline silicon cells surface contains
more impurities, which significantly increases the difficulty of defect detection. Therefore, to further
evaluate the defect segmentation performance of LMFF, this paper conducted benchmark tests on the
PVEL-S polysilicon dataset. As shown in Table 6, LMFF achieved the best performance on the five
evaluation metrics. Meanwhile, combining with the experimental results of Sections 5.1 and 5.2, we
found that FCN and Deeplab-v3 performed poorly on the monocrystalline silicon dataset and better
on the polycrystalline silicon dataset. Conversely, U-Net and U2-Net performed much worse, which
indicates that robustness and generalization ability of these commonly used segmentation networks
are not good and do not perform consistently on different datasets. In contrast, LMFF achieves the
highest detection performance on all three datasets with stable performance. This proves the proposed
method’s effectiveness and robustness.

Table 6: Detection results of the PVEL-S dataset

Method IOU MIOU F1-Score FPA BPA MPA

FCN [32] 90.5 94.3 95.0 96.2 98.8 97.5
Deeplab-v3 [33] 91.5 94.9 95.6 96.0 99.1 97.6
U-Net [34] 65.5 78.0 79.2 97.5 90.9 94.2
U2-Net [35] 62.9 76.1 77.3 97.6 89.8 93.7
LMFF (Ours) 92.7 95.5 96.2 98.3 98.6 98.5
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6 Conclusion

In this paper, we proposed a novel lightweight defect segmentation network LMFF based on the
depthwise separable residual block DSR, which can detect various defects in monocrystalline silicon
and polycrystalline silicon solar cells. In order to accurately locate the defect areas, we used a feature
extraction network to extract the multi-scale features of the input images. Meanwhile, we further
considered the different sizes of defects of solar cells and improved the network ability for small defect
detection with the well-designed multi-scale feature fusion module and multi-scale attention module.
In addition, since there is no publicly available dataset for defect segmentation in the field of solar cells,
SolarCells, SolarCells-S, and PVEL-S, were proposed in this paper, where SolarCells and SolarCells-S
are monocrystalline silicon datasets while PVEL-S is a polycrystalline silicon dataset.

In future work, our proposed method will be further validated in more scenarios, and the model
needs to be further optimized according to the specific requirements of the actual scenarios to improve
its performance. Moreover, designing the software-hardware system for actual production processes
and deploying the LMFF on the hardware are also important issues.
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