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ABSTRACT

In recent years, the number of patients with colon disease has increased significantly. Colon polyps are the precursor
lesions of colon cancer. If not diagnosed in time, they can easily develop into colon cancer, posing a serious threat
to patients’ lives and health. A colonoscopy is an important means of detecting colon polyps. However, in polyp
imaging, due to the large differences and diverse types of polyps in size, shape, color, etc., traditional detection
methods face the problem of high false positive rates, which creates problems for doctors during the diagnosis
process. In order to improve the accuracy and efficiency of colon polyp detection, this question proposes a network
model suitable for colon polyp detection (PD-YOLO). This method introduces the self-attention mechanism CBAM
(Convolutional Block Attention Module) in the backbone layer based on YOLOv7, allowing the model to adaptively
focus on key information and ignore the unimportant parts. To help the model do a better job of polyp localization
and bounding box regression, add the SPD-Conv (Symmetric Positive Definite Convolution) module to the neck
layer and use deconvolution instead of upsampling. The experimental results indicate that the PD-YOLO algorithm
demonstrates strong robustness in colon polyp detection. Compared to the original YOLOv7, on the Kvasir-SEG
dataset, PD-YOLO has shown an increase of 5.44 percentage points in AP@0.5, showcasing significant advantages
over other mainstream methods.
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1 Introduction

With the rapid advancement of medical technology, colorectal polyps, a common digestive disease,
have shown an increasing incidence and detection rate year by year. According to data from the
American Cancer Society, colorectal cancer (CRC) is one of the most common types of cancer in the
United States and globally. Estimates suggest that 149,500 adults in the United States will receive a
colorectal cancer diagnosis in 2021, with approximately 104,270 new cases of colon cancer and 45,230
new cases of rectal cancer. In 2021, the estimated number of deaths due to colorectal cancer in the
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United States will be over 52,980. Early detection and treatment of colorectal polyps are of enormous
significance in preventing colorectal cancer. Traditional methods of colorectal polyp detection, such
as colonoscopy, while enabling indirect observation of the colon’s internal condition, are limited in
clinical application due to their complexity, time-consuming nature, and dependence on the experience
and technical proficiency of physicians [1], often resulting in missed or false detections. Therefore,
leveraging advanced technological means to enhance the accuracy and efficiency of colorectal polyp
detection has become an important focus of current medical research.

The application of deep learning technology in the field of medical image processing is continu-
ously expanding and demonstrating remarkable achievements. Traditional image processing methods
often struggle to handle complex medical images. However, deep learning, by mimicking the neural
network’s functioning in the human brain, particularly in the detection of colorectal polyps, is capable
of automatically capturing subtle polyp features from a vast collection of colonoscopy images and
precisely filtering out useful feature information [2]. This feature information not only covers intuitive
features such as the shape, size, and color of polyps, but also includes deeper pathological information
[3]. We can construct accurate and reliable detection models based on these features to achieve efficient
and accurate detection, identification, and localization of colorectal polyp images [4,5]. In terms of
advantages, deep learning not only possesses powerful feature extraction capabilities but also exhibits
excellent adaptability and robustness in its models, automatically adjusting to different image qualities
and lighting conditions to ensure the stability and reliability of detection results. Additionally, deep
learning models have the ability to self-learn and optimize, continuously improving and optimizing
models through new data to further enhance detection performance [6]. These advantages enable deep
learning to have broad application prospects in the field of colorectal polyp detection, potentially
providing more precise and efficient technical support for clinical diagnosis and treatment [7].

Current research in colorectal polyp detection still has some drawbacks, such as high false positive
rates, missed detection rates, and poor real-time performance, undoubtedly increasing the diagnostic
burden on doctors [8]. Moreover, under different lighting conditions and noise interferences, models
often lack robustness, making it difficult to meet clinical requirements. Some models also struggle to
achieve real-time detection speeds, impacting the feasibility of clinical applications. To address these
issues, we propose a novel network model called PD-YOLO (an improved You Only Look Once model
for Polyp Detection). By adding a self-attention mechanism called CBAM to help the network focus
on important information and lower the number of false positives, along with a unique structure called
SPD-Conv and upsampling operations, the model becomes more robust in complex situations, making
it more useful. We also optimize the model structure to ensure both accuracy and inference efficiency,
meeting the demand for real-time detection. The PD-YOLO model aims to enhance the automation
of colonoscopy examinations, assisting doctors in rapidly and accurately identifying polyps in real-
time images, reducing doctors’ workload as much as possible, and improving diagnostic accuracy and
efficiency. Integrating PD-YOLO with existing imaging systems can serve as an auxiliary tool that
offers a priori detection, potentially reducing misdiagnosis and missed detection rates, enabling early
polyp detection, lowering the incidence of colorectal cancer, and improving patient survival rates. This
tool can aid doctors in making faster and more informed decisions.

The primary contributions of this paper are listed below:

(1) The backbone section of the original YOLOv7 introduces the CBAM attention mechanism,
enabling the model to concentrate more on significant regions in the image. By combining
channel attention and spatial attention, the model can reduce background noise interference
and improve detection accuracy.
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(2) We add the SPD-Conv module to the Neck layer to improve the model’s feature extraction
capability. This enhances the model’s performance when dealing with low-resolution images,
particularly in detecting small polyps or weak targets.

(3) The neck layer introduces deconvolution as a replacement for the upsampling method, enabling
the model to adaptively adjust the upsampling effect through learning. This enables the
model to capture crucial local information on high-dimensional features, leading to better
performance in detecting small polyp targets.

2 Related Work

In recent years, colorectal polyps, a common gastrointestinal disease, have been increasing in
incidence annually, with a trend towards affecting younger populations, posing a serious threat to
human health. Early detection and accurate diagnosis of colorectal polyps are critical for preventing
the development of colorectal cancer. With the advancement of deep learning technologies, particu-
larly convolutional neural networks (CNNs), which have demonstrated powerful capabilities in image
recognition, classification, and detection, their application in the field of medical image processing
has become increasingly widespread [9]. Deep learning technologies can automatically extract polyp
features by learning from a large number of colonoscopy images. This makes it possible to build
accurate and reliable detection models that can be used in a wide range of situations [10].

In the field of medical image analysis, both domestic and international scholars have made
significant advancements. Thomaz et al. [11] proposed a novel colon polyp detection method using
GANs (Generative Adversarial Networks). This method leverages deep convolutional neural networks
and data augmentation techniques to improve image detection rates and reduce false negatives in
colon polyp datasets. However, challenges such as overfitting, model complexity, and slow processing
speeds exist. The model’s generalization ability is limited when there are significant differences
between the samples and actual data distribution. Chen et al. [12] introduced the CAF-YOLO
framework based on the YOLOv8 architecture. This approach incorporates the ACFM (Attention
and Convolution Fusion Module) module to enhance global and local feature modeling and optimizes
multi-scale feature aggregation through the MSNN (Multi-Scale Neural Network) module. The tests
show that CAF-YOLO is good at finding small, complicated lesions in biomedical images from the
BCCD and LUNA16 datasets. However, the training and tuning process of this model is relatively
complex, requiring additional time and computational resources. In addition to CAF-YOLO, other
researchers have explored different network architectures. Liew et al. [13] suggested a way to find
things that combine a better deep residual convolutional neural network with an ensemble learning
method. This makes the method more sensitive and accurate. However, this method requires more
data and computational resources for ensemble learning training, and it is not suitable for small-
scale datasets. Nogueira-Rodriguez et al. [14] proposed a real-time deep-learning model for colon
polyp detection based on the pre-trained YOLOv3 architecture. This method effectively reduces
false positives through the post-processing steps of object tracking algorithms, showing promising
potential in assisting diagnostic systems. However, the YOLOv3 architecture itself suffers from a lack
of fine-grained loss functions, making it challenging to locate small targets. Handling dense scenes
and occlusion issues limits its performance, resulting in overall network performance degradation. In
their study, Tas et al. [15] suggested using convolutional neural networks to create a super-resolution
method called SRCNN (Super Resolution Convolutional Neural Network) to improve the clarity of
colonoscopy images. The goal was to make automatic colonoscopy diagnosis and polyp detection
better. They also explored the application of CNN (Convolutional Neural Networks) models SSD and
Faster R-CNN for real-time polyp detection and localization. Pre-training with the SRCNN method
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significantly enhanced model accuracy. However, this algorithm employs a cascaded approach, leading
to substantial resource consumption and longer inference times.

In recent years, multi-task interactive networks have garnered significant attention in the field of
medical image detection and analysis. Aadarsh et al. [16] looked at how well U-Net++ [17], FPN
[18], DeepLabV3+ [19], PAN [20], and U-Net [21] worked at processing endoscopic images. They
stressed the importance of finding a balance between accuracy, speed, and resource use. Amin et al. [22]
proposed an enhanced method based on YOLOv5 for early detection of malignant colon polyps.
By augmenting and properly partitioning the Kvasir-SEG dataset, this approach demonstrated high
accuracy in colon polyp detection. However, YOLOv5 exhibits subpar performance in detecting
small and weak targets, particularly prone to missed detections or false alarms when such targets
are densely arranged. Chavarrias-Solano et al. [23] came up with a way to improve the accuracy and
generalizability of lesion detection that uses knowledge distillation and a class-aware loss function, but
it takes more time and computing power to train. Tamhane et al. [24] created an algorithm using Vision
Transformers to find anatomical landmarks in colonoscopy images. This was done to make medical
image processing more automated and accurate. An adaptive gamma correction was used to prepare
the images, Vision Transformers were used to extract features, and a fully connected network classifier
head was used to find important anatomical landmarks. Tummala et al. [25] proposed a combination
of Vision Transformers (ViT) models for brain tumor classification in magnetic resonance imaging
(MRI). This method utilized four standard ViT models that were pre-trained and fine-tuned on
ImageNet for classification. Experimental results indicate that this approach can effectively enhance
the overall accuracy of brain tumor type classification. However, employing the Vision Transformer
structure necessitates training on larger datasets, limiting the model’s generalization capability and
accuracy on smaller datasets. Malik et al. [26] developed a multi-class deep learning model for
diagnosing ulcerative colitis, polyps, and dye-enhanced polyps using wireless capsule endoscopy
images. This was achieved by classifying three different gastrointestinal diseases using a single model,
improving classification accuracy. However, the model’s complexity increased training and inference
times, making it unsuitable for real-time clinical applications. Liu et al. [27] proposed a polyp detection
and localization framework for cross-device colonoscope images. This framework, which uses a
hierarchical unsupervised domain adaptive detection network, improved polyp location prediction
accuracy. However, the construction of the hierarchical unsupervised domain adaptive detection
network requires a longer time. Wuyang et al. [28] proposed a polyp detection and segmentation
method for endoscopic data using HRNet as the base network. By employing an adaptive sample
selection strategy and integrating low-rank modules, they effectively boosted the model’s performance.
This method achieved outstanding results in the EndoCV 2021 challenge and demonstrated excellent
generalization across different datasets. However, HRNet comes with drawbacks such as high compu-
tational resource requirements and sensitivity to initial parameter settings.

In summary, existing polyp detection methods have several shortcomings. In practical applica-
tions, issues such as uneven image brightness and densely packed or partially occluded small polyp
targets often lead to instances of missed detections or false alarms in current models. Additionally,
models struggle to converge when working with smaller datasets, resulting in lower accuracy and poor
generalization capabilities. Moreover, many existing models are complex, requiring large datasets for
training, consuming significant computational resources, and exhibiting slow detection speeds, making
it challenging to meet real-time detection requirements. Finding the best balance between detection
accuracy, model size, accuracy, and processing speed in real-life polyp detection situations is therefore
an important area for research, especially when datasets are limited.
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3 Colorectal Polyp Detection Based on PD-YOLO
3.1 Overall Network Model Design

The YOLO series has always held a landmark position in the field of object detection. YOLOv7
[29] introduced a new real-time object detection architecture aimed at addressing the replacement
of the reparameterization module and dynamic label assignment issues while improving accuracy
through a trainable bag-of-freebies approach. Reparameterization can optimize model performance
by altering the model’s structure or parameters, enhancing accuracy and efficiency. Dynamic label
assignment technology resolves the problem of assigning labels to outputs from different branches
in multi-output layer models. Furthermore, YOLOv7 also incorporates a trainable bag of freebies
approach, a technique that enhances model performance without increasing inference costs, enabling
it to meet the requirements for real-time detection while maintaining high accuracy.

This section describes a novel PD-YOLO network model tailored for colon polyps and establishes
an end-to-end detection architecture. The model, based on YOLOv7, incorporates a self-attention
mechanism called CBAM at the backbone layer to adaptively focus on crucial information while
disregarding less important parts. We add the SPD-Conv module to the neck layer and replace the
upsampling method with deconvolution to improve the model’s precision in polyp localization and
bounding box regression. Fig. 1 illustrates the improved PD-YOLO network model, with the red com-
ponents representing YOLO’s original elements and the darker components signifying discrepancies
between the PD-YOLO network model and the original model. Fig. 2 provides a detailed exposition
of the MCB and SPPCSP module structures. The following sections will offer detailed descriptions of
the three added modules: CBAM, SPD-Conv, and Deconvolution.

Figure 1: Design of the PD-YOLO network model
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Figure 2: Schematic diagram of MCB and SPPCSP module structures

3.2 CBAM Attention Mechanism

The CBAM attention mechanism significantly enhances the performance of convolutional neural
networks by introducing channel and spatial attention. Its core focus lies in adaptively emphasizing key
information within input features, thereby boosting the model’s perceptual capabilities. This module
consists of both channel attention and spatial attention mechanisms. The channel attention module
strengthens feature representation by generating channel weights through global pooling to highlight
relevant channels and suppress irrelevant ones. The spatial attention module focuses on critical regions
within the image, generating spatial weights through pooling operations to prioritize task-relevant
areas. Fig. 3 depicts the overall process.

Figure 3: CBAM structure diagram

The input feature map first goes through the channel attention module of the CBAM, resulting in a
feature map weighted by channel attention. Subsequently, this feature map passes through the spatial
attention module to obtain the final feature map weighted by spatial attention. The mathematical
reasoning process can be described as follows: given an intermediate feature mapping F ∈ RC×H×W

as input, where C represents the number of channels and H and W denote the height and width
dimensions, respectively. The one-dimensional channel attention map and the two-dimensional spatial
attention map of the CBAM are denoted by M ∈ RC×1×1 and MS ∈ R1×H×W , respectively. The overall
process is represented as Eqs. (1) and (2):

F ′ = Mc (F) ⊗ F (1)

F ′′ = Ms (F ′) ⊗ F ′ (2)

In this context, ⊗ denotes element-wise multiplication. The multiplication process diffuses
attention, causing the channel to spread along the spatial dimension. F ′′ denotes the output feature
map. You can embed these two attention modules into different layers of a CNN to enhance feature
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representation. In this study, we replace the first two CBL modules in the backbone of YOLOv7
with two CBAM modules. This substitution aims to strengthen the extraction of global features from
input images, directing the model’s focus towards relevant features of the target objects. The model
can adaptively concentrate on areas of interest, suppress unimportant information, and improve its
robustness by learning the critical features of input samples.

3.3 SPD-Conv Structure Design

YOLOv7, as a cutting-edge one-stage object detection algorithm, excels in many scenarios;
however, it still faces challenges when detecting small objects, especially when dealing with low-
resolution images. To overcome this challenge, SPD-Conv significantly enhances feature represen-
tation capabilities through its unique spatial-to-depth transformation mechanism. This mechanism
enables the model to more accurately capture small object features, thereby improving the overall
detection performance of small objects.

Due to its capability to enhance feature representation and being a versatile building block,
SPD-Conv significantly improves the model’s ability to capture minute target features. Therefore,
combining SPD-Conv with YOLOv7 can notably enhance the model’s robustness. This improvement
lowers the model’s sensitivity to factors such as image quality and occlusion, allowing it to maintain
good detection performance in a variety of complex scenarios. In this study, the module utilizes 2x
downsampling, taking into account the intermediate feature map, which has a size of S × S × C1. The
sub-feature maps are identified as f0,0, f1,0, f0,1 and f1,1, each of which satisfies Eqs. (3) to (6):

f0,0 = X [0 : S : 2, 0 : S : 2] (3)

f1,0 = X [1 : S : 2, 0 : S : 2] (4)

f0,1 = X [0 : S : 2, 1 : S : 2] (5)

f1,1 = X [1 : S : 2, 1 : S : 2] (6)

Each of the sub-feature maps is ( S
2
, S

2
, C1) in size. Concatenating these 4 sub-feature maps along the

channel dimension creates a new feature map X ′, which has a size of ( S
2
, S

2
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in Eq. (7). Let the final output feature map be denoted as X ′′, with an output size of ( S
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mapping, the feature map X ′ goes through a convolutional layer. This makes sure that the mapping
meets the conditions shown in Eq. (7):

X ′ = concat (f0,0, f1,0, f0,1, f1,1) (7)

Fig. 4 shows that this process basically involves a pooling operation and reorganizing features in
the spatial dimension. Next, new representations of these reorganized features are learned through
convolution.

SPD-Conv plays a dual role in the network, enhancing feature fusion and multi-scale feature
extraction. This is achieved by downsampling and reorganizing feature maps, as shown in Fig. 4,
allowing the model to learn more about local and global context information at different scales.
This approach helps establish richer connections between features at different levels, enhancing the
model’s adaptability to object scale variations. Additionally, SPD-Conv is utilized to further refine and
integrate information extracted from features at different scales. Applying SPD-Conv on feature maps
of three different sizes, not only enhances feature diversity, but also promotes feature flow between
scales, which is crucial for accurately detecting objects of various sizes.
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Figure 4: SPD-conv structure diagram

3.4 Deconvolution Upsampling

Upsampling is a crucial operation that progressively restores spatial resolution during the feature
extraction process, aiding the model in capturing detailed information in the image. The YOLOv7
model primarily employs nearest-neighbor interpolation, which involves filling new pixel positions by
directly copying the values of the nearest neighboring pixels. While this method is advantageous in
terms of speed, it can lead to issues such as discontinuities and blocking artifacts in image quality.

Deconvolution is similar to the inverse process of convolution. The forward and backward
computations of a convolutional layer involve multiplication by matrices C and CT , respectively.
In contrast, for deconvolution, the forward and backward computations involve multiplication by
matrices CT and (CT)T . Fig. 5 effectively reverses the forward and backward propagations. For tasks
that need to find things at more than one scale, like finding small polyps in the colon polyp dataset,
nearest-neighbor interpolation might not be the best option. Instead, deconvolution might work better.
This is because deconvolution allows the model to learn to adaptively adjust the upsampling effect,
enabling it to capture more critical local feature information at higher resolutions. This characteristic
is particularly useful when dealing with small targets, accurately restoring and enhancing their feature
representations. This aids the model in achieving more precise predictions during polyp localization
and bounding box regression. Therefore, this study replaces all upsampling parts in the original
network with deconvolution, and subsequent experimental sections confirm the effectiveness of this
approach.

Figure 5: Comparison of convolution and deconvolution
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4 Experimental Design and Results Analysis
4.1 Datasets and Evaluation Metrics

This paper utilizes the open-source Kvasir-SEG dataset and CVC-ColonDB dataset for training
and validation purposes. Kvasir-SEG is a public dataset specifically designed for endoscopic image
segmentation, containing images of various types of polyps and other gastrointestinal diseases. This
dataset offers detailed annotations that help improve the accuracy and robustness of models in polyp
segmentation tasks. CVC-ColonDB is another widely used colonoscopy image dataset, consisting of
images of polyps from colonoscopy examinations. With rich annotation information, this dataset
supports model training and performance evaluation, particularly excelling in polyp detection and
localization. We train and debug all improvements on the Kvasir-SEG dataset, which serves as our
primary dataset. We use the CVC-ColonDB dataset as supplementary data to validate the robustness
of the algorithm. By combining these two datasets, the aim is to enhance the model’s generalization
and accuracy on different types of endoscopic images.

The experimental software environment consisted of Python 3.9.8, PyTorch 1.12.0, and CUDA
11.6, running on hardware featuring an NVIDIA GTX3050Ti LAPTOP graphics card. We conducted
all experiments under the same hyperparameters, using an input size of 640 × 640 and a batch size of
8, and the models reached stability after 150 epochs of training.

The performance evaluation metrics include precision, recall, AP@0.5, AP@0.5:0.95, GFLOPS,
balanced F1-score, parameters, and FPS. Precision represents the ratio of true positive predictions to
all positive predictions made by the model; recall represents the ratio of true positive predictions to all
actual positive instances. AP@0.5 indicates the detection precision of the target at a threshold of 0.5;
AP@0.5:0.95 represents the detection accuracy of the target within the threshold range of 0.5–0.95.
GFLOPS measures algorithm complexity, while the F1-score, also known as the balanced F score,
is the harmonic mean of precision and recall. We use FPS (frames per second) to measure real-time
model performance. Parameters refer to the quantity of model parameters, serving as a measure of
model complexity.

4.2 Ablation Experiment Design

We designed ablation experiments using YOLOv7-tiny as the base network to validate the impact
of SPD-Conv, CBAM, and deconvolution on the network performance of the improved method.
The Kvasir-SEG ablation experiment dataset was chosen for generalization, and the SGD (stochastic
gradient descent) optimizer was used throughout the whole process. All experiments were run with the
same hyperparameters.

Table 1 shows a significant improvement in the model’s performance with the addition of different
network components. We can observe the impact of different combinations on the model’s perfor-
mance in the ablation experiments where we added SPD-Conv, CBAM, and deconvolution modules
to YOLOv7. The baseline performance of YOLOv7 was a precision of 0.9068 and a recall of 0.8837,
providing a foundation for the subsequent inclusion of custom modules. After adding SPD-Conv, the
model’s precision increased to 0.9367, and recall increased to 0.9147. This suggests that the SPD-Conv
module significantly improved the model’s detection capabilities while adding parameters, particularly
in enhancing the recognition of specific targets in complex colorectal polyp detection scenarios. The
model did not converge when adding the CBAM module alone, which is why Table 1 does not display
this row of data. This could be due to the model not effectively adjusting parameters or learning useful
features after the introduction of CBAM, leading to no performance improvement. After adding the
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deconvolution module, the model achieved a precision of 0.9211 and a recall of 0.8989. This suggests
that deconvolution improved detail recovery, but it did not reach the effectiveness of SPD-Conv.

Table 1: Ablation experiment test results

SPD-Conv CBAM Deconvolution Precision Recall AP@0.5 AP@0.5:0.95 F1-score GFLOPS Parameters/106

0.9068 0.8837 0.8934 0.6676 0.85 13.2 6.0
� 0.9367 0.9147 0.9319 0.6954 0.89 13.4 11.9

� 0.9211 0.8989 0.9167 0.6953 0.87 13.4 6.0
� � 0.9217 0.8986 0.9198 0.6881 0.87 13.4 6.0

� � 0.9336 0.9380 0.9386 0.7005 0.89 13.4 11.9
� � 0.9491 0.9223 0.9274 0.6775 0.89 13.4 11.9
� � � 0.9474 0.9380 0.9478 0.7065 0.90 13.4 11.9

When using multiple combinations, the combination of SPD-Conv and Deconvolution exhibited
outstanding model performance, with a precision of 0.9491 and a recall of 0.9223. This indicates that
the combination of the deconvolution module and SPD-Conv significantly improves object detection
accuracy by enhancing image detail recovery. Moreover, the model achieved a precision of 0.9474,
a recall of 0.9380, an AP@0.5 of 0.9478, an AP@0.5:0.95 of 0.7065, and an F1-score of 0.90 when
using all three modules (SPD-Conv, CBAM, and deconvolution) simultaneously. This combination
demonstrated excellent performance. Despite CBAM not converging, the combination of SPD-Conv
and deconvolution showed a significant performance boost. This enhancement did not introduce
a notable increase in computational complexity, further emphasizing the cost-effectiveness of this
combination.

In Fig. 6, from left to right, (a) displays the original image input, (b) YOLOv7, (c) YOLOv7+SPD-
Conv, (d) YOLOv7+SPD-Conv+CBAM, (e) YOLOv7+SPD-Conv+Deconvolution, and (f) YOLOv7
+SPD-Conv+CBAM+Deconvolution forward inference diagrams. Starting from the original
YOLOv7 model, we progressively introduce improvements like SPD-Conv, CBAM, and deconvolution
to significantly enhance the model’s performance during the polyp detection inference process. Firstly,
SPD-Conv enhances the model to learn more about local and global contextual information at
different scales, aiding in establishing richer connections between features at different levels, enabling
the model to perform better in detecting objects of different scales, especially when detecting small
targets and processing low-resolution images. As a result, the inclusion of the CBAM attention
mechanism allows the model to focus more on important regions in the image. By combining
channel attention and spatial attention, the model can reduce background noise interference,
further enhancing detection accuracy. Lastly, the introduction of deconvolution allows the model to
generate higher-resolution feature maps. By restoring more detailed information through upsampling
operations, the model achieves better results in multi-scale object detection. Observing Fig. 6, we
see a significant improvement in the model’s detection performance as we gradually introduce each
module. This further indicates that the SPD-Conv, CBAM, and deconvolution modules play crucial
roles in enhancing model performance, particularly in handling small targets and details. Although
occasional decreases in image accuracy occur, as seen in the last row, this might be due to potential
information redundancy or conflicts arising from feature interactions between modules. For instance,
CBAM emphasizes important features, while deconvolution may introduce artifacts or interference,
compromising the model’s accuracy in target recognition. Nevertheless, the overall accuracy remains
superior to the baseline model.
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Figure 6: Forward inference results

4.3 Comparative Experiment Design

We selected YOLOv3 [30], YOLOv5 [31], the improved PP-YOLOE [32] based on the YOLO
series, YOLOR [33], the non-YOLO series RT-DETR [34], Rtmdet [35], SSD [36], as well as the newly
introduced YOLOv8 [37], the CAF-YOLO model, and the native YOLOv7 algorithm as comparative
algorithms to evaluate the performance of the colon polyp detection method proposed in this paper.
Table 2 presents the comparison results of the proposed method with other comparative algorithms
on the Kvasir-SEG dataset.

It’s clear from Table 2 that PD-YOLO does much better in the comparison tests on the Kvasir-
SEG dataset, with a precision of 0.9474, a recall of 0.9380, and an AP@0.5 value as high as 0.9478
(which is 5.44 percentage points higher than the original YOLOv7’s AP@0.5 value of 0.8934). These
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metrics surpass those of other models, demonstrating PD-YOLO’s highly effective capability in target
identification and the reduction of false positives in detection tasks. In comparison, RT-DETR-
Resnet34 and RT-DETR-Resnet18 perform well, but their precision and recall are lower than PD-
YOLO. Although YOLOv3-tiny excels in processing speed with an FPS of 91.7, its precision (0.8338)
and recall are relatively lower, indicating shortcomings in target detection capabilities. Overall, PD-
YOLO stands out with its dual advantages in precision and recall. Additionally, PD-YOLO also
performs well in the F1-score, reflecting a good balance between precision and recall, making it
suitable for practical scenarios in polyp detection tasks. According to the results, YOLOv8 still
lags behind PD-YOLO in performance, and while CAF-YOLO has some recall capability, its lower
precision limits its effectiveness in practical applications.

Table 2: Comparative experiment results (Kvasir-SEG dataset)

Model Precision Recall AP@0.5 AP@0.5:0.95 F1-score GFLOPS Parameters/106 FPS

YOLOv3-tiny 0.8338 0.8295 0.8344 0.5198 0.78 13.0 8.7 91.7
YOLOv3 0.9103 0.8605 0.8902 0.6480 0.84 155.4 61.5 14.7
YOLOv5-s 0.9055 0.8837 0.8777 0.6346 0.84 16.0 7.0 60.2
PP-YOLOE-s 0.9107 0.8605 0.8677 0.6039 0.84 13.9 8.3 44.4
YOLOR-CSP 0.9186 0.6822 0.6691 0.4697 0.75 121.0 52.9 16.3
RT-DETR-Resnet18 0.9251 0.8372 0.8942 0.7038 0.85 58.3 20.1 21.6
RT-DETR-Resnet34 0.9324 0.8818 0.8859 0.7102 0.85 88.6 30.1 17.3
RT-DETR-Resnet50 0.9100 0.8600 0.8830 0.6866 0.86 134.4 42.8 11.3
Rtmdet 0.9082 0.8750 0.8990 0.6530 0.88 8.1 4.8 17.8
SSD-mobilenetV2 0.8191 0.8148 0.8250 0.5420 0.81 5.4 3.2 38.9
YOLOv8-n 0.9284 0.8313 0.8608 0.6670 0.81 8.2 3.0 73.5
YOLOv8-s 0.9025 0.8742 0.8832 0.6964 0.83 28.8 11.1 48.8
CAF-YOLO 0.9074 0.8837 0.9006 0.6799 0.84 7.1 32.7 66.2
YOLOv7 0.9068 0.8837 0.8934 0.6676 0.85 13.2 6.0 44.2
PD-YOLO 0.9474 0.9380 0.9478 0.7065 0.90 13.4 11.9 45.0

In Table 3, PD-YOLO does much better in the comparison tests on the CVC-ColonDB dataset,
with a precision of 0.9917, recall of 0.8590, AP@0.5 as high as 0.8828, and an F1-score of 0.90. These
metrics indicate that PD-YOLO can effectively identify targets and reduce false positives in object
detection tasks, demonstrating its robust capabilities in practical applications. The limited sample size
hindered the convergence of Rtmdet, YOLOR-CSP, and SSD, resulting in their exclusion from Table 2.
In comparison, while YOLOv5-s and YOLOv7 also perform well with precisions of 0.9759 and 0.9799,
respectively, and recalls close to PD-YOLO, they still slightly fall short in overall performance. RT-
DETR-Resnet34 and RT-DETR-Resnet18 also perform well with precisions above 0.9862, indicating
their effectiveness in handling complex objects. However, their recall rates are slightly lower and do not
surpass the overall performance of PD-YOLO, especially in medical image analysis scenarios requiring
high recall rates, where PD-YOLO’s high recall rate makes it more attractive in practical applications.
Although PP-YOLOE approaches PD-YOLO in precision (0.9900), its recall rate is significantly
lower (0.7651), impacting overall detection capabilities and suggesting potential issues with missed
detections when dealing with certain objects. This difference underscores PD-YOLO’s advantages in
overall performance and adaptability to application scenarios. Other models, such as YOLOv8-n and
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YOLOv8-s, also offer excellent performance with precisions above 0.98, but they do not fully match
PD-YOLO’s recall rate and F1-score. Additionally, CAF-YOLO shows relatively weaker performance
with a precision of only 0.8008, and while the recall rate is 0.8389, the overall AP and F1-score are
lower than other models.

Table 3: Comparative experiment results (CVC-ColonDB dataset)

Model Precision Recall AP@0.5 AP@0.5:0.95 F1-score GFLOPS Parameters/106 FPS

YOLOv3-tiny 0.9691 0.7718 0.8108 0.5465 0.83 13.0 8.7 92.6
YOLOv3 0.9672 0.8179 0.8307 0.6108 0.87 155.4 61.5 15.2
YOLOv5-s 0.9759 0.8456 0.8633 0.6219 0.89 16.0 7.0 66.2
PP-YOLOE-s 0.9900 0.7651 0.8128 0.5670 0.83 13.9 61.5 48.3
RT-DETR-Resnet18 0.9862 0.8171 0.8523 0.6417 0.88 58.3 20.1 21.9
RT-DETR-Resnet34 0.9889 0.8255 0.8551 0.6639 0.88 88.6 30.1 16.9
RT-DETR-Resnet50 0.9833 0.8342 0.8411 0.6504 0.88 134.4 42.8 11.8
YOLOv8-n 0.9822 0.8044 0.8487 0.6238 0.87 8.2 3.0 77.5
YOLOv8-s 0.9818 0.8054 0.8401 0.6196 0.85 28.8 11.1 50.3
CAF-YOLO 0.8008 0.8389 0.7085 0.4535 0.71 7.1 32.7 75.2
YOLOv7 0.9799 0.8456 0.8542 0.6271 0.84 13.2 6.0 50.5
PD-YOLO 0.9917 0.8590 0.8828 0.6394 0.90 13.4 11.9 45.2

Overall, PD-YOLO demonstrates outstanding object detection capabilities on both the Kvasir-
SEG and CVC-ColonDB datasets. On the Kvasir-SEG dataset, PD-YOLO achieves a precision
of 0.9474, a recall of 0.9380, AP@0.5 as high as 0.9478, and an F1-score of 0.90. Compared to
other models, PD-YOLO leads in several key metrics. On the CVC-ColonDB dataset, PD-YOLO’s
performance is even more remarkable, with a precision reaching 0.9917, a recall of 0.8590, AP@0.5
reaching 0.8828, and an F1-score of 0.90. These metrics indicate that PD-YOLO not only effectively
reduces false positives but also maintains a high level of target recognition in complex medical image
environments. Compared to similar models, PD-YOLO exhibits clear advantages in precision and
detection capabilities. Furthermore, PD-YOLO outperforms other models in terms of robustness,
allowing it to adapt to a variety of endoscopic image features.

Table 4 displays the model’s performance after training on the Kvasir-SEG dataset and testing
on the CVC-ColonDB dataset. It demonstrates excellent performance with a precision of 0.769,
a recall of 0.738, and an F1-score of 0.75. This result indicates that the model exhibits strong
generalization abilities in target recognition, effectively adapting to different types of medical image
data. Particularly,when trained on the Kvasir-SEG dataset, the model can leverage its rich feature
information to maintain high recognition accuracy and overall performance. However, when trained
on the CVC-ColonDB dataset, the model’s performance significantly declines, with a precision of
0.688, a recall of 0.496, and an F1-score of 0.58. This decrease in performance is due to the feature
differences between the datasets, leading to the model’s poor performance on new datasets, especially
given the limited number of samples in the CVC-ColonDB dataset. When trained on Kvasir-SEG, the
model performs better in terms of recall, whereas training on CVC-ColonDB leads to a significant
increase in precision but a decrease in recall. Overall, the model exhibits balanced performance on
different datasets, demonstrating excellent adaptability and generalization capabilities.
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Table 4: Cross-validation results

TrainData\TestData Precision Recall AP@0.5 F1-score

Kvasir-SEG\CVC-ColonDB 0.769 0.738 0.739 0.75
CVC-ColonDB\Kvasir-SEG 0.688 0.496 0.506 0.58

5 Conclusion

The increasing number of patients with colorectal diseases highlights the critical need for accurate
detection of colorectal polyps as a key preventive measure against colorectal cancer. However, existing
methods frequently face challenges, such as high false positives, due to significant imaging differences
and diverse types of polyps. To get around these problems, this study introduces the PD-YOLO model,
which has a self-attention mechanism called CBAM in the backbone layer to focus on important polyp
features. It also has the SPD-Conv module in the neck layer to get information about multiple scales of
features, and it uses deconvolution upsampling for better localization and regression. The experiment
demonstrates that PD-YOLO performs excellently in colon polyp detection, with an average precision
increase of 5.44 percentage points in AP@0.5 compared to YOLOv7. It shows significant advantages
over other mainstream methods, offering a new and effective approach for automated colon polyp
detection.

While the PD-YOLO model shows promise, there is still room for improvement. For example,
when dealing with more complex or rare types of colorectal polyps, integrating other medical image
analysis techniques, such as 3D reconstruction, could help capture comprehensive polyp information
for more accurate diagnostic support. Future research will explore the integration of different deep
learning architectures, including emerging technologies like visual transformers, to enhance detection
accuracy and robustness. It is also important to use bigger and more varied training datasets to make
the model more flexible in different settings, look into real-time detection applications to meet clinical
or industrial needs, and think about how to combine text or audio data with visual data for multimodal
fusion. Research in cross-modal fusion will further enhance the model’s contextual understanding and
detection accuracy.
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