
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.058885

ARTICLE

An Iterated Greedy Algorithm with Memory and Learning Mechanisms for
the Distributed Permutation Flow Shop Scheduling Problem

Binhui Wang and Hongfeng Wang*

College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China
*Corresponding Author: Hongfeng Wang. Email: hfwang@mail.neu.edu.cn
Received: 23 September 2024 Accepted: 25 November 2024 Published: 03 January 2025

ABSTRACT

The distributed permutation flow shop scheduling problem (DPFSP) has received increasing attention in recent
years. The iterated greedy algorithm (IGA) serves as a powerful optimizer for addressing such a problem because
of its straightforward, single-solution evolution framework. However, a potential draw-back of IGA is the lack
of utilization of historical information, which could lead to an imbalance between exploration and exploitation,
especially in large-scale DPFSPs. As a consequence, this paper develops an IGA with memory and learning
mechanisms (MLIGA) to efficiently solve the DPFSP targeted at the mini-mal makespan. In MLIGA, we incorporate
a memory mechanism to make a more informed selection of the initial solution at each stage of the search, by
extending, reconstructing, and reinforcing the information from previous solutions. In addition, we design a two-
layer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the
operations of the memory mechanism. Meanwhile, to ensure that the experience generated by each perturbation
operator is fully learned and to reduce the prior parameters of MLIGA, a probability curve-based acceptance
criterion is proposed by combining a cube root function with custom rules. At last, a discrete adaptive learning
rate is employed to enhance the stability of the memory and learning mechanisms. Complete ablation experiments
are utilized to verify the effectiveness of the memory mechanism, and the results show that this mechanism is
capable of improving the performance of IGA to a large extent. Furthermore, through comparative experiments
involving MLIGA and five state-of-the-art algorithms on 720 benchmarks, we have discovered that MLI-GA
demonstrates significant potential for solving large-scale DPFSPs. This indicates that MLIGA is well-suited for
real-world distributed flow shop scheduling.

KEYWORDS
Distributed permutation flow shop scheduling; makespan; iterated greedy algorithm; memory mechanism;
cooperative reinforcement learning

1 Introduction

Distributed manufacturing is emerging as a dominant model in various industrial scenarios
such as steelmaking-continuous casting and furniture assembly. It has numerous advantages over
traditional manufacturing, such as reducing transportation costs, accelerating response to demand,
mitigating production risks, and enhancing resilience [1]. In recent years, distributed permutation

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.058885
https://www.techscience.com/doi/10.32604/cmc.2024.058885
mailto:hfwang@mail.neu.edu.cn

372 CMC, 2025, vol.82, no.1

flow shop scheduling problem (DPFSP) has been one of the fastest growing topics toward distributed
manufacturing [2,3]. Compared to the permutation flow shop scheduling problem (PFSP), DPFSP
requires additional consideration of jobs’ allocation across different factories. Once the assignment is
determined, there is a PFSP within each factory.

Since the DPFSP is more complex than the PFSP, some effective designs on the PFSP may not be
applicable to directly solve the DPFSP. For this reason, a number of meta-heuristic algorithms have
been customized based on the characteristics of the DPFSP, e.g., iterated greedy algorithm (IGA)
[4–6], scatter search [7], memetic algorithm [8,9], and artificial bee colony [10]. It can be found that
IGA is a common optimizer to tackle the DPFSP. The main reason is that the single-solution evolution
framework of IGA is more simple and effective than population-based evolutionary algorithms in
solving DPFSPs. Meanwhile, IGA also has some limitations because it focuses more on the current
best or better solutions, while it ignores useful historical information.

Furthermore, the combination of reinforcement learning (RL) and meta-heuristics is also a hot
research topic [7]. Depending on the characteristics of scheduling problems, some model-free RL
approaches, such as Q-learning and Sarsa, can be used to help meta-heuristics choose operators
[11,12], local search strategies [13–15], heuristics [16] or other decisions [17] without increasing the
algorithm’s complexity. To further improve the performance of IGA and approximate the solution’s
optimality of the DPFSP, this paper develops an IGA with memory and learning mechanisms
(MLIGA). The specific contributions are summarized below:

(1) A memory mechanism is introduced for IGA to make full use of the information from
historical solutions. By mimicking human memory patterns, this mechanism not only collects and
expands historical solutions, but also reconstructs and reinforces them to provide more appropriate
initial solutions for each iteration of the IGA according to the historical information.

(2) A two-layer cooperative RL mechanism is designed to adaptively determine the critical
parameters of the IGA and the operations of the memory mechanism.

(3) A probability curve based acceptance criterion is employed to ensure that the experience
generated by each perturbation operator is fully learned and reduce the prior parameters of the
algorithm. This criterion, which combines a cube root function with custom rules, provides a dynamic
balance between exploration and exploitation in our algorithm.

(4) Inspired by linear warm-up techniques, a discrete adaptive learning rate is proposed to enhance
the stability of the memory and learning mechanisms.

The rest of this paper is organized below. Section 2 reviews the related literature and summarizes
some research gaps, followed by the developed MLIGA in Section 3. To evaluate the performance of
MLIGA and the effectiveness of some internal designs, Section 4 conducts a series of comparative
experiments and Section 5 analyzes the results in detail. Finally, Section 6 presents conclusions and
future research directions.

2 Literature Review

In this section, we investigate the related works to emphasize the research gap between previous
studies and this paper. A detailed and intuitive comparison can be found in Table S1 in the
Supplementary Document. Since DPFSP is a classic standard problem, we will no longer provide a
mathematical model here, but the model is available in [2].

CMC, 2025, vol.82, no.1 373

2.1 DPFSP-Related Research

Since DPFSP was first proposed by [2], the related literature has been progressively enriched, lead-
ing to the proposal of a variety of meta-heuristic algorithms in succession. For example, Lin et al. [18]
proposed a modified IGA. Naderi et al. [19] employed a scatter search algorithm with some advanced
techniques. Zhao et al. designed a Q-learning enhanced fruit fly optimization algorithm [20].

Apart from those mentioned above, most of the research has focused on variants of the DPFSP.
Lin et al. [21] proposed a backtracking search hyper-heuristic algorithm to solve the distributed
assembly permutation flow shop scheduling problem. Lu et al. [22] addressed an energy-efficient
scheduling of distributed flow shop with heterogenous factories and designed a hybrid multiobjective
optimization algorithm to optimize both makespan and total energy consumption. Fernandez-
Viagas et al. [23] dealt with the DPFSP for minimizing the total flowtime. Lu et al. [24] proposed a
knowledge-based multiobjective memetic optimization algorithm to investigate a sustainable DPFSP
with a non-identical factory with objectives of minimizing makespan, negative social impact, and total
energy consumption. Guo et al. [25] employed an effective fruit fly optimization algorithm for the
DPFSP with the optimization goal of minimizing the total flowtime. Lu et al. [26] designed a Pareto-
based collaborative multiobjective optimization algorithm to study an energy-efficient scheduling of
DPFSP with limited buffers with the optimization of makespan and total energy consumption. There
has been scant literature on the standard DPFSP in the past five years. In this paper, we propose a more
efficient algorithm for the standard DPFSP to explore better solutions on the benchmarks, which can
also be easily extended to deal with variants of the DPFSP.

2.2 IGA-Related Research

IGA has been widely used in addressing DPFSPs due to its simple and effective single-solution
evolution framework [4–6]. Despite previous efforts, it also has some limitations. On the one hand,
it usually fails to utilize valuable information from historical solutions (i.e., memories), which may
cause an imbalance between exploration and exploitation. Therefore, we design a memory mecha-
nism to deal with the limitation. By mimicking human memory patterns, this mechanism not only
collects and expands historical solutions, but also reconstructs and reinforces them to provide more
appropriate initial solutions for each iteration of the IGA according to the historical information. This
comprehensive approach to leveraging historical solutions is not commonly found in previous studies.

On the other hand, the majority of relevant literature uses the simulated annealing based
acceptance criterion in the proposed IGA [27]. A potential drawback of this acceptance criterion is to
introduce an extra parameter that needs to be tuned beforehand [4–6]. To improve such a deficiency,
we propose a probability curve based acceptance criterion by combining the cube root function with
customized rules for IGA, which does not introduce an additional parameter.

2.3 Application of RL in DPFSPs

Due to the superior performance of RL on decision-making problems [28], combining meta-
heuristic algorithms with RL has become a hot topic in the field of scheduling, in which the widely
used RL approach is Q-learning. For instance, Zhao et al. [11] utilized the Q-learning algorithm to
choose the appropriate perturbation operators during iterations. Chen et al. [29] dynamically selected
the scheme of task splitting as action by employing Q-learning algorithm. Zhao et al. [16] employed the
Q-learning algorithm to choose an appropriate low-level heuristic. Jia et al. [17] adaptively adjusted the
size of each subpopulation in the memetic algorithm via Q-learning. Yu et al. [30] embedded Q-learning
algorithm into meta-heuristics to select the premium local search strategy during iterations.

374 CMC, 2025, vol.82, no.1

Different from the above studies, Zhao et al. [14] employed two independent Q-learning algorithms
to control two subpopulations in parallel. A major disadvantage is the lack of communication and
cooperation between learning agents. In our work, we propose a two-layer cooperative reinforcement
learning mechanism that intelligently determines key parameters of the IGA and controls operations
of the memory mechanism. The learning mechanism, which features direct communication and
cooperation between layers, is a novel concept not yet explored in the literature. Furthermore, inspired
by linear warm-up techniques, we incorporate a discrete adaptive learning rate to enhance the stability
of the learning mechanisms, which is another innovative aspect of our work.

3 The Proposed Approach

As discussed above, we propose a novel algorithm named MLIGA to solve the DPFSP aimed at
minimizing makespan. Later in this work, Cmax as a convenient notation is used to denote the makespan
of a solution. In this section, the framework of MLIGA is first presented, followed by the specific
designs regarding IGA, memory and learning mechanisms.

3.1 The Framework of MLIGA

As shown in Fig. 1, MLIGA starts with an initial solution using NEH2_en and LocalSearchIG [5].
Subsequently, the solution first passes through an episode, whose size E is determined by the AcceptIG,
which is the probability curve based acceptance criterion. An episode consists of three basic elements
of IGA (i.e., perturbation, local search and acceptance) and the brainstrom, in which the solutions in
OM will be extened by using swap operators and then stored in NM. After an episode, the first layer
of RL, i.e., RLIG, will be used to learn the experiences from the episode, to control some parameters,
and to pass information to the second layer of RL. And then, OM will be updated by MemoryUpdate
for next iteration. After that, the local/global solutions will be updated by using AcceptMemroy, which
is tailored to the framework of MLIGA. At last, the second layer of RL, i.e., RLMemory, is employed
just like the first layer of RL. The whole process is repeated until the termination criterion is met. The
detail procedure of MLIGA is described in Algorithm 1.

Figure 1: The framework of the proposed MLIGA

CMC, 2025, vol.82, no.1 375

Algorithm 1: Pseudo code of the proposed MLIGA
Input: dlist // Defined in Table 1
Output: π ∗ // Best solution found
1 π ← LocalSearchIG (Initialization()) // Ref Section 3.2
2 π ∗ ← π , OM ← π ∗ // Record the best solution and initialize OM
3 Initialize the parameters of RLIG and RLM

4 While terminationCriterion do
5 Cprev ← Cmax (π), C∗

prev ← Cmax (π ∗), C ← Cprev, C∗ ← C∗
prev, NM ← ∅, E ← 0, Idx ← 1

6 Repeat // Start of an episode
7 π ′ ← LocalSearchIG (perturbation (π)) // Basic IGA elements (Ref Section 3.2)
8 OM ← OM ∪ π ′, E ← E + 1 // Update OM and E
9 NM ← brainstorm // Extending memories using swap operators (Ref Section 3.3.1)
10 π , π ∗, C, C∗, Idx ← AcceptIG // Probability curve based acceptance criterion (Ref
Section 3.2)
11 Until the episode is terminated by AcceptIG // End of an episode
12 α, ε, γ , QIG, sIG, dIG, sc ← RLIG // First layer of RL (Ref Section 3.4.1)
13 Cm ← C∗, OM ← MemoryUpdate // Record C∗, reconstruct and reinforce OM (Ref
Section 3.3.2)
14 π , π ∗, C∗ ← AcceptMemory // Ref Section 3.3.3
15 QM , sM , dM , sc ← RLMemory // Second layer of RL (Ref Section 3.4.2)
16 End While

3.2 Design of the IGA

Apart from the acceptance, other elements of IGA have not been specifically designed and the
details can be found in the Supplementary Document or related literature. First, for DPFSP, we adopt
a widely-used solution representation proposed by [2], consisting of a set of F lists, each of which is
a sequence of jobs processed within a factory. As for the initialization procedure, it comprises two
steps: 1) First, we utilize the NEH2_en [5] to generate the initial solution; 2) Second, similar to other
IGAs, we apply a local search to refine the initial solution just obtained. The perturbation consists of
two parts: destruction and construction. We adopt the destruction employed by [5] and the construction
proposed by [18]. The local search employed in IGA, denoted as LocalSearchIG, is the LS3 proposed
by [5].

As illustrated in Fig. 1, each perturbation operator dIG is given an episode of size E to help
solutions escape from the local optima and to learn sufficient and efficient experience for RLIG. When
each perturbation operator acts only once (i.e., E = 1), it resembles the basic IGA framework.
However, in this scenario, the learned experience in RLIG will exhibit significant bias, and handling
memories becomes challenging. When each perturbation operator acts for a fixed number of iterations
(i.e., E > 1), there is a trade-off: if the operator fails to yield improvements, the additional iterations
can lead to wastage of computational resources; Conversely, if it consistently enhances solutions,
insufficient iterations can limit its performance. Hence, determining the optimal E-value in advance
is difficult. It is a good choice to adaptively adjust the E-values based on the performance of the
operators.

376 CMC, 2025, vol.82, no.1

Following the above analysis, we design a probability curve based acceptance criterion, i.e.,
AcceptIG. The cube root function is chosen as the probability generating function. Based on the
characteristic of the problem, the formula of the probability curve is defined as (1).

cbrt (x) =
{

3
√

x, 0 ≤ x < 1
1, x ≥ 1 (1)

when x = 0, cbrt (x) is 0, indicating that accepting worse solutions is not allowed; when x ≥ 1, cbrt (x)

is 1, signifying that the worse solutions must be accepted. The acceptance probability P is defined as
P = cbrt (s∗ · Idx), where s∗ denotes the step-size, and Idx is a variable that records the number of times
inferior solutions are not accepted in an episode, and its initial value is set 1 before an episode starts.
A smaller (larger) s∗ leads to a smoother (more aggressive) increase in P, but results in larger (smaller)
average sizes of the episodes. According to the primary experiments, we set s∗ to 0.25.

Additionally, the design of AcceptIG has the five characteristics: 1) As long as no worse solutions
are accepted, P increases until it is 1. 2) After the first acceptance of an inferior solution, the episode is
not terminated as long as there are local improvements. 3) After the second acceptance, the episode is
not terminated only if global improvements exist. 4) Global improvements allow AcceptIG to be partly
reset to the original state of the episode, but if worse solutions have already been accepted, Ecou is set
to the state of the first acceptance. 5) Neither local nor global improvements can reset the P.

The detailed procedure of AcceptIG can be seen from Algorithm S3 in the Supplementary Docu-
ment. Although both AcceptIG and traditional simulated annealing based acceptance criteria are able
to accept inferior solutions, the former has two advantages over the latter in our problem: 1) It can
fully utilize the potential of the operator dIG and enhance the quality of learning in RLIG. 2) There are
no parameters to be determined in advance.

3.3 Memory Mechanism

The memory mechanism includes three main elements: brainstorm, MemoryUpdate and
AcceptMemory. The brainstorm extends memories simply, while MemoryUpdate reconstructs and
reinforces memories. Finally, the local/global solutions are updated by AcceptMemory. In this section,
they will be introduced in turn. It is worth mentioning that memories are the solutions in our work.

3.3.1 Extension of Memories

As shown in Fig. 1, in each episode, every solution obtained after LocalSearchIG is added into the
OM. Subsequently, memories in NM are extended using brainstorm, which is detailed in Algorithm 2.
To adapt the memory mechanism to different instances, each expansion size of NM is determined by
the instance characteristics (n×m, n and m represent the number of the jobs and machines). Moreover,
solutions in OM undergo extension using the swap operator. To prevent stagnation in local optima,
the binary tournament strategy is employed here to select better solutions from the OM.

Algorithm 2: Pseudo code of brainstorm (.)
Input: OM, NM // Original memory set, New memory pool
Output: NM
1 For 1: int (n × m/2) do // critical factories: factories with the largest Cmax

2 Randomly select two better solutions π
′
1 and π

′
2 from OM // swap operator: exchange

two jobs
(Continued)

CMC, 2025, vol.82, no.1 377

Algorithm 2 (continued)
3 Perform a swap operator on each of the critical factories in π

′
1

4 Perform swap operators between each critical factory and another non-critical factory in
π

′
2

5 End For

3.3.2 Reconstruction and Reinforcement of Memories

Following RLIG, OM is reconstructed and reinforced by MemoryUpdate, which is illustrated in
Algorithm 3. In this process, Gate, decided by dM , determines whether to forget the memories from
the original OM. After the preservation of the elite solution(s) in OM (if any) and NM, the remaining
memories in the new OM are supplemented from TM through the binary tournament strategy. To
maintain diversity in OM, Cmax of the supplemented solutions differs from that of the preserved elite
solution(s).

Algorithm 3: Pseudo code of MemoryUpdate (.)
Input: OM, NM, E, dlist, dIG, dM , sc // dlist, dIG, dM , sc are defined in Table 1
Output: OM // Reconstructed and reinforced OM
1 OM ← sort (OM), NM ← sort (NM) // Arrange solutions in descending order based on the
fitness
2 lenOM ← len (OM), len (NM) ← len (NM) // Get the number of solutions in OM and NM,
respectively
3 lennewOM ← min{int (n × m/12) , lenOM} // Initialize the number of solutions in the new OM

4 NM ← NM[: lenNM/E] // lenNM/E is the number of solutions retained in NM
5 If Gate then // Elitist preservation strategy, Gate is True if dM < 2 and False otherwise
6 OM ← OM [0] ∪ NM [0], TM ← OM [1 :] ∪ NM [1 :]
7 Else
8 OM ← NM [1 :], TM ← NM [1 :] // Forget mechanism
9 End If
10 While len (OM) < lennewOM do // Supplement the new OM
11 Randomly select a better solution π′ from TM
12 If Cmax (π′) in COM

max then // COM
max is a Cmax list of all solution(s) in the OM

13 OM ← OM ∪ π′

14 End If
15 End While
16 OM ← sort (OM), sc ← ((sc − 1) % (lennewOM − 1)) + 1 // Sort OM and keep sc valid
17 OM [0&sc] ← (index (dIG) + 1) × mixLS (OM [0&sc] , dM%2, dlist) // Run index (dIG) +
1 times
18 OM ← sort (OM)

The aforementioned treatments are insufficient for the memory mechanism—not only should
memories be collected, extended, and reconstructed, but they should also be reinforced. Therefore,
considering the limited computational resources and the balance between exploration and exploita-
tion, only two solutions OM [0] and OM [sc] are reinforced. OM [0] represents the best one, while
OM [sc] denotes the worse one (the larger sc is, the worse OM [sc] is), where sc, decided by both RLIG

and RLMemory (see Section 3.4), ranges from 1 to lennewOM − 1. This reinforcement is achieved through

378 CMC, 2025, vol.82, no.1

using different numbers of mixLS. The number is calculated as index (dIG) + 1, where index (dIG) is the
index of dIG in dlist (defined in Table 1). A large (small) dIG indicates that IGA requires a large (small)
perturbation, thus memories should be given a large (small) degree of local search. In mixLS, flag is
first decided by dM (flag ← dM%2) to employ insert or swap to improve solutions. After that, only the
factories involved undergo LS1 [2]. Additionally, each call of mixLS extracts only int(n/len(d_{list})
jobs. The pseudo code of mixLS is presented in Algorithm S4 in the Supplementary Document.

Table 1: Information about the parameters of the learning mechanism

Parameter Information

sc ∈ N+ Index of another solution in Memoryupdate
αmax ∈ R+, α′ ∈ R+ Learning rate of RLMemory and maximum of RLIG

α ∈ R+ Learning rate of RLIG and maximum of RLMemory

ε ∈ R+, β ∈ R+ Parameters of epsilon-greedy and epsilon-decay
γ ∈ R+ Discount factor
η ∈ R+ Local/global improvement weight of RLIG

dlist, mlist Set of possible actions of RLIG and RLMemory

SIG, SM Set of states of RLIG and RLMemory

dIG ∈ dlist, dM ∈ mlist Action of RLIG and RLMemory

sIG ∈ SIG, sM ∈ SM State of RLIG and RLM

QIG ∈ R|SIG|×|dlist|, QM ∈ R|SM|×|mlist| Q-table of RLIG and RLMemory

3.3.3 Update of Solutions in the Memory Mechanism

After OM is updated, the local/global solutions (π and π∗) are updated using AcceptMemory.
In preliminary experiments, we discovered that the design of the acceptance criterion significantly
influences the performance of IGA by affecting the starting solution of the next episode. Hence,
it needs to be carefully designed. Given the way OM is updated in MemoryUpdate, the design of
AcceptMemory is guided by two principles: 1) Only if the best solution in OM outperforms π∗, π and π∗

are updated simultaneously. 2) If there is no global improvement, π is not allowed to accept the best
solution in last OM. The details can be found in Algorithm S5 in the Supplementary Document.

3.4 Learning Mechanism

Inspired by [31], we design a two-layer cooperative RL mechanism to hierarchically and syner-
gistically control the pivotal parameters of IGA and the memory mechanism. In accordance with the
algorithm structure depicted in Fig. 1, the first layer of RL is denoted as RLIG, while the subsequent
layer is named RLMemory. Both layers employ the Sarsa algorithm and there are direct communication
and cooperation between them, which is different from those discussed in Section 2.3. The detailed
information of parameters in the learning mechanism are provided in Table 1.

3.4.1 The First Layer of RL

In RLIG, SIG = [0, 1]. The initial value of sIG is 0, and the initial value of dIG is selected randomly
from dlist. If sIG = 1(0), there are (no) global improvements in an episode. dlist is a list of different dIG-
values, representing operators with different levels of perturbation for IGA. The reward is derived from

CMC, 2025, vol.82, no.1 379

two parts, i.e., local improvements and global improvements, which is designed by [12]. The details of
RLIG are provided in Algorithm 4.

Algorithm 4: Pseudo code of RLIG(.)
Input: Cprev, C∗

prev, C, C∗, E, dlist, sc, αmax, ε, β, γ , η, QIG, sIG, dIG // Ref Table 1
Output: α, ε, γ , QIG, s′, d ′, sc // s′, d ′: intermediate variables for passing parameters
1 r ← η · max{(Cprev − C

)
, 0}/Cprev + (1 − η) · max{(C∗

prev − C∗) , 0}/C∗
prev // Calculate the reward

[12]
2 α ← αmax × min{E/6, 1} // Adaptively adjust the learning rate based on the E-value
3 If C∗ < C∗

prev then
4 s′ ← 1, sc ← 1
5 Else
6 s′ ← 0, sc ← sc + 1
7 End If
8 If rand() > ε then
9 d ′ ← argmaxd′′∈dlist

QIG(s′, d ′′)
10 Else
11 d ′ ← randomChoice (dlist)

12 End If
13 QIG (sIG, dIG) ← QIG (sIG, dIG)+α [r + γ QIG (s′, d ′) − QIG (sIG, dIG)] // Update Q-table using Sarsa
14 ε ← εβ, γ ← γβ // Update ε and γ , which is based on the idea of ε-decay proposed by [12]

According to the design of AcceptIG (see Section 3.2), there are many possible E-values. In this
situation, using the same learning rate for different E-values is unfair for RLIG. In AcceptIG, the smallest
E-value is 2, i.e., in first iteration, the solution doesn’t yield an improvement and remains unimproved
after being accepted (accept → end). The ideal E-value is 6, i.e., the algorithm goes through all
designs of AcceptIG with minimal losses (accept → local improve → accept → global improve →
accept → end), where local/global improve represents that there is local/global improvement in one
iteration. Therefore, it is reasonable to assume that the perturbation operator has been fully utilized
when E ≥ 6. Inspired by the linear warm-up technique, the learning rate α of RLIG can be adaptively
adjusted according to the design of Line 2 in Algorithm 4. As for sc mentioned in Section 3.3.2, if a
global improvement occurs in an episode, sc is set to 1; Otherwise, it is incremented by 1 to encourage
exploration of worse solutions in OM. Finally, the ε-decay strategy [12] is utilized to choose actions and
to reduce the value of ε and γ , facilitating the transition from exploration to exploitation in MLIGA.

3.4.2 The Second Layer of RL

In RLMemory, SM = [0, 1] and mlist = [0, 1, 2, 3]. The initial value of sM is 0, and the initial value of
dM is selected randomly from mlist. Similar to RLIG, if sM = 1 (0), there are (no) improvements in the
memory mechanism. Four kinds of dM in mlist control the combinations of the parameters Gate and
flag discussed in Section 3.3.2. The reward calculation in RLMemory follows a similar method to RLIG,
but consists of only one part. Algorithm 5 details the RLMemory.

Algorithm 5: Pseudo code of RLMemory(.)
Input: Cm, C∗, sc, α, ε, γ , η, QM , sM , dM , mlist, dlist // Ref Table 1
Output: QM , s′, d ′, sc // s′, d ′: intermediate variables for passing parameters

(Continued)

380 CMC, 2025, vol.82, no.1

Algorithm 5 (continued)
1 r ← max{(Cm − C∗) , 0}/Cm // Calculate the reward
2 α′ ← α · (index (dIG) + 1) /len (dlist) // Adaptively adjust the learning rate based on the RLIG

3 If C∗ < Cm then
4 s′ ← 1, sc ← 1
5 Else
6 s′ ← 0
7 End If
8 If rand() > ε then
9 d ′ ← argmaxd′′∈mlist

QM(s′, d ′′)
10 Else
11 d ′ ← randomChoice (mlist)

12 End If
13 QM (sM , dM) ← QM (sM , dM)+α′ [r + γ QM (s′, d ′) − QM (sM , dM)] // Update Q-table using Sarsa

Comparing to RLIG, RLMemory is obviously much simpler. If there is an improvement in memory
mechanism, sc is set to 1. To avoid sc increases aggressively, RLMemory is not allowed to increase sc.
Considering that ε and γ have been reduced in RLIG (see Section 3.4.1), they will not be reduced
here. Finally, like RLIG, the learning rate α′ of RLMemory is dynamically tuned according to the
following two ideas: 1) Since E-values affect the amount of memories collected and extended (see
Section 3.3.1), they determine the upper limit of the learning rate α′, i.e., α is maximum of α′. 2)
Considering that the memory mechanism employs different degrees of local search decided by dIG

(see Section 3.3.2), the learning rate α′ should adjust within the upper limit α based on dIG, i.e.,
α′ ← α · (index (dIG) + 1) /len (dlist).

4 Experimental Design

In order to investigate the performance of MLIGA and the effectiveness of some internal
designs, we conducted comprehensive experiments. This section presents a detailed description of the
experimental design as well as all relevant information.

4.1 Experimental Setting

For standard benchmarks, we utilized the Large test instances and Calibration instances employed
by [5]. Further details about them can be found in the Supplementary Document. In addition, given
the stochastic nature of the algorithms, each algorithm was independently repeated 10 times on
each instance, and the results were subsequently averaged. The average relative percentage deviation
(ARPD) [5] was chosen as the performance comparison metric. The relative percentage deviation
(RPD) is first calculated as Equation (S3) in the Supplementary Document. As for the termination
criterion, we adopted the maximum number of fitness evaluations utilized by [32]. To determine the
maximum number of fitness evaluations, we employed the method proposed by [12], which is detailed
in the Supplementary Document. Finally, all algorithms were coded by Python, and run on the PC:
Intel(R) Core(TM) i9-13900K @ 3000 MHz with 64.0 GB RAM in the 64bit Windows 10 operation
system.

CMC, 2025, vol.82, no.1 381

4.2 Settings of Key Parameters

To avoid duplication of labor, the parameters in the learning mechanism were directly adopted
from the combination of parameter values used by [12], i.e., αmax = 0.6, ε = 0.8, β = 0.996, γ =
0.8, η = 0.3. Thus, calibration of the MLIGA involved only one parameter, dlist, which could be
conducted by testing all possible dlist-values separately on the Calibration instances.

The dlist is a list of positive integers with continuous values. After reviewing relevant literature,
the maximum value (dmax) in dlist is set to 10, and the minimum value (dmin) in dlist is set to 1, 2 and
3, respectively. dmin = 3 is used to avoid the duplication between LocalSearchIG and perturbation.
Moreover, since dlist is a set of actions in RLIG, the number of actions in dlist generally has to be greater
than 2 to be meaningful. Therefore, the expression of the possible dlist-values is [dmin, · · · , dmin + Δ],
Δ ∈ [2, dmax − dmin] and Δ ∈ N+.

4.3 Settings of Comparison Algorithms

To verify the effectiveness of MLIGA, we compared it with five state-of-the-art comparison
algorithms, which are shown in Table 2.

Table 2: Information of the five comparison algorithms

Type Algorithm Description Parameters and
settings

Improvement methods
of IGA

QIGA [12] An IGA with single-layer RL
framework

dlist = [1, 2, 3],
initialization is
NEH2 [2], and local
search is LS3 [5]

TSIGA [5] A two stage IGA for solving
DPFSP

Parameters and
settings are available
in corresponding
literature

Other intelligent
optimization methods

DABC [33] A discrete artificial bee colony
DFFO [25] A discrete fruit fly

optimization
QFOA [20] A Q-learning enhanced fruit

fly optimization algorithm

4.4 Settings of Ablation Experiments

We also designed ablation experiments to examine specific designs and critical components
in MLIGA. The first experiment was conducted to investigate the effect of different initialization
procedures on MLIGA. In addition to the NEH2_en [5] utilized in MLIGA (see Section 3.2), we
chose NEH2 [2] and RandInit as the other two initialization procedures, which are detailed in the
Supplementary Document. The second experiment was designed to examine the impact of different
probability curves (see Section 3.2) on both MLIGA and E-values. Inspired by some existing curves, we
devised three additional probability curves: linear (x), sigmoid (x), and prob (x),which are illustrated
in the Supplementary Document. Memory mechanism is the main innovation of our work. It is
necessary to investigate how the memory mechanism influence MLIGA. Hence, in third experiment,
we compared MLIGA with Memoryless MLIGA, which referred to the MLIGA without the memory
mechanism and RLMemory.

382 CMC, 2025, vol.82, no.1

5 Numerical and Statistical Results

In this section, we implemented all the experiments designed in Section 4, and subsequently
analyzed the results using the Analysis of Variance (ANOVA) technique [34] and the Tukey’s Honest
Significant Difference (HSD) with 95% confidence intervals [35]. More detailed analysis results are
provided in Supplementary Document.

5.1 Calibration of MLIGA

The analysis of the results shows that there is no significant difference among these values, as the
p-value of 1.000 exceeds the significance threshold of 0.050. This phenomenon is highly meaningful
and ideal, because it demonstrates that MLIGA is insensitive to the parameter dlist. In other words, as
long as the dlist-value falls within a reasonable range, the RLIG can effectively utilize the perturbation
operator dIG, which precisely showcases the effectiveness and robustness of the learning mechanism.
However, for subsequent experimental requirements, it remains necessary to determine a specific dlist-
value. For convenience in plotting, we adopted the notation dmin − dmax instead of [dmin, · · · , dmax]. Thus,
according to Fig. 2, we determined the dlist as [3, 4, 5, 6], which had the smallest mean ARPD value.

Figure 2: Means plots for all dlist-values

5.2 Effectiveness of MLIGA

As designed in Section 4.3, we conducted the comparison experiment. Fig. 3 shows the analysis
of the results, and the smallest mean ARPD value is highlighted in bold. According to Fig. 3,
MLIGA demonstrates superior overall performance compared to DABC, DFFO, QFOA, and QIGA.
Moreover, given that QIGA utilizes a single-layer RL framework, the results can also indicate that the
learning mechanism proposed in this paper is superior to the single-layer RL framework.

However, the mean ARPD value of MLIGA is slightly lower than that of TSIGA, with no
significant difference observed. Therefore, we need to further analyze MLIGA and TSIGA. The Large
test instances used are not all large-scale instances, e.g., for an instance with 7 factories and 20 jobs in
Large test instances, each factory contains fewer than 3 jobs on average. Small-scale instances are easily
solved by most existing meta-heuristics for the DPFSP [5] and large-scale instances are more common

CMC, 2025, vol.82, no.1 383

in real-world distributed flow shop scheduling. Consequently, more attention should be paid to solving
large-scale instances. Nevertheless, the definition of large-scale instances in DPFSP remains unclear,
with much literature preferring to define instance scale based solely on the number of factories (F)
or jobs (n). Considering these two key parameters in DPFSP and some spurious large-scale instances
in the Large test instances, we thought that instance scale should be decided by both n and F . Based
on the discussion above, we concluded that defining the instance scale in terms of the ratio between n
and F , i.e., n/F , is a more appropriate approach. A higher ratio n/F indicates a larger instance scale.
Hence, we further analyze TSIGA and MLIGA based on the ratio n/F . Moreover, considering that
the overall performance of QIGA is not too much worse than these two algorithms, QIGA is also
analyzed in Fig. 4.

Figure 3: Means plots for all algorithms. All means have HSD 95% confidence intervals

Figure 4: Line graph of ARPD of the three algorithms following the increase in the scale of instances

According to Fig. 4, MLIGA exhibits slightly inferior performance compared to TSIGA when
n/F is approximately less than 20. After that, as the instance scale increases, the disparity between

384 CMC, 2025, vol.82, no.1

MLIGA and TSIGA gradually widens, with MLIGA’s superiority becoming increasingly evident. In
summary, MLIGA has significant advantages over the comparison algorithms implemented in our
work, especially in handling large-scale DPFSP instances.

5.3 Ablation Experiments

The analytical results of ablation experiments on initialization are shown in Table 3. It can be
found that: 1) Compared to RandInit, both NEH2_en and NEH2 offer superior initial solutions;
2) The results obtained from NEH2_en are the best. However, the advantage of NEH2_en over
NEH2 is not statistically significant, since the p-value between NEH2_en and NEH2 is bigger than
0.050; 3) The mean ARPD value of RandInit is better than that of DABC, DFFO, QFOA and
QIGA in Section 5.2. Additionally, the mean ARPD value of NEH2 also outperforms all comparison
algorithms in Section 5.2. In summary, MLIGA does not rely much on the initial solutions, and thanks
to the presence of forgetting in the memory mechanism, MLIGA does not deteriorate even with worse
initial solutions.

Table 3: Analytical results of the ablation experiments on initialization

Type Source Mean 95% Confidence interval p-value Significance level

For initial
solutions

NEH2_en 3.0641 (2.7451, 3.3831) 0.000 α = 0.05
NEH2 3.2201 (2.9011, 3.5390)
RandInit 17.700 (17.381, 18.019)

For best
solutions
obtained

NEH2_en 0.5624 (0.5293, 0.5955) 0.000 α = 0.05
NEH2 0.5780 (0.5449, 0.6111)
RandInit 0.8059 (0.7728, 0.8390)

Table 4 lists the analytical results of ablation experiments on probability curves. From Table 4, it
can be found that the cbrt (x) has the smallest mean ARPD value, which indicates that it is the best
choice among the four curves. Nevertheless, although there is a slight disparity in the mean ARPD
values among these four curves, the differences between them are not statistically significant, as the p-
values among them were bigger than 0.050. This phenomenon suggests that AcceptIG is not particularly
sensitive to different probability curves, namely, it is robust.

Table 4: Analytical results of the ablation experiments on probability curves

Source Mean 95% Confidence interval p-value Significance level

cbrt (x) 0.5624 (0.5281, 0.5967) 0.967 α = 0.05
linear (x) 0.5668 (0.5325, 0.6011)
prob (x) 0.5725 (0.5382, 0.6068)
sigmoid (x) 0.5734 (0.5390, 0.6077)

The impact of the probability curves is not only manifested in the result, but also more directly
evident in the E-values. Thus, we collected and organized the E-values of these four probability curves
across all instances in Fig. 5. In Fig. 5, we can find that: 1) Different probability curves lead to distinct
distributions of E-values; 2) No particular E-value has a percentage of more than 50% across all

CMC, 2025, vol.82, no.1 385

probability curves, which indicates that there is indeed a necessity for adaptive adjustment of E-values
during the search process, i.e., the design of AcceptIG is completely necessary.

Figure 5: Line graph of percentage of each E-value for all probability curves

At last, the analytical results for MLIGA and Memoryless MLIGA are listed in Table 5. The
results suggest that the memory mechanism can significantly improve the overall performance of
the algorithm, with a significant difference observed between MLIGA and Memoryless MLIGA.
This phenomenon effectively demonstrates the pivotal role of the memory mechanism in MLIGA’s
performance.

Table 5: Analytical results of the ablation experiments on memory mechanism

Source Mean 95% Confidence interval p-value Significance level

MLIGA 0.5624 (0.5235, 0.6012) 0.000 α = 0.05
Memoryless MLIGA 1.3884 (1.3496, 1.4273)

6 Conclusion and Perspectives

In this paper, we developed a novel algorithm named MLIGA to solve the DPFSP with the
objective of minimizing the makespan. One of main contribution is to incorporate a memory mecha-
nism in IGA, which can help the algorithm escape from the local optima by collecting, extending,
reconstructing (including forgetting), and reinforcing memories, with providing more appropriate
starting solutions for IGA during iterations. In addition, we proposed a two-layer cooperative RL
mechanism to determine the crucial parameters of IGA and the memory mechanism. Through a series
of comprehensive experiments, it is clear that MLIGA exhibits excellent performance on large-scale
DPFSP instances, indicating its potential applicability in real-world distributed flow shop scheduling.

However, there are also some limitations, including the performance is not as good as TSIGA
in small-scale benchmarks, and there are some sorting operations in the memory mechanism. In the
future, we will explore the feasibility of implementing switchable acceptance criteria based on the scale
of instances to improve the performance of MLIGA on small-scale benchmarks, design more suitable
acceptance strategies according to the structure of algorithm, or refine the framework of MLIGA to
avoid some sorting operations. Furthermore, we will extend the application of MLIGA to tackle more

386 CMC, 2025, vol.82, no.1

variants of DPFSPs. More investigations on multi-objective evolutionary algorithms are also crucial
for solving DPFSPs with multiple optimization objectives.

Acknowledgement: None.

Funding Statement: This work was supported in part by the National Key Research and Development
Program of China under Grant No. 2021YFF0901300, in part by the National Natural Science
Foundation of China under Grant Nos. 62173076 and 72271048.

Author Contributions: Study conception and design: Binhui Wang; data collection: Binhui Wang;
analysis and interpretation of results: Binhui Wang; draft manuscript preparation: Binhui Wang;
review and editing: Hongfeng Wang; funding acquisition: Hongfeng Wang. All authors reviewed the
results and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Supplementary Materials: The supplementary material is available online at https://doi.org/10.32604/
cmc.2024.058885.

References
[1] C. E. Okwudire and H. V. Madhyastha, “Distributed manufacturing for and by the masses,” Science, vol.

372, no. 6540, pp. 341–342, Apr. 2021. doi: 10.1126/science.abg4924.
[2] B. Naderi and R. Ruiz, “The distributed permutation flowshop scheduling problem,” Comput. Oper. Res.,

vol. 37, no. 4, pp. 754–768, 2010. doi: 10.1016/j.cor.2009.06.019.
[3] P. Perez-Gonzalez and J. M. Framinan, “A review and classification on distributed permutation flowshop

scheduling problems,” Eur. J. Oper. Res., vol. 312, no. 1, pp. 1–21, Jan. 2024. doi: 10.1016/j.ejor.2023.02.001.
[4] V. Fernandez-Viagas and J. M. Framinan, “A bounded-search iterated greedy algorithm for the distributed

permutation flowshop scheduling problem,” Int. J. Prod. Res., vol. 53, no. 4, pp. 1111–1123, Feb. 2015. doi:
10.1080/00207543.2014.948578.

[5] R. Ruiz, Q. -K. Pan, and B. Naderi, “Iterated Greedy methods for the distributed permutation flowshop
scheduling problem,” Omega, vol. 83, no. 1, pp. 213–222, Mar. 2019. doi: 10.1016/j.omega.2018.03.004.

[6] Z. Shao, W. Shao, and D. Pi, “Effective heuristics and metaheuristics for the distributed fuzzy block-
ing flow-shop scheduling problem,” Swarm Evol. Comput., vol. 59, Dec. 2020, Art. no. 100747. doi:
10.1016/j.swevo.2020.100747.

[7] Q. -Y. Han, H. -Y. Sang, Q. -K. Pan, B. Zhang, and H. -W. Guo, “An efficient collaborative multi-swap
iterated greedy algorithm for the distributed permutation flowshop scheduling problem with preventive
maintenance,” Swarm Evol. Comput., vol. 86, Apr. 2024, Art. no. 101537. doi: 10.1016/j.swevo.2024.101537.

[8] S. -Y. Wang and L. Wang, “An estimation of distribution algorithm-based memetic algorithm for the
distributed assembly permutation flow-shop scheduling problem,” IEEE Trans. Syst. Man Cybern. Syst.,
vol. 46, no. 1, pp. 139–149, Jan. 2016. doi: 10.1109/TSMC.2015.2416127.

[9] J. Deng and L. Wang, “A competitive memetic algorithm for multi-objective distributed permutation
flow shop scheduling problem,” Swarm Evol. Comput., vol. 32, no. 6, pp. 121–131, Feb. 2017. doi:
10.1016/j.swevo.2016.06.002.

https://doi.org/10.32604/cmc.2024.058885
https://doi.org/10.32604/cmc.2024.058885
https://doi.org/10.1126/science.abg4924
https://doi.org/10.1016/j.cor.2009.06.019
https://doi.org/10.1016/j.ejor.2023.02.001
https://doi.org/10.1080/00207543.2014.948578
https://doi.org/10.1016/j.omega.2018.03.004
https://doi.org/10.1016/j.swevo.2020.100747
https://doi.org/10.1016/j.swevo.2024.101537
https://doi.org/10.1109/TSMC.2015.2416127
https://doi.org/10.1016/j.swevo.2016.06.002

CMC, 2025, vol.82, no.1 387

[10] J. Mao, Q. Pan, Z. Miao, and L. Gao, “An effective multi-start iterated greedy algorithm to minimize
makespan for the distributed permutation flowshop scheduling problem with preventive maintenance,”
Expert. Syst. Appl., vol. 169, May 2021, Art. no. 114495. doi: 10.1016/j.eswa.2020.114495.

[11] F. Zhao, G. Zhou, T. Xu, N. Zhu, and Jonrinaldi, “A knowledge-driven cooperative scatter search algorithm
with reinforcement learning for the distributed blocking flow shop scheduling problem,”Expert Syst. Appl.,
vol. 230, Nov. 2023, Art. no. 120571. doi: 10.1016/j.eswa.2023.120571.

[12] M. Karimi-Mamaghan, M. Mohammadi, B. Pasdeloup, and P. Meyer, “Learning to select operators
in meta-heuristics: An integration of Q-learning into the iterated greedy algorithm for the permuta-
tion flowshop scheduling problem,” Eur. J. Oper. Res., vol. 304, no. 3, pp. 1296–1330, Feb. 2023. doi:
10.1016/j.ejor.2022.03.054.

[13] F. Zhao, Z. Wang, and L. Wang, “A reinforcement learning driven artificial bee colony algorithm for
distributed heterogeneous no-wait flowshop scheduling problem with sequence-dependent setup times,”
IEEE Trans. Autom. Sci. Eng., vol. 20, no. 4, pp. 2305–2320, Oct. 2023. doi: 10.1109/TASE.2022.3212786.

[14] F. Zhao, T. Jiang, and L. Wang, “A reinforcement learning driven cooperative meta-heuristic algorithm
for energy-efficient distributed no-wait flow-shop scheduling with sequence-dependent setup time,” IEEE
Trans. Ind. Inform., vol. 19, no. 7, pp. 8427–8440, Jul. 2023. doi: 10.1109/TII.2022.3218645.

[15] F. Zhao, G. Zhou, and L. Wang, “A cooperative scatter search with reinforcement learning mechanism for
the distributed permutation flowshop scheduling problem with sequence-dependent setup times,” IEEE
Trans. Syst. Man Cybern. Syst., vol. 53, no. 8, pp. 4899–4911, 2023. doi: 10.1109/TSMC.2023.3256484.

[16] F. Zhao, S. Di, and L. Wang, “A hyperheuristic with Q-learning for the multiobjective energy-efficient
distributed blocking flow shop scheduling problem,” IEEE Trans. Cybern., vol. 53, no. 5, pp. 3337–3350,
May 2023. doi: 10.1109/TCYB.2022.3192112.

[17] Y. Jia, Q. Yan, and H. Wang, “Q-learning driven multi-population memetic algorithm for distributed three-
stage assembly hybrid flow shop scheduling with flexible preventive maintenance,” Expert Syst. Appl., vol.
232, Dec. 2023, Art. no. 120837. doi: 10.1016/j.eswa.2023.120837.

[18] S. -W. Lin, K. -C. Ying, and C. -Y. Huang, “Minimising makespan in distributed permutation flowshops
using a modified iterated greedy algorithm,” Int. J. Prod. Res., vol. 51, no. 16, pp. 5029–5038, Aug. 2013.
doi: 10.1080/00207543.2013.790571.

[19] B. Naderi and R. Ruiz, “A scatter search algorithm for the distributed permutation flowshop scheduling
problem,” Eur. J. Oper. Res., vol. 239, no. 2, pp. 323–334, Dec. 2014. doi: 10.1016/j.ejor.2014.05.024.

[20] C. Zhao, L. Wu, C. Zuo, and H. Zhang, “An improved fruit fly optimization algorithm with Q-learning
for solving distributed permutation flow shop scheduling problems,” Complex Intell. Syst., vol. 10, no. 5,
pp. 5965–5988, Oct. 2024. doi: 10.1007/s40747-024-01482-4.

[21] J. Lin, Z. -J. Wang, and X. Li, “A backtracking search hyper-heuristic for the distributed assem-
bly flow-shop scheduling problem,” Swarm Evol. Comput., vol. 36, pp. 124–135, Oct. 2017. doi:
10.1016/j.swevo.2017.04.007.

[22] C. Lu, L. Gao, J. Yi, and X. Li, “Energy-efficient scheduling of distributed flow shop with heterogeneous
factories: A real-world case from automobile industry in China,” IEEE Trans. Ind. Inform., vol. 17, no. 10,
pp. 6687–6696, Oct. 2021. doi: 10.1109/TII.2020.3043734.

[23] V. Fernandez-Viagas, P. Perez-Gonzalez, and J. M. Framinan, “The distributed permutation flow
shop to minimise the total flowtime,” Comput. Ind. Eng., vol. 118, pp. 464–477, Apr. 2018. doi:
10.1016/j.cie.2018.03.014.

[24] C. Lu, L. Gao, W. Gong, C. Hu, X. Yan and X. Li, “Sustainable scheduling of distributed permutation flow-
shop with non-identical factory using a knowledge-based multi-objective memetic optimization algorithm,”
Swarm Evol. Comput., vol. 60, Feb. 2021, Art. no. 100803. doi: 10.1016/j.swevo.2020.100803.

[25] H. -W. Guo, H. -Y. Sang, X. -J. Zhang, P. Duan, J. -Q. Li and Y. -Y. Han, “An effective fruit fly optimization
algorithm for the distributed permutation flowshop scheduling problem with total flowtime,” Eng. Appl.
Artif. Intell., vol. 123, Aug. 2023, Art. no. 106347. doi: 10.1016/j.engappai.2023.106347.

https://doi.org/10.1016/j.eswa.2020.114495
https://doi.org/10.1016/j.eswa.2023.120571
https://doi.org/10.1016/j.ejor.2022.03.054
https://doi.org/10.1109/TASE.2022.3212786
https://doi.org/10.1109/TII.2022.3218645
https://doi.org/10.1109/TSMC.2023.3256484
https://doi.org/10.1109/TCYB.2022.3192112
https://doi.org/10.1016/j.eswa.2023.120837
https://doi.org/10.1080/00207543.2013.790571
https://doi.org/10.1016/j.ejor.2014.05.024
https://doi.org/10.1007/s40747-024-01482-4
https://doi.org/10.1016/j.swevo.2017.04.007
https://doi.org/10.1109/TII.2020.3043734
https://doi.org/10.1016/j.cie.2018.03.014
https://doi.org/10.1016/j.swevo.2020.100803
https://doi.org/10.1016/j.engappai.2023.106347

388 CMC, 2025, vol.82, no.1

[26] C. Lu, Y. Huang, L. Meng, L. Gao, B. Zhang and J. Zhou, “A Pareto-based collaborative multi-
objective optimization algorithm for energy-efficient scheduling of distributed permutation flow-
shop with limited buffers,” Robot Comput.-Integr. Manuf., vol. 74, Apr. 2022, Art. no. 102277. doi:
10.1016/j.rcim.2021.102277.

[27] Z. Zhao, M. Zhou, and S. Liu, “Iterated greedy algorithms for flow-shop scheduling problems: A tutorial,”
IEEE Trans. Autom. Sci. Eng., vol. 19, no. 3, pp. 1941–1959, 2021. doi: 10.1109/TASE.2021.3062994.

[28] J. Wang, H. Zheng, S. Zhao, and Q. Zhang, “Energy-aware remanufacturing process planning and
scheduling problem using reinforcement learning-based particle swarm optimization algorithm,” J. Clean.
Prod., vol. 476, Oct. 2024, Art. no. 143771. doi: 10.1016/j.jclepro.2024.143771.

[29] X. Chen et al., “Reinforcement learning for distributed hybrid flowshop scheduling problem with variable
task splitting towards mass personalized manufacturing,” J. Manuf. Syst., vol. 76, no. 4, pp. 188–206, Oct.
2024. doi: 10.1016/j.jmsy.2024.07.011.

[30] H. Yu, K. -Z. Gao, Z. -F. Ma, and Y. -X. Pan, “Improved meta-heuristics with Q-learning for solving
distributed assembly permutation flowshop scheduling problems,” Swarm Evol. Comput., vol. 80, Jul. 2023,
Art. no. 101335. doi: 10.1016/j.swevo.2023.101335.

[31] Q. Yan, H. Wang, and F. Wu, “Digital twin-enabled dynamic scheduling with preventive maintenance
using a double-layer Q-learning algorithm,” Comput. Oper. Res., vol. 144, Aug. 2022, Art. no. 105823.
doi: 10.1016/j.cor.2022.105823.

[32] Q. Yan, H. Wang, and S. Yang, “A learning-assisted bi-population evolutionary algorithm for dis-
tributed flexible job-shop scheduling with maintenance decisions,” IEEE Trans. Evol. Comput., 2024. doi:
10.1109/TEVC.2024.3400043.

[33] Y. Yu, F. -Q. Zhang, G. -D. Yang, Y. Wang, J. -P. Huang and Y. -Y. Han, “A discrete artificial bee colony
method based on variable neighborhood structures for the distributed permutation flowshop problem
with sequence-dependent setup times,” Swarm Evol. Comput., vol. 75, Dec. 2022, Art. no. 101179. doi:
10.1016/j.swevo.2022.101179.

[34] M. G. Larson, “Analysis of Variance,” Circulation, vol. 117, no. 1, pp. 115–121, 2008. doi: 10.1161/CIR-
CULATIONAHA.107.654335.

[35] H. Abdi and L. J. Williams, “Tukey’s honestly significant difference (HSD) test,” in Encyclopedia of
Research Design. SAGE Publications, Inc., 2010.

https://doi.org/10.1016/j.rcim.2021.102277
https://doi.org/10.1109/TASE.2021.3062994
https://doi.org/10.1016/j.jclepro.2024.143771
https://doi.org/10.1016/j.jmsy.2024.07.011
https://doi.org/10.1016/j.swevo.2023.101335
https://doi.org/10.1016/j.cor.2022.105823
https://doi.org/10.1109/TEVC.2024.3400043
https://doi.org/10.1016/j.swevo.2022.101179
https://doi.org/10.1161/CIRCULATIONAHA.107.654335

	An Iterated Greedy Algorithm with Memory and Learning Mechanisms for the Distributed Permutation Flow Shop Scheduling Problem
	1 Introduction
	2 Literature Review
	3 The Proposed Approach
	4 Experimental Design
	5 Numerical and Statistical Results
	6 Conclusion and Perspectives
	References

